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Abstract
Over the last 20 years, there has been extraordinary progress in brain imaging research and its
application to the study of Alzheimer's disease (AD). Brain imaging researchers have contributed
to the scientific understanding, early detection and tracking of AD. They have set the stage for
imaging techniques to play growing roles in the clinical setting, the evaluation of disease-
modifying treatments, and the identification of demonstrably effective prevention therapies. They
have developed ground-breaking methods, including positron emission tomography (PET) ligands
to measure fibrillar amyloid-β (Aβ) deposition, new magnetic resonance imaging (MRI) pulse
sequences, and powerful image analysis techniques, to help in these endeavors. Additional work is
needed to develop even more powerful imaging methods, to further clarify the relationship and
time course of Aβ and other disease processes in the predisposition to AD, to establish the role of
brain imaging methods in the clinical setting, and to provide the scientific means and regulatory
approval pathway needed to evaluate the range of promising disease-modifying and prevention
therapies as quickly as possible. Twenty years from now, AD may not yet be a distant memory,
but the best is yet to come.
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Introduction
Alzheimer's disease (AD) is the most common cause of cognitive impairment in older
people. When one considers the impact of AD on patients and families and the growing
number of people living to older ages, there is a need to understand the progressive brain
changes associated with the development of AD. There is also an urgent need to find
treatments to slow down, stop, reduce the risk of, or completely prevent AD symptoms as
soon as possible. Brain imaging techniques have had a profound impact on the scientific
study of AD; they are expected to play growing roles in the clinical setting, and they are
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expected to play critical roles in the effort to find effective AD-modifying and prevention
therapies.

In the last 20 years, there has been an explosion of interest in the development and use of
brain imaging techniques for the scientific study, early detection, tracking, treatment and
prevention of AD. This interest is reflected by the growing proportion of imaging
researchers who attend and present their data at the major AD meetings, the development of
imaging techniques to measure fibrillar amyloid-β deposition (a cardinal neuropathological
feature of AD (Braak and Braak, 1991; Hardy and Selkoe, 2002)) in the living human brain
(Klunk et al., 2004), the role that imaging studies have already played in the
reconceptualization of AD (Sperling et al., 2011), the extraordinary opportunities
researchers have to help in the scientific fight against this devastating disease, and the
challenges the field continues to face along the way.

In this article, we review the best established brain imaging measurements for the detection
and tracking of AD, and we note several other important imaging measurements, some of
which have been less extensively applied or more recently developed. We then consider the
how these imaging techniques have contributed to the scientific understanding of AD, their
growing roles in the clinical setting, and their emerging roles in the evaluation of treatments
to slow down the progression or prevent the onset of AD symptoms. Finally, we consider
future research directions and offer a few recommendations. We are indebted to many
investigators who have played pioneering roles in the development of brain imaging
research, and we apologize in advance for our inability to cite all of the researchers and
studies that have had a major impact on the field.

The Best Established Brain Imaging Measurements of AD
Researchers continue to develop a range of brain imaging measurements for the scientific
study and clinical evaluation of AD. To date, the best established measurements for the
detection and tracking of AD include structural magnetic resonance imaging (sMRI)
measurements of regional and whole brain tissue shrinkage, fluorodeoxyglucose positron
emission tomography (FDG PET) measurements of decline in the regional cerebral
metabolic rate for glucose (CMRgl), and PET measurements of fibrillar amyloid-β (Aβ)
burden. The information provided by these and other brain imaging measurements depends
not only upon the imaging modality used, but the manner in which the data are acquired and
analyzed.

Structural MRI has been the most extensively used brain imaging method in the study of
AD. Clinically affected patients have significantly reduced hippocampal and entorhinal
cortex volumes, gray matter, and cortical thickness, increased ventricular and sulcal
volumes, reduced gray matter or cortical thickness in other cerebral regions, like the
precuneus and posterior cingulate, parietal, and temporal cortex, and accelerated rates of
decline in these and whole brain measurements over time (Dickerson et al., 2009; Jack, Jr. et
al., 2009; Jack, Jr. et al., 2010) (Figure 1). Reductions in hippocampal and entorhinal cortex
size appear to correspond to early memory decline and anticipate progression to more severe
clinical stages, including mild cognitive impairment (MCI) and Alzheimer's dementia (de
Leon et al., 1989; Dickerson et al., 2001; Jack et al., 2004; Jack, Jr. et al., 2005; Kaye et al.,
1997). In a few studies, volumetric reductions and accelerated rates of brain tissue loss have
been found in cognitively normal people who are at higher genetic risk for AD or who show
subsequent evidence of cognitive decline—evidence that may depend in part on the
sensitivity of the image analysis technique used (Alexander et al., 2002b; Chen et al., 2007;
den Heijer et al., 2002; Espeseth et al., 2008; Jak et al., 2007; Wishart et al., 2006). In the
clinical setting, structural MRI is often recommended to help rule out potentially reversible
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brain abnormalities like tumors or subdural hematomas in patients with dementia and MCI,
and it sometimes provides useful information about vascular pathology or the pattern of
cortical atrophy. Researchers continue to clarify the extent to which it can be used alone or
in combination with other measurements to predict subsequent cognitive decline in MCI
patients, but it may not provide sufficient specificity to differentiate AD from other
conditions(Knopman et al., 2001).

