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Summary

Temporal conjunctions ‘before’ and ‘after’ give us freedom to describe a series of events in

different orders. Previous studies suggested ‘before’ sentences in which events were expresses in

an order inconsistent with their actual order of occurrence need additional computations, i.e.

reversing the order of event mention to reach the actual order of event occurrence. This study

found the additional computations may be supported by a neural network connecting the caudate

nucleus with the medial prefrontal cortex, middle frontal gyrus (MFG), precuneus and occipital

cortex. The connectivity in this network was strongly enhanced for ‘before’ than ‘after’ sentences.

Meanwhile, another network was observed to support the memory retrieval, connecting the

hippocampus with the MFG via the orbital inferior frontal gyrus and temporal pole. The

connectivity pattern of this network was not different between conditions. With the common node

MFG, these two networks may communicate in working memory to work together.
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Introduction

Temporal connective words such as ‘before’ and ‘after’ give us linguistic freedom to

describe a series of events in different orders. The order of event mention can be consistent

(e.g., After the scientist submitted the paper, the journal changed its policy) or inconsistent

with (e.g., Before the journal changed its policy, the scientist submitted the paper) the actual

order of events in real time. ‘Before’ sentences that present events out of chronological order

Corresponding author: Thomas F. Münte Department of Neuropsychology University of Magdeburg 39106 Magdeburg, Germany
Thomas.muente@med.uni-magdeburg.de.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2014 May 27.

Published in final edited form as:
Neuroimage. 2012 February 15; 59(4): 3662–3667. doi:10.1016/j.neuroimage.2011.11.039.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



have been shown to be more difficult to understand, in particular for young children

(Natsopoulos and Abadzi, 1986; Trosberg 1982), patients with Parkinson disease

(Natsopoulos et al., 1991) or aphasics (Sasanuma and Kamio, 1976)1.

Although healthy adults understand ‘before’ sentences as perfectly as they understood ‘after’

sentences (Natsopoulos et al., 1991), the former probably recruit additional discourse-level

computations. In an event-related potential (ERP) study, Münte and colleagues (1998) found

brain responses to ‘before’ and ‘after’ sentences diverged within 300 ms after the

presentation of the word-initial temporal connective word. A sustained negativity showed up

for ‘before’ vs. ‘after’ sentences over the left frontal scalp. The size of this effect was

correlated with individual working-memory spans, with individuals with higher spans

showing larger negative effects. Münte et al. suggested that the left anterior negativity

reflects the differential involvement of working memory during the processing of ‘before’

and ‘after’ sentences.

Readers use both real-world knowledge and linguistic knowledge to create coherent

representations during sentence/discourse comprehension (Hagoort et al., 2004; Hagoort and

van Berkum, 2007). In the case of ‘before/after’ sentences, world knowledge leads us to

expect that the order of event mention is similar to the order of event occurrence (the order

of event mention strategy in Natsopoulos et al., 1991), because time unfolds sequentially in

the real world and current events sometime cause future events. On the other hand, linguistic

knowledge tells us that different temporal conjunctions indicate different mention order,

with ‘after’ signaling events will be expressed in their actual order of occurrence and

‘before’ signaling events will be expressed in the reversed order. For ‘before’ sentences,

consequently, additional computations are required to rearrange the representations

structured by real-world knowledge of temporal sequence. The process of rearrangement is

assumed to be implemented in working memory (Münte et al., 2007). If the process of

rearrangement is defective, overapplication of the world-knowledge-driven heuristic strategy

may lead to the misinterpretation of ‘before’ sentences, as has been shown in Parkinson’s

disease patients (Natsopoulos et al., 1991).

How are the additional discourse-level computations engaged by ‘before’ sentences

implemented in the brain. Previous functional magnetic resonance imaging (fMRI) studies

revealed a distributed set of brain areas to be involved in discourse-level processing

comprising the medial prefrontal cortex (mPFC), middle frontal gyrus (MFG), inferior

frontal gyrus (IFG), temporal pole (TP) and basal ganglia (caudate nucleus and putamen)

(Caplan and Dapretto, 2001; Ferstl et al., 2005, 2008; St George et al., 1999; Xu et al.,

2005).

