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Abstract
Imaging biomarkers for Alzheimer’s disease are desirable for improved diagnosis and monitoring,
as well as drug discovery. Automated image-based classification of individual patients could
provide valuable diagnostic support for clinicians, when considered alongside cognitive
assessment scores. We investigate the value of combining cross-sectional and longitudinal multi-
region FDG-PET information for classification, using clinical and imaging data from the
Alzheimer’s Disease Neuroimaging Initiative. Whole-brain segmentations into 83 anatomically
defined regions were automatically generated for baseline and 12-month FDG-PET images.
Regional signal intensities were extracted at each timepoint, as well as changes in signal intensity
over the follow-up period. Features were provided to a support vector machine classifier. By
combining 12-month signal intensities and changes over 12 months, we achieve significantly
increased classification performance compared with using any of the three feature sets
independently. Based on this combined feature set, we report classification accuracies of 88%
between patients with Alzheimer’s disease and elderly healthy controls, and 65% between patients
with stable mild cognitive impairment and those who subsequently progressed to Alzheimer’s
disease. We demonstrate that information extracted from serial FDG-PET through regional
analysis can be used to achieve state-of-the-art classification of diagnostic groups in a realistic
multi-centre setting. This finding may be usefully applied in the diagnosis of Alzheimer’s disease,
predicting disease course in individuals with mild cognitive impairment, and in the selection of
participants for clinical trials.

1Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(http://www.loni.ucla.edu/ADNI). As such, the investigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A complete lisitng of ADNI investigators is available
at http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf.
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1. Introduction
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, with a
worldwide prevalence of 26.6 million reported in 2006, which is expected to rise above 100
million by 2050 (Brookmeyer et al., 2007). Drug development is a major research focus, but
at present no treatment is able to either reduce the risk of developing AD, or delay its onset
and progression. Any disease-modifying or causal therapy would likely be of greatest
benefit to pre-symptomatic patients, and those at increased risk of developing AD. Patients
with amnestic mild cognitive impairment (MCI) are hence of particular interest for clinical
trials.

Consensus diagnostic criteria for established AD are up to 90% accurate when validated
against neuropathological gold standards (Ranginwala et al., 2008). There are, however,
several significant challenges to be addressed. These include pre-symptomatic diagnosis,
differential diagnosis and the assessment and prediction of progression. Population
stratification is also important, to allow recruitment of appropriate participants for clinical
trials, and targeting of patients for whom newly developed treatments may be most effective.
Recently published revisions to the consensus criteria aim to incorporate advances in AD
research, such as the diagnostic and prognostic value of biochemical and neuroimaging
biomarkers (McKhann et al., 2011; Albert et al., 2011; Sperling et al., 2011). The
Alzheimer’s Disease Neuroimaging Initiative (ADNI) is a valuable resource for related
investigations, providing longitudinal clinical and imaging data from patients with AD and
MCI, as well as healthy controls (HC).

Functional imaging with FDG-PET is one of several neuroimaging modalities of interest in
AD. Numerous studies (for example, Langbaum et al. (2009); Mosconi et al. (2005, 2008);
Nestor et al. (2003)) have shown that both MCI and AD are associated with significant
reductions in the cerebral metabolic rate of glucose in brain regions preferentially affected
by the disease. AD patients typically display reductions of greater magnitude and spatial
extent. Reduced metabolic activity in AD patients can predict both their cognitive decline
and histopathological diagnosis (Hoffman et al., 2000; Minoshima et al., 2001; Silverman et
al., 2001), and in MCI patients it can predict their conversion to AD (Anchisi et al., 2005;
Mosconi et al., 2004). Serial FDG-PET scans over ten years can identify declining
hippocampal metabolism as healthy individuals progress to AD (de Leon et al., 2001). FDG-
PET is mentioned in the revised AD diagnostic criteria (McKhann et al., 2011; Albert et al.,
2011; Sperling et al., 2011) as a potentially useful tool for early diagnosis and monitoring of
disease progression. However, as with other neuroimaging and biochemical biomarkers, its
use is recommended for research, rather than standard clinical practice.