FDG PET is currently the best characterized functional brain imaging method in the study
of AD. Studies consistently find reduced CMRgl in the precuneus, in posterior cingulate,
parietal, and temporal cortex in clinically affected patients, and in frontal cortex and whole
brain as the illness becomes more severe (Alexander et al., 2002a; Chen et al., 2010; Choo et
al., 2007; Drzezga et al., 2005b; Foster et al., 1983; Herholz et al., 2002; Hoffman et al.,
2000; Langbaum et al., 2009; Li et al., 2008; Minoshima et al., 1997; Mosconi et al., 2009;
Reiman et al., 1996). In a smaller number of studies, CMRgl reductions have also been
reported in hippocampal and entorhinal cortex regions-of-interest (De Santi et al., 2001;
Mosconi et al., 2004b; Mosconi et al., 2005). CMRgl reductions are correlated with clinical
severity (Bokde et al., 2005; Choo et al., 2007; Haxby et al., 1990; Landau et al., 2011;
Langbaum et al., 2009), and predict subsequent clinical decline and/or the neuropathological
diagnosis of AD (Alexander et al., 2002a; Herholz et al., 1999; Hoffman et al., 2000; Jagust
et al., 1988; Silverman et al., 2001). Characteristic CMRgl reductions have been
demonstrated in the asymptomatic stages of AD (e.g., in people with one or two copies of
the apolipoprotein E (APOE) ε4 allele, the major AD susceptibility gene, in those at risk for
autosomal dominant early-onset AD, and those with higher rates of subsequent cognitive
decline) (Kennedy et al., 1995; Langbaum et al., 2010; Mosconi et al., 2006; Mosconi et al.,
2008; Reiman et al., 1996; Reiman et al., 2001; Reiman et al., 2004; Reiman et al., 2005;
Rimajova et al., 2008; Scholl et al., 2011; Small et al., 1995; Small et al., 2000; Villemagne
et al., 2009) (Figure 2). In the clinical setting, FDG PET is sometimes used to help in the
differential diagnosis between AD and frontotemporal lobar degeneration, and researchers
continue to clarify the extent to which it can be used alone or in combination with other
measurements to predict subsequent cognitive decline in MCI patients. FDG PET has the
potential to help in the evaluation of AD-modifying treatments in the clinical and preclinical
stages of AD, to further clarify the preclinical stages of AD and a person's risk for
subsequent clinical decline, to help evaluate suggested AD risk factors, and to complement
other imaging and fluid biomarker measurements in these endeavors, as noted further below
(Reiman and Langbaum, 2009; Reiman et al., 2010; Reiman et al., 2011).

Fibrillar Aβ PET, introduced during the last decade, promises to have a profound impact on
the scientific study of AD, the clinical evaluation of patients, and the evaluation of Aβ-
modifying treatments. Several PET radioligands have now been shown to provide
information about Aβ plaque deposition, a cardinal neuropathological feature of AD, in the
living human brain. They include [11C]-labeled “Pittsburgh Compound B (PIB),”(Klunk et
al., 2004; Mathis et al., 2002) which has had a major impact on the field and other
investigational ligands, including several [F18] ligands that are being developed for the
clinical setting due to their longer radioactive half-life and the ability to transport the tracer
to different PET Centers from a regional radiopharmacy (Choi et al., 2009; Jureus et al.,
2010; Nelissen et al., 2009; Rowe et al., 2008; Tolboom et al., 2009; Vandenberghe et al.,
2010). Among other things, fibrillar Aβ PET studies have already confirmed the cortical
distribution of fibrillar Aβ in clinically affected patients, with preferential deposition in
precuneus, posterior cingulate, parietotemporal, and frontal regions and relative sparing in
the hippocampus, and they have suggested that fibrillar Aβ levels are virtually saturated by
the time patients have MCI (Doraiswamy et al., 2009; Forsberg et al., 2008; Grimmer et al.,
2009; Jack, Jr. et al., 2008; Kemppainen et al., 2007; Klunk et al., 2004; Klunk et al., 2006;
Morris et al., 2009; Resnick et al., 2010; Rowe et al., 2007; Rowe et al., 2010; Villemagne et
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al., 2011; Wolk et al., 2009) (Figure 3). They have suggested significant fibrillar Aβ
deposition in about 30% of cognitively normal adults over the age of 70, perhaps 10-15
years before clinical onset, and that the magnitude and spatial extent of fibrillar Aβ is
associated with older age and the genetic risk for late-onset AD (Aizenstein et al., 2008;
Mintun et al., 2006; Morris et al., 2010; Pike et al., 2007; Reiman et al., 2009; Rowe et al.,
2010; Small et al., 2009; Villemagne et al., 2011). They have also suggested a slightly
different pattern, with preferential deposition in the striatum in at least some cognitively
normal people at genetic risk for early-onset AD (Klunk et al., 2007; Scholl et al., 2011;
Villemagne et al., 2009). Initial studies have suggested a close association between PET
measurements of fibrillar Aβ at the end of life and subsequent neuropathological
measurements of fibrillar Aβ (Clark et al., 2011; Ikonomovic et al., 2008; Sojkova et al.,
2011), and the first of these ligands (florbetapir F18) is now being considered for regulatory
agency approval to help exclude the diagnosis of AD in patients with dementia or MCI
(Clark et al., 2011). Although the technique might increase confidence in the diagnosis of
AD, it cannot rule out the possibility that the syndrome is related to mixed pathology. While
this technique does not provide direct information about other Aβ species (e.g., soluble
oligomers, postulated to have a more toxic effects on neurons), it will now be possible to
determine the extent to which cognitively normal people with significant fibrillar Aβ alone
or in combination with other measurements predicts subsequent clinical decline, evaluate
investigational Aβ-clearing (e.g., immunization) therapies in clinically affected patients, and
evaluate the ability of even more investigational Aβ-modifying treatments to slow down the
accumulation of fibrillar Aβ in presymptomatic AD (i.e., prevention) trials (Bateman et al.,
2011; Reiman and Langbaum, 2009; Reiman et al., 2010; Reiman et al., 2011). Along the
way, it will help to provide a key test of the amyloid hypothesis of AD, which suggests that
certain amyloid species play a critical and relatively early role in the predisposition to this
disease (Hardy and Selkoe, 2002).

