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Abstract
Most diffusion imaging studies have used subject registration to an atlas space for enhanced
quantification of anatomy. However, standard diffusion tensor atlases lack information in regions
of fiber crossing and are based on adult anatomy. The degree of error associated with applying
these atlases to studies of children for example has not yet been estimated but may lead to
suboptimal results. This paper describes a novel technique for generating population-specific high
angular resolution diffusion imaging (HARDI)-based atlases consisting of labeled regions of
homogenous white matter. Our approach uses a fiber orientation distribution (FOD) diffusion
model and a data driven clustering algorithm. White matter regional labeling is achieved by our
automated data driven clustering algorithm that has the potential to delineate white matter regions
based on fiber complexity and orientation. The advantage of such an atlas is that it is study
specific and more comprehensive in describing regions of white matter homogeneity as compared
to standard anatomical atlases. We have applied this state of the art technique to a dataset
consisting of adolescent and preadolescent children, creating one of the first examples of a
HARDI-based atlas, thereby establishing the feasibility of the atlas creation framework. The white
matter regions generated by our automated clustering algorithm have lower FOD variance than
when compared to the regions created from a standard anatomical atlas.
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1. Introduction
The use of brain atlases in neuroimaging studies allows researchers to register, identify and
perform measurements on individual subjects within a common spatial coordinate system
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enabling large scale group studies with greater statistical power to elucidate smaller or more
subtle anatomical differences that exist in specific diseases. Since the introduction of the
Talairach (Talairach 1988) human cortical atlas, a number of MRI atlases have been
introduced to assist with these measurement issues. T1-weighted MR atlases (Collins,
Holmes et al. 1995; Mazziotta, Toga et al. 1995; Lancaster, Woldorff et al. 2000; Mazziotta,
Toga et al. 2001; Lancaster, Tordesillas-Gutierrez et al. 2007; Ashburner 2009) from the
Montreal Neurological Institute (MNI) and the International Consortium of Brain Mapping
(ICBM) have been used extensively to illustrate differences in gray matter anatomy as well
as to localize functional signals within these structures. While T1-weighted MRI provides
detailed information concerning cortical anatomy it provides considerably less information
concerning white matter anatomy (Toga, Thompson et al. 2006), thus these atlases have
focused primarily on the identification of GM regions, possessing limited information
concerning WM regions.

By providing an in-vivo WM contrast mechanism, built on the recognition of the imaging
consequences of diffusion anisotropy (Moseley, Cohen et al. 1990), diffusion tensor imaging
(DTI) (Basser, Mattiello et al. 1994) has reinvigorated the study of WM pathologies and
more recently DTI based WM atlases (Wakana, Jiang et al. 2004; Mori, Oishi et al. 2008;
Oishi, Faria et al. 2009) have been introduced to address the relative lack of information
provided by the existing cortical atlases. While DTI is able to model WM regions possessing
a single fiber population, it is ill suited to model areas of more complex WM, such as fiber
crossing. This limitation makes delineating boundaries within these regions difficult and the
labeling within them suspect. More complex high angular resolution diffusion imaging
(HARDI) data models (Frank 2002; Tournier, Calamante et al. 2004; Tuch 2004; Anderson
2005; Descoteaux, Angelino et al. 2007) have been developed to improve modeling in areas
of complex WM. These new models provide contrast in areas of fiber crossing and
orientation change that is unavailable from conventional DTI and better reflects the
underlying structure of the WM tissue. This paper presents a novel methodology for
building WM atlases by utilizing the HARDI contrast to identify and automatically label
regions of homogenous WM. The utilization of an automated data driven clustering
algorithm for region labeling permits the generation of population/study specific atlases
without the need for manual delineation of anatomical regions.

In general, the utility of atlases are two-fold. First, an atlas provides a template image, either
a population average or a single subject image, to serve as a spatial normalization target and
thus defines a common spatial coordinate system. Secondly, each atlas identifies regions
consisting of voxels that meet some conceptual criterion of sameness. The majority of
imaging atlases attempt to label regions based on named neuroanatomical constructs, such as
the prefrontal cortex or the internal capsule. This requires a neuroanatomist/neuroradiologist
to manually label the template image to identify each region and is inherently variable, as
human neuroanatomical boundaries are quite variable. Recent work within the registration
community (Zhang, Avants et al. 2007; Hecke, Sijbers et al. 2008; Hamm, Ye et al. 2010;
Hecke, Leemans et al. 2011) suggest that choosing a registration template from the
population under study improves the accuracy of spatial normalization. However the labor
intensive labeling process makes the accurate transfer of atlas defined regions to a
population specific atlas difficult, a particularly acute issue when the population has unique
characteristics (such as being of a younger age than the anatomical atlas) or when the new
imaging modalities, such as HARDI, are being used.