In the present investigation we specifically tested which brain areas support the

rearrangement processes engaged by before sentences using functional MRI. Standard

1We explicitly acknowledge that there are more differences to the semantics of temporal connectives than just the temporal ordering
of events. The most important difference is that sentences beginning with after signal that the subordinate clause is true while before
allows for the subordinate clause to be either true or false (Before I decline a beer, I rather die). However, care was taken in selecting
sentence materials that the veridicality of the subordinate clause was not an issue. In particular, the use of the past participle
throughout the materials in both clauses signals that both clauses are true.
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univariate analysis, showing regions more activated for ‘before’ than ‘after’ sentences, was

followed by functional connectivity analysis to identify functionally related brain networks

specific for each condition. The connectivity approach is based on the “beta series

correlation” method proposed by Rissman et al. (2004) which has been successfully applied

in studies of different cognitive domains (e.g., Camara et al., 2008, 2009; Fiebach et al.,

2006; Rissman et al., 2008). This method is implemented on the basis of a general linear

model (GLM), using separate covariates to model hemodynamic responses of a particular

stage in each single trial and giving rise to series of parameter estimates (beta values) for the

stage. If two regions are functionally connected within a network, their beta series should be

strongly correlated. A neural network would be considered to support the process of

rearrangement, if the connectivity in this network was stronger for ‘before’ than ‘after’

sentences.

Results and Discussion

Recognition test

In two functional runs, participants read sentences for comprehension. To test whether they

read sentences attentively, a recognition task was carried out after scanning. One half of

testing sentences were from the first run, while the other half were from the second run.

Participants were asked to judge whether they read a particular sentence in the first or the

second run. Their recognition accuracies were 75% (SE = 3%) for ‘before’ sentences and

69% (4%) for ‘after’ sentences. There was no difference between conditions (F (1, 17) =

1.90, p = 0.19) indicating that participants paid attention equally to the two types of

sentences.

fMRI results

To investigate the processing of temporal connective words, we performed two statistical

analyses, i.e. the standard univariate analysis and the functional connectivity analysis. The

standard univariate analysis was implemented on the basis of a GLM using one covariate to

model hemodynamic responses of all sentences of a condition. For each participant, a

contrast map was calculated by comparing the ‘before’ condition with the ‘after’ condition.

Contrast maps were entered into a one sample t test on the group level. The resulting map

was considered at p < 0.005 (uncorrected) with a minimum cluster size of 20 voxels. The

standard analysis revealed several regions more activated for ‘before’ than ‘after’ sentences

(see Figure 1 and Table 1), including the medial superior frontal gyrus (mSFG), left MFG,

right IFG, bilateral temporal gyrus, basal ganglia (caudate nucleus and putamen),

hippocampus and right cerebellum. To investigate interactions among these regions using

connectivity analysis, we selected three seed regions, i.e. the caudate nucleus, MFG and

hippocampus. Each seed was defined as a sphere with 6-mm radius centered at the activation

peak obtained in the standard analysis (caudate nucleus: 6, 10, 0; MFG: -38, 6, 58,

hippocampus: -28 -14 -20).

The functional connectivity analysis was implemented on the basis of another GLM using

separate covariates to model hemodynamic responses of each single sentence in each

condition. For each condition, beta values of all sentences were extracted to form a set of

Ye et al. Page 3

Neuroimage. Author manuscript; available in PMC 2014 May 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



beta series. Beta series of each seed were averaged across voxels within the critical region

and correlated with beta series of every other voxel in the whole brain. For each participant,

maps of correlation coefficients were calculated separately for ‘before’ and ‘after’ sentences.

Correlation maps were normalized by using an arc-hyperbolic tangent transform and then

entered into one sample t tests on the group level. Resulting maps were considered at p <

0.005 (family-wise error correction, FWE-correction) with a minimum cluster size of 100

voxels. The resulting map showed regions which were correlated with a particular seed in

beta series and were inferred to be functionally connected with the seed. Figure 2 and Table

2-4 showed the connectivity results. The caudate nucleus interacted with the mSFG, MFG,

precuneus and inferior occipital gyrus (IOG), but not with the hippocampus. These

connections were stronger for ‘before’ than ‘after’ sentences (Figure 2a). Although the MFG

and the hippocampus were not directly connected, they were linked via the left orbital IFG

(IFGorb) and TP. The interaction between the left MFG and the left IFGorb, and the

interaction between the left hippocampus and the left TP appeared to be subtly modulated by

‘before’ vs. ‘after’ sentences (Figure 2b and 2c).