Other Brain Imaging Measurements
The number of different brain imaging techniques that have been applied to the study of AD
is too large to review in a single article. Here we touch on some of the more or less widely
used approaches and try to summarize the major findings and applications, fully aware of
the incomplete nature of this review.

Functional MRI (fMRI) and Functional Connectivity MRI (fcMRI)
MRI techniques that take advantage of the blood oxygen level dependent (BOLD) signal
have been applied to both patients with AD and those at risk. These studies include
approaches that utilize cognitive tasks to assess brain activation, and experiments performed
during resting states that assess functional connectivity. A primary finding that has emerged
is the dysfunction of the default mode network (DMN, see below for more information) in
AD (Greicius et al., 2004). This network dysfunction is seen in individuals with PET
evidence of Aβ accumulation but no overt symptoms (Hedden et al., 2009) and also predicts
decline in patients with MCI (Petrella et al., 2011). fMRI studies that use cognitive
paradigms to assess brain activation frequently reveal increased activation in those at risk for
dementia (Bookheimer et al., 2000; Quiroz et al., 2010), which appears to decline with
disease progression (O'Brien et al., 2010). The reliability of repeated measurements in some
studies has suggested the use in clinical trials, although the issues of standardization,
compensatory changes, and the ability to distinguish between biological factors and task
performance need to be further addressed. Studies of brain activation and the resting state
have been informative in application to fundamental questions of disease pathogenesis that
are discussed in greater detail below.
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Diffusion tensor imaging (DTI)
DTI has been used to study both the integrity and connectivity of white matter in patients
with dementia and those at risk. Reduction in white matter integrity, generally measured as
decreases in anisotropy (due to reduction in the axonal restrictions on directional diffusion)
is now a widely reported finding in patients with AD and preclinical syndromes. Both AD
and MCI patients show decreased fractional anisotropy in a wide variety of brain regions
including areas known to be affected by AD such as the hippocampus (Sexton et al.); many
studies also note relationships between FA and dementia severity. Voxelwise approaches to
the analysis of DTI data have also demonstrated regional similarities between patterns of
loss of white matter integrity in AD and MCI patients(Medina et al., 2006). The
measurement of diffusion changes in the hippocampus may also be predictive of conversion
to dementia (Fellgiebel et al., 2006). Through the use of fiber-tracking, or tractography,
specific neural tracts of interest such as the cingulate (Zhang et al., 2007) and uncinate
fasciculi (Kiuchi et al., 2009) have been shown to be particularly susceptible to white matter
changes. The specificity and clinical application of these techniques requires more study.

SPECT Perfusion
Single photon emission computed tomography (SPECT) is a technique that is quite similar
to PET and its application to dementia using radiotracers that track cerebral perfusion has
produced results that are largely similar to PET scanning of glucose metabolism in clinical
diagnostic applications (Bonte et al., 1986; DeKosky et al., 1990; Holman et al., 1992;
Miller et al., 1991). SPECT studies have been shown to predict decline in MCI (Johnson et
al., 1998) and are related to autopsy findings (Bonte et al., 1997; Jagust et al., 2001). For
many years the limited availability of PET resulted in substantial use of SPECT scanning,
however the proliferation of PET scanners in conjunction with oncological applications in
clinical settings has increased its availability and application to dementia care and research.

Magnetic Resonance Spectroscopy (MRS)
While MRS can acquire data from multiple different atomic nuclei, the largest application
has been proton MRS to quantify metabolites such as choline, N-acetyl aspartate (NAA) and
myo-inositol (mI) in the brain. These data are usually expressed as normalized values by
relating the spectral peaks to those from Creatinine (Cr). Many studies of AD patients have
revealed reductions in NAA/Cr that can be found early in the disease prior to frank loss of
volume (Adalsteinsson et al., 2000; Schuff et al., 1997). These findings have been taken as
evidence of neuronal loss based on the predominant localization of NAA in neurons. A
number of studies have also reported increases in mI/Cr which has been interpreted as
evidence of gliosis (Kantarci et al., 2004; Valenzuela and Sachdev, 2001).

Other Imaging Techniques
A host of other imaging techniques have proven useful for specific clinical applications or
interesting from the perspective of probing the pathology of AD and other dementias. For
instance, fluid attenuated inversion recovery (FLAIR) is an MRI pulse sequence that permits
researchers to detect the cerebral white matter hyperintensities suggestive of vascular
disease, which is commonly found in AD patients (Yoshita et al., 2006) and may contribute
to their cognitive decline (Brickman et al., 2008), and which could be used to help
characterize a potentially reversible adverse effect of Aβ-modifying immunotherapeutic and
medication treatments, now called Amyloid Related Imaging Abnormalities (ARIA).
Gradient-recalled echo (GRE) T2* MR images appear to be sensitive to hemosiderin
deposits, and as such are capable of detecting microbleeds, which are highly prevalent in
dementia samples (Goos et al., 2010) and are particularly related to cerebral amyloid
angiopathy (Kimberly et al., 2009). Initial reports suggest that GRE and FLAIR imaging
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may not only be helpful, but required by regulatory agencies to monitor Aβ-modifying
immunotherapeutic and medication treatments.

While PET studies of AD have been largely focused on the assessment of rCMRgl decline
and fibrillar Aβ deposition, a wide range of other tracers has been utilized. Studies of
inflammation using the tracer PK11195, a ligand that binds to the peripheral benzodiazepine
receptor that is expressed on activated microglia, have shown conflicting results, with
evidence of both increases (Cagnin et al., 2001; Edison et al., 2008; Okello et al., 2009a) and
lack of change in AD and MCI (Wiley et al., 2009); other PET tracers for inflammation that
are under development may ultimately yield less ambiguous results. PET tracers have also
been applied to dementia to study a wide range of neurotransmitter systems particularly the
cholinergic system (Kuhl et al., 1999; Nordberg et al., 1997); these and others are the subject
of recent reviews (Kadir and Nordberg, 2010; Nagren et al., 2010; Nordberg et al., 2010;
Pappata et al., 2008). In general, neurotransmitter and neuroreceptor studies reveal
reductions in a host of different pre- and post-synaptic elements in AD that in some cases
are related to symptoms or other disease features. Researchers have suggested the potential
of a PET radioligand for the detection of both fibrillar Aβ and tau pathology (Shoghi-Jadid
et al., 2002); more recently, other researchers have proposed a PET radioligand with high
affinity and selectivity for tau pathology (Fodero-Tavoletti et al., 2009); and researchers
continue to explore PET radioligands for the assessment of tau and oligomeric Aβ species.