Automated image-based classification of individual patients could provide valuable
diagnostic support for clinicians, when considered alongside cognitive assessment scores.
The ADNI study provides an ideal dataset for classification, since it approximates a clinical
population due to its large size and diversity. Several recent studies have performed image-
based classification using cross-sectional ADNI FDG-PET data. Hinrichs et al. (2009) use
spatially augmented linear program boosting, based on voxel-wise features, to achieve a
classification accuracy of 84% between AD patients and HC. Haense et al. (2009) apply a
previously validated method (Herholz et al., 2002) in which a global measure of image
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abnormality is provided by the sum of abnormal t-values in predefined areas typically
affected by AD. They report 83% sensitivity and 78% specificity between AD patients and
HC following the application of a preset t-sum threshold. Salas-Gonzalez et al. (2010) apply
a linear support vector machine (SVM) to voxel-wise data which have undergone feature
selection and dimensionality reduction. They achieve accuracies of 87% between AD
patients and HC, and 83% between MCI patients and HC, using a two-fold cross-validation
strategy.

There are many more classification studies based on ADNI structural MR imaging data. For
example, a recent study (Cuingnet et al., 2011) compares ten high-dimensional classification
methods applied to 509 baseline ADNI 1.5 T MR images. Two methods use only the
hippocampal shape or volume, whilst the remainder are whole-brain approaches, which use
either cortical thickness measures, or voxel-wise tissue class probabilities for grey matter,
white matter and cerebrospinal fluid (CSF). High accuracies in distinguishing AD patients
from HC (up to 81% sensitivity and 95% specificity) are reported for whole-brain
approaches. Four of the ten methods were able to distinguish MCI patients who later
progressed to AD (pMCI) from those who remained stable (sMCI) over 18 months slightly
more accurately than a random classifier, although not significantly (p > 0.05) so. For
example, one of the methods based on hippocampal volume achieved 62% sensitivity and
69% specificity.

There is increasing interest in using multi-modality imaging and non-imaging data for
classification. For example, Zhang et al. (2011) apply a kernel combination approach to
cross-sectional FDG-PET and MR imaging data and CSF biomarker measures. They report
classification accuracies of 93% between AD patients and HC, and 76% between MCI
patients and HC, when using all three modalities in combination. These results are superior
to those obtained when using any one modality independently. Hinrichs et al. (2011) have
also investigated the application of kernel combination methods, but to both cross-sectional
and longitudinal FDG-PET and MR imaging data, as well as CSF biomarker measures,
neuropsychological status examination scores, and APOE genotype information. They, too,
report that the use of multi-modality data leads to superior classification performance
compared with that based on any individual modality. Their study data included two FDG-
PET and MR images for each subject, taken approximately 24 months apart. They observed
that longitudinal analysis of the FDG-PET images (either voxel-wise temporal difference or
temporal ratio) performed relatively poorly in distinguishing AD patients from HC,
compared with the raw FDG-PET signal intensities at either timepoint. They suggest that
two-year changes in FDG-PET signal intensity alone are not sufficient to identify AD with
high accuracy, and these longitudinal data were therefore not incorporated into their multi-
modality classification experiments.

In contrast, Chen et al. (2010) report highly significant group differences between AD or
MCI patients and HC in their longitudinal analysis of 12-month metabolic declines in ADNI
subjects. This suggests that whilst longitudinal FDG-PET data alone may not be sufficient
for classification, they may provide valuable complementary information which can enhance
the results achievable using cross-sectional FDG-PET. We therefore investigate the value of
combining cross-sectional and longitudinal FDG-PET information for classification. We
extract regional features from baseline and 12-month follow-up FDG-PET images, and
investigate their combined use for image-based classification of the ADNI participants. We
present classification results for four clinically relevant pairs of diagnostic groups (AD/HC,
pMCI/HC, AD/sMCI, pMCI/sMCI), and also identify the regional features which best
separate these groups.
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2. Materials and Methods
2.1. Imaging Data