The results of whole brain analysis were confirmed by further regions-of-interest (ROI)

analysis. ROIs were defined with WFU PickAtlas (http://www.fmri.wfubmc.edu/cms/

software) according to Anatomical Automatic Labeling (AAL) for the mSFG, MFG,

precuneus, IOG, IFGorb and TP. For each ROI, we calculated the percentage of voxels

significantly (p < 0.05 on the subject level) positively correlated with a particular seed in

each condition. We then conducted paired-sample t tests for ‘before’ vs. ‘after’ sentences.

Figure 3 show the ROI results for regions interacting with the caudate nucleus. In the mSFG,

there were 15% more voxels significantly positively correlated with the caudate nucleus for

‘before’ than ‘after’ sentences in the right (t (1, 17) = 2.18, p < 0.05), but not in the left

hemisphere (t (1, 17) = 0.98, p = 0.34). In the MFG, there were 11% more caudate-

correlated voxels for ‘before’ than ‘after’ sentences in the left hemisphere (t (1, 17) = 1.97, p

= 0.07), and 12% more in the right hemispheres (t (1, 17) = 2.37, p < 0.05; with two

hemispheres combined: 12%, t (1, 17) = 2.28, p < 0.04). In the precuneus, caudate-

correlated voxels increased 10% from ‘after’ to ‘before’ sentences in both the left (left: t (1,

17) = 2.24, p < 0.05) and the right hemispheres (right: t (1, 17) = 1.85, p = 0.08; with two

hemispheres combined: 10%, t (1, 17) = 2.08, p = 0.05). In the IOG, caudate-correlated

voxels increased 18% in the right hemisphere (t (1, 17) = 2.49, p < 0.05), but not in the left

hemisphere (t (1, 17) = 1.54, p = 0.14; but with two hemispheres combined: 15%, t (1, 17) =

2.17, p < 0.05). For the IFGorb interacting with the MFG, or the TP interacting with the

hippocampus, we did not obtain significant increase in the percentage of correlated voxels in

either hemisphere, ps > 0.10. In other words, the connections between the caudate nucleus

and related regions were enhanced for ‘before’ vs. ‘after’ sentences, while the connections

from the hippocampus to the MFG were not.

To summarize, we observed a set of cortical and sub-cortical areas involved in the

processing of temporal connective words, including the mSFG, MFG, IFG, temporal gyrus,

basal ganglia and hippocampus. More importantly, we found these brain areas worked

together in two different networks, which shared a common node, i.e. the MFG (see Figure

4). One network connected the caudate nucleus with the mSFG, MFG, precuneus and IOG.
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Within the caudate network, regions such as the mSFG, MFG and caudate nucleus were

more activated and interregional interactions were much stronger for ‘before’ than ‘after’

sentences. The other network connected the hippocampus with the left MFG, the left orbital

IFG and TP. The connectivity pattern of the hippocampus network did not differ between

conditions. These two networks may support different functions during the processing of

‘before/after’ sentences. Different from an ‘after’ sentence, a ‘before’ sentence needs

additional discourse-level computations to reverse the order of the two constituent clauses,

in order to establish a correct temporal relation between events. The additional computations

may be supported by the caudate network, as a stronger connectivity in this network showed

up for ‘before’ as compared with ‘after’ sentences. Similar to an ‘after’ sentence, a ‘before’

sentence needs the retrieval of real-world knowledge and linguistic knowledge stored in

long-term memory for sentential integration. This retrieval process may be mediated by the

hippocampus network, as the connectivity pattern of this network was not significantly

modulated by ‘before/after’ sentences. The involvement of the MFG as the common node is

in line with the interpretation of our previous ERP study (Münte et al., 1998), because the

MFG has been associated to working memory (McCarthy et al., 1994, 1996; Tsukiura et al.,

2001). Thus, the MFG may serve as a common work space in which information from the

caudate and hippocampus networks is integrated.