It is also important to consider if labeling based on anatomical boundaries provide sufficient
demarcation, particularly in areas of complex WM, for applications such as region of
interest (ROI) based WM analysis. For instance, most large anatomical fiber bundles are
known to traverse a variety of WM architectures and thus may not be well suited for region
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of interest studies where they are represented by a single diffusion model or a single scalar
feature, such as diffusion fractional anisotropy.

In this work we address these limitations of existing white matter atlases by presenting a
framework to generate a population-specific HARDI atlas based on one of the prominent
HARDI data models, the fiber orientation distribution (FOD) (Tournier, Calamante et al.
2004; Anderson 2005) function. The framework uses a non-linear spatial normalization
algorithm to spatially transform the population into a common coordinate system and to
create a population average FOD image. While we adopt a suitable registration algorithm,
similar HARDI based registration techniques (Geng, Ross et al. 2011; Raffelt, Tournier et al.
2011; Yap, Chen et al. 2011) could be used in its place, without compromising the atlas
framework and parcellation capability. The advantageous of algorithms of this type (i.e.
based on HARDI) have been shown in registering areas of complex white matter when
compared with state of the art DTI registration methods (Yap, Chen et al. 2011).

An automated data driven clustering routine is then applied to create a large number of
spatial regions, each consisting of homogeneous WM architecture as measured by the FOD
image. As regional homogeneity is the driving force behind the cluster process, each region
is able to be confidently represented by its average, making these regions ideal for region of
interest (ROI) statistical studies or for the extraction of spatial WM features for use in a
classification framework. While neuroanatomical labeling may not provide suitable
delineation of boundaries needed to identify homogeneous WM regions, it does aid in
interpretability by providing researchers and clinicians with a means of investigating the
structure/function of these regions as well as a comparative basis to other published studies.
For this reason, in addition to determining homogeneous WM regions, we assign to each
neuroanatomical labels based on its spatial overlap with an existing WM atlas. While not
designed merely to identify these named anatomical constructs, the neuroanatomical
relabeling of the data-based atlas, allows for describing the ROI as belonging to the
anatomical region, thereby instilling it with joint information of the underlying fiber
orientation as well as the global anatomy and function, facilitating interpretability.

We illustrate the application of our framework by generating a HARDI atlas from a dataset
consisting of typically developing pediatric and young adolescent subjects, although the
method is generalizable to any population under study. By comparing regional FOD spatial
variances in anatomical labels to the variances computed from the regions determined by our
clustering method, we demonstrate the ability our algorithms to generate atlases consisting
of homogeneous WM regions well beyond what is achievable using the neuroanatomical
labeling available in existing WM atlases. Average measures in these homogenous regions
can then be used for subsequent statistical analysis and as the basis for between group and
longitudinal within-group investigations. Anatomical interpretability of these study specific
atlases generated by our method is imparted by establishing a correspondence with an
existing atlas such as the EVE-DTI (Oishi, Faria et al. 2009) atlas in the presented case, but
this could, in principle, be replaced by any anatomical atlas deemed of importance by the
hypotheses of the study for which the atlas is being created.

2. Methods and Materials
This paper presents an automated method for creating a HARDI-based WM atlas for a given
clinical population which will establish a common spatial reference frame to facilitate
further investigation of WM differences. The generation of the WM atlas consists of a
number of steps. First, an image of fiber orientation distribution (FOD) functions is
computed for each subject’s diffusion-weighted (DW)-MRI dataset. A non-linear spatial
normalization process (Bloy and Verma 2010; Geng, Ross et al. 2011) is applied to deform

Bloy et al. Page 3

Neuroimage. Author manuscript; available in PMC 2013 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



each subject’s FOD image into the spatial domain defined by a single individual, chosen to
act as the population template. Following registration, a population averaged FOD image is
computed and a data driven clustering algorithm is applied (Bloy, Ingalhalikar et al. 2011) to
divide the white matter into regions of homogenous WM architecture. This parcellation
algorithm is designed to determine spatially compact regions that have a low spatial variance
in the normalized FOD space and thus are comprised of voxels possessing both a similar
orientation as well as a similar level of complexity (as imaging surrogates of low biological/
tissue variance). These traits make these regions ideal candidates for regional statistical
analysis (Kubicki, Westin et al. 2002; Alexander, Lee et al. 2007; Lee, Bigler et al. 2007;
Fletcher, Whitaker et al. 2010) or as input features to a pattern classification method (Bloy,
Ingalhalikar et al. 2011; Ingalhalikar, Parker et al. 2011). These regions are not necessarily
intended to correspond directly to named anatomical structures provided by conventional
labels such as the internal capsule, corpus callosum etc., but might for example expose sub-
parcellation within such structures. To impart this additional anatomical information a
labeling procedure is applied to assign WM labels derived from the EVE-DTI atlas ( (Oishi,
Faria et al. 2009) http://cmrm.med.jhmi.edu/cmrm/atlas/human_data/) to each region.