A growing number of brain imaging methods are available for the study of AD (and, as with
the better established methods, they generate images that could be analyzed in a variety of
ways). In general, the approaches reviewed here have not received widespread use in the
clinic because either the processes being measured have no direct clinical implications or, in
some cases because the techniques themselves have not been adequately standardized. These
methods can also be expensive and technically demanding. This situation could change if
effective therapy becomes available and these measures are shown to affect subject selection
or monitoring of treatment.

Contributions to the Early Detection and Tracking of AD
As previously noted, researchers have used brain imaging techniques to detect and track
brain changes associated with AD (Jack, Jr. et al., 2009). Several of the reported brain
changes are correlated with clinical severity, progressive, predictive of subsequent clinical
decline, and predictive of the neuropathological diagnosis of AD. Several of these changes
are observed years before the onset of symptoms in persons at increased genetic risk for AD
(e.g., APOE ε4 carriers, early-onset AD-causing mutation carriers, and Down syndrome
patients) and individuals who subsequently demonstrated accelerated cognitive decline or
progression to the clinical stages of AD. Additional studies are needed to determine the
extent to which these measurements, alone or in combination with other factors, predict
subsequent rates of clinical decline.

Cross-sectional PET studies suggest the onset of significant fibrillar Aβ burden about 10-15
years before the clinical onset of AD—though longitudinal studies are needed to determine
the extent to which Aβ burden predicts clinical decline over shorter and longer time frames
— and that it may reach a virtual plateau by the time most patients have MCI. It has been
suggested that fibrillar Aβ deposition is associated with non-progressive reductions in CSF
Aβ42 levels and that it anticipates downstream brain imaging and CSF changes (Fagan et al.,
2006), including progressive MRI measurements of brain shrinkage, progressive PET
measurements or rCMRgl decline, non-progressive elevations in CSF total tau and phospho-
tau levels and, eventually, cognitive decline (Jack, Jr. et al., 2010; Sperling et al., 2011).
Imaging studies have raised the possibility of even earlier brain changes, preceding Aβ
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pathology, in the predisposition to AD (Buckner et al., 2005; Reiman et al., 2004; Shaw et
al., 2007; Sheline et al., 2010; Vaishnavi et al., 2010; Vlassenko et al., 2010).

Contributions to the Scientific Understanding of AD
Brain imaging studies have produced insights that have had a profound effect on how we
think about the disease. To some extent these findings have come from multimodality
approaches that have merged studies of structure, function, and biochemistry, especially
those conducted in individuals who have minimal or no symptoms. Here we note some of
the key findings in this area.

Brain Networks and the Deposition of Fibrillar Aβ
The observation that task induced brain activations are accompanied by clusters of regions
that are consistently deactivated has lead to the notion that there is a resting state of the
brain, commonly referred to as the default mode network (DMN) (Raichle et al., 2001).
Subsequent work has shown that this network anatomically overlaps with both Aβ
deposition and the pattern of MRI regional atrophy and PET-FDG hypometabolism
(Buckner et al., 2005) (Figure 4). These nodes of the DMN parallel the location of many
cortical hubs (Buckner et al., 2009), indicating that they serve as major foci of cortical
connections and as key components of multiple networks. As noted, the DMN is disrupted
in AD (Greicius et al., 2004) and in resting state connectivity studies in normal older people
with asymptomatic fibrillar Aβ deposition (Hedden et al., 2009; Sheline et al., 2010); there
is also some evidence that subcomponents of this network show increased connectivity that
could represent shifting of the topography of the network perhaps as a compensatory process
(Mormino et al., 2011). Failure to deactivate the same regions has been reported in aging
and in early stage AD (Lustig et al., 2003), and most recently has been associated with
fibrillar Aβ deposition in asymptomatic normal older people performing a memory encoding
task (Sperling et al., 2009). The degeneration of this network in AD is paralleled by findings
in other disorders in which patterns of neurodegeneration follow the patterns of neural
connectivity in a number of different networks, suggesting that intrinsic functional and
structural connectivity somehow mediates the regional progression of disorders as disparate
as AD, frontotemporal lobar degeneration, and progressive supranuclear palsy (Seeley et al.,
2009).

The DMN is also interesting in another respect; it overlaps with both Aβ deposition and with
brain regions that preferentially utilize aerobic glycolysis (Vaishnavi et al., 2010; Vlassenko
et al., 2010). This aerobic glycolysis could reflect several different aspects of this brain
network including the requirement for rapid production of ATP necessary for glutamate
cycling (as aerobic glycolysis generates ATP more quickly than oxidative phosphorylation)
or factors associated with neural plasticity including the role of glycolysis in fueling the
receptor turnover at the post-synaptic density and activity in biosynthesis through the
pentose-phosphate shunt. Why brain regions that preferentially utilize this form of energy
metabolism should overlap with both cortical hubs and Aβ deposition is a subject requiring
further investigation, but it suggests a relationship between neural metabolism and
neuroplasticity and the etiopathogenesis of AD.