The caudate nucleus receives cortical input and projects back to cortical regions, forming

parallel (Middleton and Strick, 2000, 2002) and integrative circuits (Bar-Gad and Bergman,

2001; Haber, 2003) in support of motor, cognitive and emotional processes. The function of

each loop is associated with the cortical region to which the caudate nucleus projects. In the

current study, the caudate nucleus was functionally connected with the dorsal mSFG, which

is assumed to maintain task goals and to monitor and adjust cognitive processes in sensory,

memory and motor systems (Botvinick et al., 2001; Carter et al., 1998; Dosenbach et al.,

2007). Another crucial area is the precuneus, which has afferent and/or efferent connections

with the mid-dorsolateral prefrontal cortex (BA8, 9 and 46), the parieto-occipital visual area,

and the dorsolateral caudate nucleus (Goldman-Rakic, 1988; Leichnetz, 2001). The

activation of bilateral precuneus was observed in cognitive tasks requiring mental imagery,

such as the mental simulation of increasing complex locomotor tasks (e.g., ‘walking with

obstacles’ vs. “walking”, see Malouin et al., 2003), and the mental rotation of 2D pictures

(Kucian et al., 2007; Suchan et al., 2002; for a review, see Cavanna and Trimble, 2006). In

these tasks, the precuneus was co-activated with the left MFG and the bilateral middle/

inferior occipital gyrus (Kucian et al., 2007; Malouin et al., 2003; Suchan et al., 2002). A

combination of these functions fits well with our analysis of the computational requirements

posited by ‘before’ sentences. The caudate network may re-arrange events along the time

axis by reversing the linguistic order of clauses with the help of mental imagery.

Within the other network, the hippocampus was more activated for ‘before’ than ‘after’

sentences. The activation of hippocampus was observed during the comprehension of short

stories (Schmithorst et al., 2006). The left IFGorb is assumed to support controlled access to

stored conceptual and episodic representations (Badre and Wagner, 2007; Badre et al.,

2005). It is anatomically connected with the anterior temporal lobe (including the temporal

pole), which is further linked with the occipital lobe via the inferior longitudinal fascicle

(Anwander et al., 2007). The left IFGorb has shown to be functionally coupled with the
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hippocampus during memory encoding (Grady et al., 2003) and retrieval (Daglish et al.,

2003). The absence of left IFGorb activation for ‘before’ vs. ‘after’ sentences and the similar

connectivity pattern of this network in the two conditions suggested that ‘before’ and ‘after’

sentences engaged memory processes to a similar extent.

In conclusion, we found two neural networks during the processing of temporal connective

words. The caudate network may support the re-arrangement process necessary for ‘before’

sentences, reversing the mention order of events with the help of mental imagery to establish

the actual temporal relation between events. The hippocampus network may mediate the

retrieval of real-world knowledge and linguistic knowledge necessary for both ‘before’ and

‘after’ in sentential integration. With the common node MFG, these two networks may

communicate in working memory to work together.

Experimental Procedures

All procedures had been cleared by the ethical review board of the University of

Magdeburg.

Participants

Eighteen native German speakers (9 women, mean age 25 years, age range 20 to 34 years)

participated in this study. They were right-handed and had normal or corrected-to-normal

vision. None of them had a history of neurological or psychiatric disorder. All of them gave

written informed consent before scanning.

Stimuli and task

Participants read sentences for comprehension during scanning and completed a recognition

test after scanning. Each sentence consisted of two clauses, with each clause describing a

distinct event which was neither logically nor causally related to the other. These clauses

were connected by temporal (‘after/before’) or coordinating conjunctions (‘and’). The ‘and’

sentence was used as a neutral condition in which two events were not linked in time. The

behavioral and fMRI results of the ‘and’ condition are shown in the supplemental materials.

We created 120 sets of sentences and split them into three lists so that the ‘after’ version, the

‘before’ version and the ‘and’ version of a pair of clauses would not appear in the same list.