2.1. Fiber orientation distribution function
The fiber orientation distribution function (FOD) is the HARDI data model used in this
work to quantify the WM architecture at each voxel. The FOD model (Tournier, Calamante
et al. 2004; Anderson 2005) represents each voxel’s DW-MRI signal as the spherical
convolution of the FOD and the DW-MRI signal that would be measured for a single fiber
bundle aligned along the z-axis. We utilized the constrained spherical deconvolution method
(Tournier, Calamante et al. 2007) to compute the real spherical harmonic (RSH)
representation of FOD, which is then normalized to have unit integral. Under this

formulation the normalized FOD f is represented as , where Rl,m
(θ φ) are the RSH basis functions and f̃l,m are the corresponding RSH coefficients. This
representation allows for the efficient computation of the difference between two FODs
using the L2 norm of the RSH coefficients as well as a means to rotate the FOD by the use
of the Wigner D rotation matrices (Wigner 1931; Edmonds 1960). The FOD model is of
particular interest in this work, as it contains information concerning both the orientation
and partial volume fraction of any fiber bundles present within a voxel, making it well suited
to model WM architecture in complex regions as well as those constituting a single fiber
population.

2.2. Creating a population average FOD image
Once the FOD model has been fitted to each subject’s DW-MRI dataset, a single subject is
chosen to act as a template image for spatial normalization. Although any subject can be
used to define the template spatial coordinate frame, it is generally best to choose the
individual most representative of the population under study to act as the template subject.
For instance, in generating the adolescent atlas in section 3, a twelve year old male subject
served as the registration template.

With the template defined, the normalized FOD image of each subject is registered to the
template FOD image via a two phase registration method (Figure 1), each phase utilizing a
different similarity measure. The core of both registration phases is the multichannel
diffeomorphic demons framework (Thirion 1998; Vercauteren, Pennec et al. 2009),
discussed in the appendix A. The demons framework is designed to minimize an energy
functional based on the difference metric between the fixed (template) and moving (subject)
FOD images, F and M. By representing F and M in different feature spaces, the contribution
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of orientation information to the demons algorithm can be managed in each registration
phase, controlling the sensitivity of the registration method to the orientations of the FODs.

In the first phase, the demon’s registration framework is used to minimize an orientation
invariant metric between the FODs of the fixed and moving images (F and M), at each

voxel, . As the basis functions of each RSH order (l
level) span a subspace which is closed under rotations (Edmonds 1960; Frank 2002; Green

2003; Bloy and Verma 2010), the spectral power in the lth order,  is a
rotationally invariant feature of f. Therefore using the above metric in the spectral power
space yields a registration process that is insensitive to rotations of the FODs of each image,
allowing the computationally expensive reorientation process to be removed from this
registration phase increasing its computational efficiency.

The second, orientation sensitive, registration phase uses the full vector of RSH coefficients
to representation the FOD at each voxel, minimizing the L2 metric in the full RSH space,

. This metric measures the total
amplitude difference between the two spherical functions, f and g, and is inherently sensitive
to the orientations of both. Because of this sensitivity, during the demons optimization
process, we reorient the moving image, using the finite strain reorientation scheme
(Alexander, Pierpaoli et al. 2001), when applying the transformation at the current iteration.
It may be noted that our registration algorithm can be replaced by similar HARDI based
registration techniques (Geng, Ross et al. 2011; Raffelt, Tournier et al. 2011; Yap, Chen et
al. 2011).

Following spatial normalization, each subject’s FOD image has been registered into the
same spatial coordinate system allowing the computation of the average FOD image for the
population as well as the covariance matrix computation for the FOD coefficients. This
average is obtained by averaging each RSH coefficient independently, which equates to the
geometric mean performed in the RSH space. These mean and covariance images can serve
both as a registration target for newly acquired subjects, as well as a simple first level
analysis for identifying strong acute WM abnormalities such as lesions.