In addition to failure to adequately deactivate the DMN, a number of studies have pointed to
increased brain activation as a feature of early and pre-symptomatic stages of AD
(Bookheimer et al., 2000; Celone et al., 2006; Dickerson et al., 2004; Quiroz et al., 2010).
These increases in “task positive” networks (as opposed to brain networks that deactivate
during tasks such as the DMN) have been interpreted as attempts at compensation although
this remains to be conclusively demonstrated. Alternative explanations include
dedifferentiation of cortical function, and aberrant excitation, a finding that has also been
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seen in vivo in animal models of AD (Palop et al., 2007). In addition, it is possible that
lifelong patterns of increased brain activity might themselves predispose to the deposition of
β-amyloid(Jagust and Mormino, 2011).

Testing the Amyloid Hypothesis—The combined use of multiple imaging modalities
has also resulted in new formulations of the sequence of pathological events in AD as
proposed in a recent review (Jack, Jr. et al., 2010). By studying groups of individuals with a
variety of imaging techniques at different stages of the disease, a picture of the progression
of AD is emerging. For example, it has long been known that older individuals can show
pronounced deposition of Aβ in the form of neuritic plaques without having evidence of
cognitive impairment (Bennett et al., 2006; Tomlinson et al., 1968). PET amyloid imaging
has confirmed the finding of substantial Aβ in normal older people, particularly as related to
Apolipoprotein E genotype (Morris et al., 2010; Reiman et al., 2009), and it has permitted
the simultaneous examination of cognition in great detail. While there remains some debate,
most studies show that cognitive function is normal or only mildly affected in older
individuals with brain Aβ who are classified as cognitively normal (Aizenstein et al., 2008;
Rentz et al., 2010; Villemagne et al., 2011). While such data establish that very early brain
abnormalities include Aβ deposits, they cannot definitely rule out the involvement of other
pathological processes in the cascade of events leading to cognitive decline and dementia.
Indeed, several other studies have noted that Aβ in normal people is accompanied by subtle
evidence of brain atrophy that may be even more important than Aβ itself in leading to
cognitive decline (Chetelat et al., 2010; Dickerson et al., 2009; Jack, Jr. et al., 2009;
Mormino et al., 2009). These findings are echoed by some data from patients with dementia,
in whom characteristics of Aβ deposition bear little relationship to clinical syndromes, while
functional changes (both in glucose metabolism and brain activation) are more strongly
associated with cognitive deficits (Nelissen et al., 2007; Rabinovici et al., 2008).
Furthermore, progression from normal cognition through MCI and AD appears to be
associated with very slow increases in Aβ accumulation but more rapid atrophy (Chetelat et
al., 2010; Jack, Jr. et al., 2009; Villemagne et al., 2011). Accumulating evidence suggests
that PET evidence of Aβ deposition is associated with longitudinal cognitive decline in
normals (Resnick et al., 2010; Storandt et al., 2009) and conversion to dementia in those
with MCI (Forsberg et al., 2008; Okello et al., 2009b; Wolk et al., 2009).

How can we reconcile seemingly contradictory findings wherein Aβ shows minimal
relationships to cognitive symptoms but is associated with subsequent decline and dementia?
The likely explanation is that there is a long preclinical period during with Aβ produces
relatively few clinically observable findings, but is subtly altering both brain structure and
function. We can begin to see evidence of Aβ, structural, and functional changes in normal
aging. While Aβ appears to increase the probability of subsequent decline, it is not clear to
what extent this decline is also predicted by the degree of structural and functional change.
As dementia supervenes, structural and functional changes bear a stronger relationship to
symptoms, suggesting that Aβ could serve as an initiating event after which “downstream”
changes may become uncoupled from amyloid pathology. This has important implications
for the early initiation of anti-amyloid therapy, and the potential importance of non-amyloid
targets for individuals later in the disease course.

Still, other questions remain: For instance, why do researchers detect some of the earliest
fibrillar Aβ deposition in frontal cortex in those at risk for AD (Mintun et al., 2006) (and in
the striatum in some of the individuals at risk for autosomal dominant early-onset of AD
(Klunk et al., 2007)), while they are unable to detect the declines in executive function (or
the extrapyramidal symptoms) until later in the disease? That dissociation may give
researchers clues about the differentially harmful or protective effects of Aβ species on
neuronal function. Why have some researchers been able to show brain changes in young
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adults at genetic risk for AD before any evidence of fibrillar or solube Aβ accumulation
(Reiman et al., 2004)? They information may give researchers information about the earliest
synpaptic or peri-synaptic changes associated with the predisposition to AD, many decades
before the progressive biological and cognitive changes observed in the later stages of the
disease.? Will presymptomatic treatments shown to slow or even reverse the accumulation
of fibrillar Aβ deposition also be associated with a clinical benefit? That might be the best
test of the amyloid hypothesis yet—better than a test of the same treatment in clinically
affected patients, when there is a concern that those treatments may be too late to exert their
most profound benefit.

Relating brain function and structure to behavior
Numerous studies have helped to clarify how brain function and structure are related to
behavior. PET studies have shown that the pattern and magnitude of glucose
hypometabolism is related to pattern and magnitude of cognitive decline (Foster et al., 1983;
Haxby et al., 1985; Landau et al., 2011). MRI studies have shown relationships between
patterns of regional atrophy and the pattern of behavioral impairment (e.g., helping to define
the relationship between regional atrophy and impaired language domains in patients with
primary progressive aphasia (Rogalski et al., 2011). Effects of glucose metabolism and brain
atrophy may be disarticulated through careful analysis of precise behavioral correlations. In
one study, for example, posterior cingulate hypometabolism was related to deficits in
memory retrieval, whereas hippocampal atrophy was related to deficits in both memory
encoding and retrieval (Chetelat et al., 2003b).