Data used in the preparation of this article were obtained from the ADNI database
(http://www.loni.ucla.edu/ADNI). The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organisations, as a $60 million, five-year public-private partnership. The primary goal of
ADNI has been to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of MCI and
early AD. Determination of sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator
of this initiative is Michael W. Weiner, M.D., VA Medical Center and University of
California – San Francisco. ADNI is the result of efforts of many co-investigators from a
broad range of academic institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The initial goal of ADNI was to
recruit 800 adults, ages 55 to 90, to participate in the research – approximately 200
cognitively normal older individuals to be followed for three years, 400 people with MCI to
be followed for three years, and 200 people with early AD to be followed for two years.
Further up-to-date information, including detailed eligibility criteria, is available on the
ADNI information website (http://www.adni-info.org).

Baseline and 12-month follow-up FDG-PET and 1.5 T MR images were available to
download for 321 ADNI participants. We excluded from our analysis any subjects for whom
one or both of the FDG-PET images were acquired using the Siemens HRRT or BioGraph
HiRez scanners (n = 78), due to differences in the observed pattern of FDG metabolism that
were discovered during the ADNI quality control process. Further information is available
on the ADNI PET Core website
(http://www.loni.ucla.edu/twiki/bin/view/ADNI/ADNIPETCore). We also excluded a small
number of subjects (n = 10) whose images could not be processed as required, either
because of missing timeframe information in the FDG-PET image headers, or incorrect
positioning of subjects in the PET scanner, such that part of the brain was outside the field
of view. The MCI subjects were divided into pMCI and sMCI based on changes in clinical
status occurring over 19 ± 10 (range 6 – 48) months. Subjects whose diagnosis did not
clearly fall into one of the four clinical categories (AD, pMCI, sMCI, HC) were additionally
excluded (n = 12). Of these 12, five progressed from HC to MCI, five reverted from MCI to
HC, and two oscillated between MCI and HC. ADNI subject identifiers for the 22 excluded
subjects are provided as supplementary data.

We use imaging data from 221 participants (50 AD, 53 pMCI, 64 sMCI, 54 HC), whose
groupwise characteristics are provided in Table 1. The mean age at baseline (75.7 ± 6.3
years) and mean time between baseline and 12-month FDG-PET scans (11.6 ± 0.9 months)
do not vary significantly (p > 0.01) on t-test between the clinical groups.

2.2. Image Processing
Our analysis is performed in native MRI space. Baseline anatomical segmentations were
automatically generated in the space of the baseline MRI, and follow-up segmentations were
produced by nonlinear registration to the space of the 12-month MRI. FDG-PET images
were co-registered with their corresponding MR images. An independently derived
reference cluster required for FDG-PET image normalisation was provided in MNI space
(Mazziotta et al., 1995), and transformed into the baseline and 12-month MRI space of each
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subject. An overview of the image processing pipeline is illustrated in Figure 1, and full
details of each step are provided in the sections that follow.

2.2.1. ADNI FDG-PET Acquisition—The FDG-PET images had been acquired using
Siemens, GE and Philips PET scanners according to one of three standard protocols (30–60
minute dynamic, 30–60 minute static, 0–60 minute dynamic) following the intravenous
injection of 185 ± 19 MBq of FDG. Data were corrected for both scatter and measured
attenuation, which was determined using the CT scan for PET/CT scanners, and a
transmission scan with 68Ge or 137Cs rotating rod sources for PET-only scanners. Images
were reconstructed using scanner-specific algorithms, and sent to the University of
Michigan, where they were reviewed for artefacts, de-identified, and transmitted to the
Laboratory of NeuroImaging (LONI) for storage. Further details are available in the ADNI
PET technical procedures manual (ADNI PET Core, 2005).