2.3. White Matter Parcellation
The process of parcellating the WM volume into spatially homogenous regions begins with
the population average FOD image, as well as a binary image mask indicating which voxels
consist of white matter tissue. Regions are then determined by using a spatially coherent
normalized cuts algorithm (Bloy, Ingalhalikar et al. 2011) to cluster the WM volume. The
algorithm, based on the superpixel (Mori 2005) methodology, works by iteratively dividing
the most heterogeneous region into spatially connected parts until each of the resultant
regions meet a homogeneity criterion. A region’s heterogeneity (Φ(R)) is represented by the
average squared distance between the mean FOD ( μ) and the FOD (fi) of every voxel in the
region.
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This measure is related to the normalized trace of the FOD covariance matrix, and can
therefore be interpreted similar to a variance.

The white matter volume is initially divided into a collection of regions, C, using a seed
growing algorithm (appendix C) to identify any spatially disconnected components. From C
we choose the region of the highest heterogeneity (Φ(R)), which is then bipartitioned using
the normalized cuts (N-Cut) algorithm, discussed in appendix B. The N-cut algorithm is
mediated by the chosen form of the similarity function (k(xi,xj)). In this work we measure
the similarity between two white matter voxels, with FODs and spatial locations given by fi
and pi, using a product of a Gaussian kernel over the normalized FOD domain (standard
deviation σf) and a Gaussian kernel (standard deviation σs) over the voxels’ spatial locations.

The seed growing algorithm is then applied to each of the resultant regions, dividing any
region that contains spatially disconnected components. Thus at each iteration, the region
with the highest degree of non uniformity is replaced by spatially compact sub-regions. This
process is repeated until every region has heterogeneity below a predefined threshold (ε). In
order to control the generation of exceedingly small regions (< 5 voxels) that may be
occasionally created, we apply a post processing step that identifies small regions and
combines them with the neighboring region with the most similar mean FOD.

At the completion of automated clustering routine, the WM volume is divided into regions
that have a degree of heterogeneity, as measured via the FODs, below the prescribed
threshold. The boundaries of these regions are determined by the HARDI FOD contrast that
is available within the data itself and thus takes full advantage of the contrast available from
the HARDI.

2.4. Anatomical Labeling
It is advantageous, for instance when interpreting the location of abnormalities, to know the
anatomical label of a specific region. This requires the additional step of labeling each of
these data defined ROIs with anatomical labels provided by a co-registered anatomical atlas.
We accomplish this by using an existing WM anatomical atlas, for instance the ICBM-
DTI-81 (Mori, Oishi et al. 2008) or EVE-DTI atlases, to provide anatomical labels to each
of the homogeneous WM regions that we determine. This is accomplished by using non-
linear registration to spatially normalize the atlas’ structural image to the population average
structural image. The percent overlap between each WM region and the existing anatomical
atlas regions are computed. For each WM region any anatomical label with greater than a
10% overlap is assigned to that WM region allowing for the possibility of multiple
anatomical labels being assigned to regions that span the boundaries of anatomically defined
regions.

The final result of the entire parcellation algorithm is a hierarchical two level white matter
atlas. Each white matter voxel is first assigned a label representing which data driven ROI it
belongs to. Secondly each of these ROIs is assigned a combination of anatomical labels
based on the regional overlap to an existing anatomical atlas. The finer data driven ROIs are
designed to consist of homogenous WM, as measured by a low FOD variance and may be
useful for statistical analysis or to extract regional features to comprehensively represent a
subject’s WM architecture. The anatomical labels provide a more global anatomical context
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to each ROI allowing both the location and in some cases function of each ROI to be
ascertained and communicated to other researchers.

3. Results: Development of a population atlas (an illustrative example)
The problem of atlas generation or region of interest (ROI) delineation occurs in any
population study where regional imaging measures serve for the basis of group comparison,
such as ROI statistical analysis or subject based classification. The problem is however most
acute when new imaging modalities, such as HARDI, are being utilized (for which no
anatomical atlases exist) or when the population under study has not been used for
generating atlases previously (such as in a younger population). For this reason, we illustrate
the application of our WM atlas generation framework by creating a population atlas from a
dataset of typically developing adolescent and preadolescent healthy subjects (6–18years).
This specific population is of interest to many WM researchers involved in studies of
younger populations at varying developmental stages, specifically those studying autism
spectrum disorder and schizophrenia, which are believed to effect WM architecture and
development (Kubicki, McCarley et al. 2007; Verhoeven, De Cock et al. 2010). This is an
illustrative atlas, and may need to be regenerated with a larger sample size, or to suit specific
clinical purposes.