Emerging Roles in the Clinical Setting
Guidelines for the use of imaging in the clinical evaluation of patients with dementia and
pre-dementia syndromes such as MCI are actively being modified. Existing American
Academy of Neurology practice parameters for the diagnosis of AD recommend CT or MR
imaging only to rule out treatable structural pathology (Knopman et al., 2001) while MCI
practice parameters do not address imaging at all (Petersen et al., 2001). These guidelines
are 10 years old and outmoded not only because of the development of new imaging
modalities, but also because the approach to AD has shifted from a diagnosis largely made
by exclusion of other conditions to a diagnosis guided by specific historical, cognitive and,
most recently, biomarker findings. This new approach has been reinforced by numerous
studies in the clinical arena showing how PET imaging can contribute to the differentiation
of AD and other conditions such as fronto-temporal Lobar degeneration (Foster et al., 2007)
and how imaging findings may be related to pathology (Gosche et al., 2002).

It is in fact the availability of and increasing amounts of data concerning biomarkers in
general that is shifting the thinking about diagnosis to include laboratory assessments that
have value in supporting a diagnosis of AD. For instance the “Dubois criteria” propose the
use of medial temporal atrophy, temporoparietal hypometabolism, and amyloid imaging (as
well as CSF Aβ and tau measurements) as supportive features for a diagnosis of AD in the
context of the core diagnostic feature of slowly progressive episodic memory loss (Dubois et
al., 2007; Dubois et al., 2010). Notably, these criteria require neither pervasive cognitive
loss nor functional impairment, thus including individuals in pre-dementia syndromes in the
category of AD. While these criteria have not been widely applied, they have been
influential in shifting the thinking about AD diagnosis to involve greater use of biomarkers.
This approach has eventuated in a new series of diagnostic criteria developed by the
National Institute on Aging and the Alzheimer's Association that cover AD, MCI, and even
an asymptomatic, biomarker positive stage referred to as preclinical AD (Albert et al., 2011;
McKhann et al., 2011; Sperling et al., 2011). Imaging figures prominently in all 3 diagnostic
schemas, largely based upon the amyloid hypothesis and the conceptualization of the
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pathological sequence of events reviewed above. In these criteria, biomarkers are classified
as indicative of Aβ deposition (CSF or PET) or neuronal injury (CSF tau, MRI atrophy, or
PET hypometabolism). For both AD and MCI, the presence of both Aβ and neuronal injury
confers the highest biomarker evidence of AD, presence of one an intermediate level,
conflicting biomarker evidence is considered uninformative, and negative biomarker results
lower the likelihood of AD. These criteria thus bring imaging clearly into the diagnostic
assessment, largely in the role of supporting a diagnosis of AD. They also raise the
possibility of determining which cognitively normal older adults and MCI patients have
evidence of the AD pathophysiological process. Conversely, amyloid PET and MRI
measurements provide a new opportunity to study the biological and cognitive changes
associated with normal aging in the absence of measurable AD or cerebovascular pathology.

The future use of imaging in the clinical evaluation of dementia and MCI is likely related in
part to the availability of effective medication treatments. At the present time there is
evidence to suggest that amyloid PET imaging can predict decline in both MCI patients and
normal older people. There is of course also evidence that FDG-PET and MRI are predictive
of decline (Chetelat et al., 2003a; Jack et al., 1999). There are few studies that use
multivariate approaches to predict decline in MCI patients but it is possible that markers of
neural dysfunction such as FDG-PET and MR atrophy are better indicators of more
progressed individuals and, as such, might be more effective than Aβ measures at predicting
imminent decline (Chen et al., 2011; Landau et al., 2010). While studies that compare
different imaging approaches in prediction will be important from a scientific perspective,
the clinical significance of prediction may be more helpful when the information can be
related to a clinically effective medication treatment. However, the likely infusion of
amyloid PET into the clinical arena through the application of longer-lived F-18 labeled
PET tracers (Clark et al., 2011; Rowe et al., 2008; Vandenberghe et al., 2010) could have a
major impact on clinical care if effective therapies become available.

We wish to suggest two considerations, as a complement to the inevitable discussion of
costs and benefits. First, public policy makers will need to factor in the non-medication
treatment issues that have the greatest impact on the welfare of patients and families at this
time. For instance, it is possible that amyloid PET findings could help mobilize physicians
and families to address the range of distressing non-medication issues (e.g., decisions about
driving and retirement, proactive financial, medicolegal, and resource planning) and reduce
the family's sense of uncertainty about the underlying diagnosis. Second, a negative fibrillar
Aβ PET scan (suggesting that the diagnosis of AD is unlikely) may be more informative
than a positive PET scan (since one cannot exclude other contributors to AD, including
some of the mixed pathology frequently seen at autopsy). Clinicians, payers and policy
makers will have challenging questions to address, starting in the near future.

Emerging Roles in the Evaluation of AD-Modifying Treatments
There is great interest in the role that brain imaging techniques could play in the evaluation
of investigational AD-modifying treatments, a major effort to develop the best imaging
techniques for this purpose, and an increasing use of MRI, FDG PET and fibrillar amyloid
PET in clinical trials. Among other things, imaging techniques have the potential to a)
reduce the number of clinically affected AD patients and time needed to evaluate
investigational AD-modifying treatments; b) select patients with dementia or MCI based on
their estimated likelihood of clinical progression or response to certain treatments; c)
differentiate patient subgroups in their response to treatment, helping to minimize attrition in
drug development; d) help clarify a treatment's amyloid-modifying and other AD-modifying
effects; e) monitor the safety of amyloid-modifying treatments (i.e., evidence of potentially
reversible vasogenic edema and microinfarcts using GRE and FLAIR MRI pulse
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sequences); and f) as noted below, to help evaluate the range of promising presymptomatic
AD treatments as quickly as possible (Reiman and Langbaum, 2009; Reiman et al., 2010;
Reiman et al., 2011).