One participant read only one list, which contained 40 sentences per condition. Each list was

used for six participants. Sentences were presented clause-by-clause. Each clause was

displayed for 2.5 s. Then a fixation cross stayed on the screen for 15 s. In other words, each

trial had a fixed length of 20 s. There were two functional runs, each lasting 20 min.

Data acquisition

Data were collected on a 3-T Siemens Trio system. Functional images were acquired using a

T2*-weighted echo planar imaging (EPI) sequence, with 2000-ms time repetition (TR), 30-

ms time echo (TE), and 80° flip angle. Each functional image consisted of 32 axial slices,

with 64*64 matrix, 224 mm*224 mm field of view, 4-mm thickness, no gap, and 3.5

mm*3.5 mm in-plane resolution. Structural images were acquired using a T1-weighted

magnetization-prepared rapid-acquired gradient echo (MPRAGE) sequence, with 2500-ms
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TR, 4.77-ms TE, 1100-ms TI, and 7° flip angle. The structural image consisted of 192 slices,

with 1-mm thickness, no gap, and 1 mm*1 mm in-plane resolution.

Data preprocessing

Data were analyzed with SPM5 (http://www.fil.ion.ucl.ac.uk/spm). The first four volumes

were discarded owing to equilibration effects. Functional images were first phase-shifted

with reference to the middle slice to correct differences in slice acquisition time. They were

then realigned with a least squares approach and a rigid body spatial transformation to

remove artifacts. Realigned images were normalized to the EPI-derived MNI template

(ICBM 152, Montreal Neurological Institute) and resampled to 2*2*2 mm3 voxel.

Normalized images were finally smoothed with a Gaussian kernel of 8-mm full-width half-

maximum (FWHM). Estimated movement parameters obtained in the realignment step were

involved in GLMs to minimize signal-correlated motion effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Activations for ‘before’ vs. ‘after’ sentences over the medial superior frontal gyrus (mSFG),

left middle frontal gyrus (MFG), bilateral hippocampus and right caudate nucleus. White

arrows point to related regions. Color scale indicates t values. Coordinates are given in the

MNI space. p < 0.005 (uncorrected); minimum of 20 voxels extent; L, left; R, right.

Ye et al. Page 9

Neuroimage. Author manuscript; available in PMC 2014 May 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Regions functionally connected with the (a) caudate nucleus, (b) MFG, and (c) hippocampus

(HC) for ‘before’ and ‘after’ sentences. Sections are selected to show seeds’ interactions

with mSFG, precuneus, MFG, inferior occipital gyrus (IOG), HC, inferior frontal gyrus

(orbital, IFGorb), and temporal pole (TP). White arrows point to related regions. Color scale

indicates t values. Coordinates are given in the MNI space. p < 0.005 (FWE-corrected);

minimum of 100 voxels extent; L. left; R, right.
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Figure 3.
Percentage of voxels significantly positively correlated with the caudate nucleus in the right

mSFG, MFG (with two hemispheres combined), precuneus (with two hemispheres

combined), and right IOG. Error bars indicate standard errors. *, p < 0.05; L. left; R, right.
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Figure 4.
Neural networks in support of the processing of temporal connective words.
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Ye et al. Page 13

Table 1

Regions more activated for ‘before’ than ‘after’ sentences.

Region BA H x y z t Size

Medial superior frontal gyrus 8 R 6 40 52 3.50 47

Middle frontal gyrus 9 L −38 6 58 3.58 237

Precentral cortex 6 L −34 0 38 5.01 SC

Inferior frontal gyrus 45 R 58 32 18 4.20 35

Middle temporal gyrus 21/20
L −62 −6 −22 4.27 26

R 58 −6 −22 4.36 85

Caudate nucleus R 6 10 0 4.27 206

Putamen L −18 10 −4 3.36 31

L −28 −14 −20 4.97 24

Hippocampus R 28 −10 −24 3.43 66

Cerebellum R 16 −54 −12 3.27 23

BA, approximate Brodmann Area; H, hemisphere; coordinates in MNI; t, statistic values of peaks; L, left; R, right; p < 0.005 (uncorrected); cluster
size in voxel; SC, same cluster.
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