3.1. Imaging dataset
The dataset consisted of 23 typically developing children (TDC) between the ages of 6 and
18 years (mean 11.2 ± 2.7 years). All participants were carefully screened, using parent
report questionnaires and a telephone interview, to insure that they did not have a history of
current or prior neuropsychiatric symptomatology. Moreover, T1 weighted brain images
were evaluated clinically by a board certified neuroradiologist and all participants in this
study were found to completely anomaly free. For each subject a whole brain HARDI
dataset was acquired using a Siemens 3T Verio™ MRI scanner using a monopolar Stejskal-
Tanner diffusion weighted spin-echo, echo-planar imaging sequence (TR/TE=14.7s/110ms,
2mm isotropic voxels, b=3000 s/mm2, number of diffusion directions=64, 2 b0 images, scan
time 18 minutes). In order to facilitate tissue segmentation as well the coregistration with an
existing atlas lacking a HARDI component, such as the EVE-DTI or the ICBM-152, a
structural image was acquired, using an MP-RAGE imaging sequence (TR/TE/TI = 19s/
2.54ms/.9s, 0.8mm in plane resolution, 0.9mm slice thickness ).

3.2. DW-MRI and Structural preprocessing
Prior to computing the FOD image from each subject’s DW-MRI image a number of
preprocessing steps were performed in order to reduce imaging artifacts and improve signal
to noise. First, the DW-MRI images were filtered using a joint linear minimum mean
squared error filter to remove Rician noise (Tristán-Vega and Aja-Fernández 2010). This
was followed by eddy current and motion correction performed via the affine registration of
each DW-MRI volume to the non diffusion-weighted (b0) image (Jezzard, Barnett et al.
1998). The normalized FOD image for each subject was then computed using the
constrained spherical deconvolution method (Tournier, Calamante et al. 2007) and
normalized to have unit integral.

Using each subject’s structural MP-RAGE image, their white matter segmentation was
determined by the following procedure. Skull-stripping and bias field correction were
performed using the BET (Smith 2002) tool and N3 bias correction (Sled, Zijdenbos et al.
1998). Tissue segmentation was then performed, to identify cerebrospinal fluid, gray and
white matter voxels, using an adaptive K-means clustering (Pham and Prince 1999). A rigid
body registration, between the b0 image and the bias corrected structural image was
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performed. Using this deformation field, the white matter segmentation mask was then
resampled into the diffusion space yielding a white matter segmentation mask for each
subject.

3.3. Registration
The FOD image of each subject was then non-linearly registered to that of a 12 year old
male, who was chosen to serve as the template subject. An affine registration between the b0
images, was performed using the FLIRT (Jenkinson and Smith 2001) software tool. This
transformation was then used to initialize the two phase registration method described in
section 2.2. Once this process was completed for each of the 23 subjects, a population
average FOD image was computed by averaging each RSH component of the registered
subject FOD images individually. Using the computed deformation fields, each subject’s
WM segmentation mask was deformed into the template coordinate frame and then
averaged and thresholded to yield a binary mask describing the voxels that were considered
WM in over 40% of the subjects. These 2 images, the population average FOD image and
the population WM mask are then used to determine the atlas regions.

The benefits of using nonlinear spatial registration to determine the population template
image, as opposed to affine registration used in several of the existing population atlases
(Mazziotta, Toga et al. 1995; Mori, Oishi et al. 2008), are illustrated through a marked
decrease in the voxelwise FOD variance across the sample. The FOD variance at a voxel, x,

is determined by .

Variance maps computed following the affine registration (Panel A) and our registration
method (Panel B) are shown in Figure 2. These results show a global decrease in the FOD
variance while drastically reducing the variance in key central WM regions, indicating a
clear benefit from using the non-linear registration algorithm.

3.4. Region Delineation
The key aspect of our atlas generation framework is the method described in section 2.3
used to delineate regions of spatially homogeneous WM. Our automated WM parcellation
method was applied using the population average FOD image to model the WM architecture
and using the population WM mask to identify WM voxels.

An investigation of the parameters used to define the WM similarity kernel, σf and σs, as
well as the stopping variance threshold, ε, was performed. Adjusting the σf and σs
parameters had the expected behavior of controlling the spatial smoothness of the
determined regions. Similar results, in terms of both the number of regions, average region
size, and average regional FOD variance were found when varying σf in the 0.1 – 0.3 range
and σs in the 6mm – 10mm range. Adjusting ε has the most direct effect on the resulting
parcellations as it determines at what point the subdivision process is halted. Figure 3 shows
the results of our method as ε is changed between 0.06 and 0.1. As ε is decreased there is a
clear decrease in the regional variance as well as an increase in the number of regions
determined, resulting in a coarser regional delineation. This relationship, between the
achieved regional variance and the number of regions, suggests that in practice this
parameter must be tailored to the population under study as well as to the intended use of the
derived atlas regions.