For instance, volumetric MRI and FDG PET measurements appear to be better than clinical
measurements in their statistical power to track the progression of AD in probable AD and
MCI patients and in their estimated statistical power to evaluate AD-modifying treatment
effects when used as endpoints in clinical trials (Alexander et al., 2002a; Beckett et al.,
2010; Chen et al., 2010; Chen et al., 2011; Fox et al., 2000). Brain imaging and other
biomarker measurements have been suggested to help to distinguish those MCI patients
most likely to show subsequent clinical progression over the next 12-18 months, providing
an enrichment strategy by which to reduce sample size and treatment duration in MCI trials
(Chételat et al., 2005a; Chételat et al., 2005b; Drzezga et al., 2005a; Jack, Jr. et al., 2005;
Mosconi et al., 2004a). PET or CSF measurements of amyloid burden have been suggested
to help distinguish which symptomatic patients have amyloid pathology (Clark et al., 2011),
offering the change to identify those candidates who may be most likely to respond to an
amyloid-modifying treatment. PET may be too late to assess the ability of an amyloid-
modifying treatment to slow down the further fibrillar Aβ accumulation in symptomatic
patients, by which time fibrillar Aβ deposition may have reached a plateau (Klunk et al.,
2006), but it may be able to detect the extent to which certain (e.g., immunization)
treatments actually reverse fibrillar Aβ pathology. Indeed, PiB PET was recently used in a
clinical trial to demonstrate greater clearance of amyloid plaques in AD dementia patients
treated with an Aβ immunotherapy than those treated with placebo (Rinne et al., 2010).
Brain imaging and other biomarker measurements are critically needed to rapidly evaluate
disease-modifying treatments in the earliest symptomatic and presymptomatic stages of AD,
when investigational treatments may be most likely to exert their most profound effects.

Established in 2004, the United States-based AD Neuroimaging Initiative (ADNI) is
primarily intended to help inform the design and performance of multi-center clinical trials
of investigational AD-modifying treatments using brain imaging, other biomarker, and
clinical measurements in probable AD, MCI and cognitively normal older adults (Mueller et
al., 2005), and it has inspired similar initiatives in Europe, Australia, and Japan. It has
developed and implemented protocols for the acquisition of MRI, FDG PET, and certain
fibrillar Aβ PET measurements, real-time quality-assurance and quality-control procedures
and centralized image processing procedures to optimize the quality and comparability of
data acquired on different MRI and PET systems. It has demonstrated the feasibility of
collecting CSF samples in a high proportion of study participants. It has provided a publicly
available resource of data and biological samples for the research community, providing an
opportunity to compare new data analysis techniques and biological fluid assays to other
measurements in the detection and tracking of AD. Most importantly, it has provided a
means to directly compare the different kinds of measurements and different image-analysis
techniques in terms of their ability to track the progression of AD, estimate sample sizes
needed to detect AD-modifying treatment effects, and the effects of different biomarker
enrichment strategies on these estimates.

While brain imaging and other AD biomarker measurements offer great promise in the
evaluation of AD-modifying treatments, several uncertainties remain when it comes to the
information they will provide in clinical trials. There is a need to embed the most promising
biomarkers in clinical trials, determine the extent to which AD-modifying treatments budge
the biomarkers, clarify and address potentially confounding effects of the treatment on the
biomarkers (e.g., a treatment's effects on brain volume or regional CMRgl unrelated to
disease progression), and determine the extent to which the treatment's biomarker effects
predict a clinical benefit. While brain imaging and other biomarkers can provide information
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that may help in the development of promising treatments, regulatory agencies are unlikely
to provide an accelerated approval pathway for an AD-modifying treatment based solely on
a biomarker (i.e., surrogate) endpoint until there is evidence from clinical trials themselves
that a treatment's biomarker effects are reasonably likely to predict a clinical benefit
(Reiman and Langbaum, 2009; Reiman et al., 2010; Reiman et al., 2011).

Emerging Roles in the Evaluation of Presymptomatic AD Treatments
When one considers the growing number of clinically affected AD patients, the healthy
lifestyle interventions suggested but not proven to reduce the risk of AD symptoms (Haag et
al., 2009; Lautenschlager et al., 2008; Peila et al., 2006; Scarmeas et al., 2009; Szekely et
al., 2008; Wang et al., 2002; Willis et al., 2006; Zandi et al., 2004), and the possibility that
investigational AD treatments may need to be started before the onset of symptoms to have
their most profound benefit, there is a need to evaluate these range of “presymptomatic AD
treatments” in the most rapid and rigorous way. It currently takes too many healthy
volunteers and too many years to evaluate presymptomatic AD treatments in prevention
trials using clinical endpoints. There is a growing interest in the role that brain imaging and
other biomarker measurements could play in the rapid evaluation of promising
presymptomatic AD treatments. Thus, researchers have provided brain imaging evidence of
AD progression in cognitively normal late-middle-aged APOE ε4 carriers and the estimated
sample sizes needed to evaluate promising presymptomatic AD treatments in two-year
proof-of-concept prevention trials.

Meantime, several groups have proposed the evaluation of investigational Aβ-modifying
treatments in prevention trials. For instance, researchers from the Alzheimer's Prevention
Initiative have proposed a trial using brain imaging, CSF biomarker and cognitive endpoints
in cognitively normal people who, based on their age and genetic background, are at the
highest imminent risk of early- or late-onset AD symptoms and to provide the evidence
needed to show that the treatment's biomarker effects are reasonably likely to predict a
clinical benefit so that these biomarkers may receive regulatory agency qualification for use
in AD prevention trials (Reiman et al., 2010; Reiman et al., 2011). It is also intended to
provide a better test of the amyloid hypothesis than trials in symptomatic patients, when the
treatment may be too little too late to have the most profound effect. Researchers from the
Dominantly Inherited Alzheimer's Network (DIAN) have proposed proof-of-concept
prevention in early-onset AD causing mutation carriers, and to use other biomarker data to
help provide the pharmacodynamic data needed to inform these studies (Bateman et al.,
2011). Researchers from the AD Cooperative Study have proposed a prevention trial in
cognitively normal people with PET evidence of significant fibrillar Aβ burden. These and
other trials are needed to not only provide information about the effects of promising
presymptomatic treatments on measurements on AD pathophysiology, but to help find the
best biomarkers for use in other prevention trials and to help qualify the most suitable
biomarkers for use as reasonably likely surrogate endpoints in prevention trials. In this way,
AD biomarkers, alone or in combination (e.g., PET fibrillar Aβ measurements along with
volumetric MRI, FDG PET or other downstream measures of disease more closely related to
clinical outcome), could provide both the scientific means and accelerated regulatory
approval pathway to galvanize the evaluation of promising presymptomatic treatments.