Based on these results, two atlases were generated. A coarse atlas was generated using the
parameters σs = 6mm, σf = 0.3 and ε = 0.15 while the finer atlases used a lower halting
threshold of ε = 0.08. The iterative nature of the parcellation algorithm yields a hierarchical
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relationship between these atlases, with the ε = 0.15 regions being supersets of the ε = 0.08
regions. The finer atlas consists of 379 spatially compact regions with an average regional
size of 105 2mm3 voxels and a mean regional FOD variance of 0.06, while the coarse atlas
consists of 94 regions with an average regional size of 423 2 mm3 voxels and mean regional
FOD variance of 0.10. Representative coronal slices of the coarse and fine atlases are shown
in Figure 4. The rough bilateral symmetry of the regions is clearly visible in the coarse atlas,
while at the finer scale the bilaterality is less apparent particularly in complex WM regions.
Figure 5 shows representative slices of the finer atlas and corresponding regional FOD
variance maps. The orientation sensitive aspect of the similarity kernel groups voxels with
similar orientation, as seen in the genu and splenium of the corpus callosum, while
sensitivity to the WM complexity aids in parcellating the cortical WM.

3.5. Comparison with anatomical atlas defined regions
We utilized the EVE-DTI atlas to create an anatomical WM parcellation that would be used
both as a comparison as well as to provide our data defined regions with anatomical context
as described in section 2.4. This was achieved by using a nonlinear spatial normalization
algorithm to transform the structural, T1 weighted image provided as part of the EVE-DTI
atlas into the space defined by the group average T1-weighed image (T1-weighted images
were used for registration as this was the common modality between the HARDI population
and the DTI anatomical atlas). Using this deformation field, the anatomical labels provided
by the EVE-DTI atlas were then transformed into the template space yielding an alternative
parcellation. Figure 6 shows a comparison between the population atlases, generated using ε
= 0.15 and ε = 0.08, and the anatomical regions inherited from the EVE-DTI atlas. A clear
improvement in regional FOD variance is achieved using the ε = 0.15 data driven atlas
regions, with a further improvement at the expense of generating a moderately larger
number of regions when using the finer atlas (ε = 0.08).

4. Discussion
We have proposed an automated atlas building method that utilizes HARDI data and the
FOD diffusion model to provide improved contrast in complex WM regions using a non-
linear spatial normalization to more accurately determine spatial correspondence and a novel
data-driven WM parcellation algorithm that allows automated regional labeling based on
models of the local WM architecture as opposed to the traditional time consuming
anatomical labeling. The automatic nature of these methods permits researchers to generate
their own atlas based on the datasets of their specific study. This overcomes many issues
that occur when attempting to use published atlases, such as different clinical populations
(ages) or imaging protocols being utilized to generate the atlas.

Similar to the cytoarchitectural mapping of the brain (Brodmann 1909), where local
variations in cell type are used to delineate cortical regions, our method uses the FOD as a
non-invasive imaging measure of local tissue architecture to delineate WM regions. Through
the application of this methodology to the problem of generating an age specific population
atlas, adolescent and preadolescent healthy subjects in our case, we show that these regions
are more homogenous, with respect to WM orientation and complexity, than the regions
inherited from an existing DTI based anatomical atlas. This suggests that these regions are
better suited for regional statistical analysis or the extraction of regional features of WM
architecture to be used in subsequent applications such as pattern classification and are thus
perhaps more faithful to the overall goal of identifying regions of biological homogeneity.

The generation of the illustrative WM atlas shows that both the spatial normalization and
WM parcellation methods outperform the typical processing methods that are generally
utilized for determining WM atlases. A comparison of voxel wise population variance maps,
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figure 2, generated from the non-linear and affine registration shows the clear improvement
in both global and focal variances when using the non-linear registration technique. This
decrease in FOD variance is critical for the accurate computation of the population average
FOD image and the stability of the final atlas regions. Similarly, a comparison between the
anatomical regions of the EVE-DTI atlas and those determined by our method, shown in
figure 5, indicate the benefit of using data-driven regions to represent local WM
architecture, through the marked decrease in regional FOD variance. This decrease suggests
that the data determined regions are more tightly related to the local WM anatomy, which
may have significant benefits when examining clinical populations (e.g., schizophrenia,
autism spectrum disorder). While bilateral symmetry is not considered in the region
delineation process, the roughly bilateral nature of WM anatomy is still clearly apparent in
the data defined regions, shown in figure 4, particularly at the coarser spatial scalars.

The proposed framework provides three parameters which affect the regions that are
determined. Of these three, the stopping criterion, ε, has the most pronounced affect, seen in
figure 3, on both the number of regions determined and, more significantly, the regional
FOD variances of these regions. The other 2 parameters, σs and σf, determine the kernels
used in the similarity functions, affecting the smoothness of the ROIs, in the spatial and
feature domain and in turn, the number and size of the resulting regions but had little effect
on the regional FOD variance of the regions. In practice, selection of ε should be based on
the desired degree of uniformity required for the regions while the other parameters are best
set based on qualitative assessment of the resulting atlas. This process need only be done
once for a new population and requires little effort particularly when compared with the
process of manually correcting anatomical regions.

The stability of the clustering, in terms of specific boundary locations, is mainly governed
by the robustness of the population average. For this reason it is important to ensure that a
sufficient number of subjects are used to make up the population average. If this number is
suitably large the effect of additional subjects on the population average and thus on the
parcellation results will be negligible. In practice, the study specific atlas is generated when
the study is ready for a statistical analysis. The atlas is created once, using the sample size
determined by the study’s power calculations, and reflects the local variation in the specific
dataset.

While the focus of this work has been on the delineating homogenous WM regions, the
ability to include global anatomical information into the regions is also important. This
anatomical information not only improves the interpretation of any subsequent results by
providing anatomical context to the regions, aiding in hypothesis formulation, but also
facilitates meta-analytic studies by utilizing existing anatomical terminology. In our case we
have used the EVE-DTI WM atlas to impart this global information; however, any
anatomical atlas can, in principle, be used in the method. For instance, as developmental
studies progress, the inclusion of pediatric anatomical and functional atlases can be
incorporated for various ages. The ability to assign domain specific labels, either functional
or otherwise, to the WM regions determined by our method yields a multi-faceted approach
to atlas creation, giving researchers tremendous flexibility concerning the information
content available in the atlas, which will prove extremely useful as research protocols move
towards utilizing multiple modalities.

The fact that this paper describes an atlas generation methodology as opposed to simply the
description of a single population HARDI atlas, like the ICBM-DTI-81 (Mori, Oishi et al.
2008), is indicative of our belief that optimal results from a group study are obtained when
the specific traits of the population and data are utilized. While we have focused on WM,
developing novel clustering methods based on the state of the art modeling of WM
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architecture, the central theme of his work is applicable to many other atlas building
problems. For instance gray matter regions could be parcellated based on their structural and
functional connectivity profiles, ostensibly generating regions that more closely respect the
structure/function relationship within the population understudy.

It is important to note that while the method presented in this paper makes use of high b-
value (3000 s/mm2) HARDI data, the principles of the clustering algorithm can be extended
to other diffusion models and other b-values. A method that makes use of the diffusion
tensor model acquired on lower b-value data is currently under development. While such a
method will prove useful to many researchers, as DTI is now routinely acquired, it is still
unclear how parcellations generated from DTI will compare with those generated using
HARDI. It is similarly unclear exactly how large a role the improved angular resolving
power garnered from high b-value HARDI data plays in the WM parcellation. Based on the
improvements of modeling complex WM regions using HARDI data models at higher b-
values one might expect better delineation in regions of fiber crossing etc. However the
definitive comparison will have to wait until a technically-suitable dataset consisting of both
HARDI and DTI data has been acquired on the same subjects.

In conclusion this paper presents a methodology for creating HARDI white matter atlases
using the fiber orientation distribution (FOD) diffusion model. The automated nature of the
methods allows for their efficient application to any population without relying on the time
consuming task of manual anatomical delineation. The resulting atlas consists of regions
designed to be homogenous with respect to the local architecture of the WM and are thus
ideally suited for either statistical analysis or to be used as features within a pattern
classification framework.
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Appendix A. Multichannel Diffeomorphic Demons
Given a fixed and moving image, F and M, the diffeomorphic demons algorithm seeks to
determine a correction to the current transformation, s, of the form exp(u). This update

minimizes a global energy functional, ,
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where p are points in Ω, the domain of the fixed image, F. The  term accounts for image
noise and interpolation error and acts as a regularizer for determining the update field. We
can linearize the image similarity term in the region of u = 0 as F(p) − M∘s∘exp(u(p)) = F(p)
−M∘s(p)+Jpu and in the case where F and M are images of vectors, Jp is the Jacobian matrix.
With this linearization the energy functional simplifies to

If we make the assumption that the voxels are independent, which is not strictly true when
performing reorientations, the optimization of Es(u) can be broken up in to individual
equations for each point p.

yielding update step

We use the symmetric  computation of the Jacobian, where Jp (F )
and Jp (M ∘ s) are the Jacobians of the fixed and deformed moving images at the point p.
Each iteration of the diffeomorphic demons method can summarized as follows

1. compute an update step u

2. smooth u with a Gaussian filter

3. s ← s ∘ u

4. Deform the moving image using s

5. Apply reorientation if needed

This process is repeated until the update steps no longer substantially reduce the image
difference. The deformation field s is then applied to the moving image resulting in the final
deformed subject image.