Future Directions and a Few Recommendations
There has been has great progress in the scientific discovery of AD, the discovery of
promising disease-modifying and presymptomatic treatments, and the development of brain
imaging and biomarker techniques to help advance the scientific understanding, detection,
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tracking, treatment and prevention of AD. But more work remains to be done. A few
recommendations:

1. Continue to develop the brain imaging measurements needed to assess relevant
biological processes, including but not limited to brain imaging and fluid biomarker
measurements to assess other, potentially more toxic (e.g., oligomeric) Aβ species
and neurofibrillary pathology.

2. Continue to develop, test and compare new image analysis algorithms, including
voxel-based algorithms that can capitalize on the wealth of data available in
complementary data sets from the same person, and those that can summarize the
pattern of measurements or time-dependent changes in a single measurement.

3. Further characterize the extent to which brain imaging measurements, alone but
especially in combination, predict subsequent clinical decline. These imaging
biomarkers must also be compared with inexpensive potentially cost-effective
measures such as brief cognitive evaluations and fluid biomarkers.

4. Further characterize the relationship and time course of biomarker and cognitive
changes associated with the preclinical and increasingly severe clinical stages of
AD—include those changes that may precede the earliest evidence of Aβ
accumulation.

5. Further development and leverage animal imaging resources in the scientific study
of AD and the preclinical evaluation of promising AD-modifying treatments.

6. Work with researchers from other disciplines (e.g., genomics, proteomics, and the
basic neurosciences) to leverage each others’ resources in a more effective way.

7. Embed the range of promising biomarker measurements (including volumetric
MRI, FDG PET, fibrillar Aβ PET, CSF assays) and store the biological fluid
samples in clinical trials of disease-modifying treatments and presymptomatic AD
treatments, providing the evidence needed to inform the use of biomarkers in the
evaluation of these treatments and to qualify the relevant biomarkers for use as
endpoints in pivotal trials.

8. Develop, test, and apply PET tracers that can better characterize other
neuropathological features of AD, such as those for the assessment of tau pathology
(Fodero-Tavoletti et al., 2009), neuroinflammation, and other potentially
neurotoxic (e.g., oligomeric) Aβ species.

9. Provide the federal funding and financial incentives needed to evaluate the range of
promising presymptomatic treatments in prevention trials. It is time to advance AD
prevention research, and imaging techniques are needed to help evaluate the range
of promising treatments in the most rapid and rigorous way.

There is no guarantee that any of the treatments now in clinical and preclinical development
will work. But the brain imaging research community is well positioned to help evaluate
these treatments, extend them to the presymptomatic stages of AD when they might have
their most profound effect, and improve the clinical management of AD as better treatments
become available. A sense of urgency among all of the stakeholders is needed to address the
problem of AD as quickly as possible.
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Figure 1.
Volumetric MRI in the the detection and tracking of AD, including (i) accelerated rates of
atrophy in the hippocampus (Hi) and entorhinal cortex (ERC) regions-of-interest (Mike
Weiner, with permission); (ii) accelerated rates of whole brain atrophy using sequential
MRIs, as shown in red in a symptomatic AD patient (Nick Fox, with permission); (iii)
regional gray matter loss, as shown in this statistical brain map comparing symptomatic AD
patients and controls. Reprinted from (Baron et al., 2001), Copyright © 2001 with
permission from Elsevier. All rights reserved; and (iv) regional thinning in cerebral cortex,
as shown in this statistical brain map comparing symptomatic AD patients and controls.
Reprinted with permission from (Du et al., 2007), Copyright © 2007 Oxford University
Press. All rights reserved. This figure was reproduced with permission from (Reiman and
Langbaum, 2009), Copyright © 2009 Oxford University Press. All rights reserved.
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Figure 2.
FDG PET in people who are clinically affected by or at increased genetic risk of AD.
Characteristic CMRgl reductions (compared to normal controls) are displayed on the medial
surface of a brain MRI in clinically affected AD patients and in cognitively normal young
adult with one copy of the APOE ε4 allele, the major AD susceptibility gene. Adapted with
permission from (Reiman et al., 1996), Copyright © 1996 Massachusetts Medical Society,
all rights reserved, and (Reiman et al., 2004), Copyright © 2004 National Academy of
Sciences, USA. All rights reserved.
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Figure 3.
Fibrillar amyloid imaging in the study of AD. Increases in Pittsburgh Compound-B PET
measurements of fibrillar amyloid-β in symptomatic AD patients. Adapted with permission
from (Reiman et al., 2009; Reiman et al., 2010), Copyright © 2009 National Academy of
Sciences, USA. All rights reserved.
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Figure 4.
Spatial relationships (and postulated causal connections) among the brain regions implicated
in i and ii) the Default Mode Network and successful episodic memory retrieval in young
adults, iii) the regions preferentially associated with fibrillar amyloid-β deposition, and iv
and v) the regions preferentially associated with atrophy and CMRgl decline. Reprinted with
permission from (Buckner et al., 2005), Copyright © 2005 Society for Neuroscience. All
rights reserved.
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