Appendix B. Spatially Coherent Normalized Cuts
The normalized cuts (N-Cut) algorithm (Shi and Malik 2000; Rahimi and Recht 2004) is a
means of partitioning a set of data points x, in our case a set of white matter voxels, based on
a provided similarity measure k(x, y). Using the similarity measure we build an affinity
matrix such that Ki,j = k(xi, xj ). The affinity matrix describes the weights of a fully
connected undirected graph using x as the nodes. The N-cut algorithm labels each node
dividing the vertices into 2 sets A and B. The cost Cut(A, B) is the sum of all connections
between elements of A and elements of B. The goal is to find the labeling that minimizes the
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normalized cut, Cut(A, B)/(Vol(A) + Vol(B)) where Vol() is the sum of the weights within a
set.

The labeling is found via a relaxation to the above problem by finding the second largest
eigenvector, v, of the matrix . Where D is a diagonal matrix whose iith element is
the sum of all elements in the ith row of K. The labels are determined by examining the sign
of v. For a more complete discussion please see (Rahimi and Recht 2004).

Our application of the N-Cut algorithm concerns the ability to label WM voxels based on
their FOD. As discussed above we use a product of two Gaussian kernels with standard
deviations of σf and σs as the basis of our similarity measure yielding the following
similarity measure:

where xi and xj are WM voxels with fi, fj, pi, and pj being the corresponding FODs and
spatial locations.

Given a collection of WM voxels we compute the affinity matrix K using the above
similarity function. The matrix D is then compute and the second largest eigenvector, v, of

 is determined using the SLEPc (Hernandez, Roman et al. 2005) software
package. Two new regions are then determined based on the sign of v.

These two regions are then input into a simple seed growing algorithm (described in
Appendix C) which divides them into their spatially disconnected subregions yielding a set
of spatially connected regions from the single region with high variance.

Appendix C. Seed Growing Algorithm
A seed growing algorithm is used to divide a supplied region into spatially disconnected
subcomponents. This insures that each of the final resulting regions is fully spatially
connected. The algorithm is supplied with a list of voxels, X, comprising the region to be
divided and returns a list of labels, L, which identify which connected subcomponent each
voxel is a member of. The mechanics of the algorithm are shown below:

Input: list of voxels, X
Output: list of labels, L
label Value = 1
label Members = Ø
for all x in X do
if x is not labeled then
add x label Members
repeat
y = next element of label Members
L[y] = label Value
Add all unlabeled neighbors to label Members
Until all members of label Members have been visited
label Value = label Value +1
label Members = Ø
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Figure 1.
FOD registration is accomplished using a two phase registration scheme. First spectral
power features are computed and registered. This registration is then improved during a
second registration phase where the FODs are directly registered while reorienting the FOD
at each iteration
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Figure 2.
Effect of Registration on lowering voxelwise population FOD variance. FOD variance maps
are shown for affine (A) and non-linear registration (B) methods. The global and focal
decrease in population variance clearly demonstrates the importance of using the non-linear
registration algorithm for atlas generation.
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Figure 3.
As the stopping variance threshold, ε is decreased, the expected decrease in the regional
FOD variance is seen. This decrease coincides with an increase in the number of regions as
well as an increase in the coarseness of the parcellation results.
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Figure 4.
The general anatomical bilateral symmetry is apparent in the atlas regions. At a higher
stopping variance of ε=0.15 (A), this symmetry is more apparent than in the finer regions
obtained using a lower stopping variance of ε=0.08 (B) where the division of complex
regions is more heavily influence by the local characteristics of the data. For instance the
two regions circled in panel B correspond to a single contralateral region.
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Figure 5.
Population Atlas generated from 23 young adolescents generated using the parameters σs
=6mm, σf = 0.3 and ε = 0.08. Representative slices are shown of the label map indentifing
homogenous WM regions (A) and the corresponding FOD variance (B) images.
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Figure 6.
Representative slices of the EVE-DTI atlas’ anatomically defined regions and their
corresponding regional FOD variances are shown in panel A, compared with the data
defined WM regions generated using two stopping variances ε= 0.15 and 0.08. The EVE-
DTI anatomical regions are conspicuously more heterogeneous, indicated by high regional
variance, even in central WM areas. A table listing characteristics of each parcellation is
shown in panel B.
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