2.2.2. FDG-PET Image Pre-Processing—The 221 baseline and 12-month FDG-PET
scans were downloaded from the LONI Image Data Archive in their original DICOM or
ECAT format. They were converted to NIfTI using (X)MedCon
(http://xmedcon.sourceforge.net), with care taken to preserve negative values and correctly
apply any quantification factors. Each image was examined for major artefacts, and its
orientation adjusted if necessary. The 30–60 minute dynamic scans were corrected for
patient motion using tools from the Image Registration Toolkit (IRTK;
http://www.doc.ic.ac.uk/~dr/software) to register each of the subsequent frames rigidly to
the image’s first frame. The resulting co-registered frames were averaged to produce a
single 30–60 minute static image. For the 0–60 minute dynamic scans, the final six 5-minute
frames were extracted, and concatenated into a static image in the same way.

2.2.3. ADNI MRI Acquisition and Pre-Processing—Pre-processed versions of the
221 baseline and 12-month T1-weighted 1.5 T MRI scans were downloaded from the LONI
Image Data Archive in NIfTI format. These had been acquired according to a standard
protocol (Jack et al., 2008) involving two scans per subject that were based on a 3-D
MPRAGE imaging sequence and acquired using Siemens, GE and Philips MRI scanners.
Further details are available in the ADNI MRI technical procedures manual (ADNI MRI
Core, 2005). Of the two images acquired per subject and timepoint, the ADNI quality
assurance team selected the better image for pre-processing, based on the presence and
severity of common image artefacts, as well as other criteria. Preprocessing involved the
application of a scanner-specific correction for gradient non-linearity distortion [Gradwarp;
Jovicich et al. (2006)], followed by a correction for image intensity non-uniformity [B1;
Jack et al. (2008)], and finally a histogram peak sharpening algorithm for bias field
correction [N3; Sled et al. (1998)]. Only the N3 pre-processing step was necessary for
images acquired on Philips scanners, since B1 correction was already implemented, and
their gradient systems tended to be linear (Jack et al., 2008).

2.2.4. Co-Registration of FDG-PET with MRI—For each subject and timepoint, the
pre-processed FDG-PET image was co-registered with the corresponding pre-processed MR
image, and re-sampled to the higher resolution of the MRI. Tools from IRTK were used to
perform rigid and then affine registration, using normalised mutual information as the
similarity criterion (Studholme et al., 1999), and the affine transformation parameters were
applied to the FDG-PET image using a linear interpolation. An affine transformation was
preferred over a rigid one because it can account for any scaling or voxel size errors which
may remain after phantom correction of the MRI (Clarkson et al., 2009).
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2.2.5. Baseline MRI Anatomical Segmentation—Automatic whole-brain
segmentations into 83 anatomical regions were prepared in the native space of each baseline
MRI using multi-atlas propagation with enhanced registration (MAPER), an approach that
has been previously described and validated for use in subjects with AD, and age-matched
HC (Heckemann et al., 2010). The segmentations are available to download through the
ADNI website, and full details of the segmentation procedure and morphometric analysis are
presented in Heckemann et al. (2011). The required atlas data consisted of manually
segmented T1-weighted MR volumes from 30 young, healthy adults, as described in
Hammers et al. (2003). Protocols for the manual delineation are described in Hammers et al.
(2003) and Gousias et al. (2008).

Individual tissue probability maps for CSF, grey matter and white matter were obtained
using FSL FAST (http://www.fmrib.ox.ac.uk/fsl). For FDG-PET image analysis, the grey
matter portion within each cortical label is of relevance. Masked segmentations were
therefore employed, in which all regions except ventricles, central structures, cerebellum
and brainstem had been masked with a grey matter label, and the lateral ventricles with a
CSF label.

2.2.6. 12-Month MRI Anatomical Segmentation—To obtain similar whole-brain
anatomical segmentations for the follow-up images, we propagated each baseline
segmentation to the space of the corresponding 12-month MR image using nonrigid
registration. The intracranial portion of the 12-month MRI was first determined by rigid
propagation of the baseline intracranial mask that had been used for brain extraction during
the MAPER segmentation procedure. The baseline intracranial masks were derived, as
described in Heckemann et al. (2011), from binary masks covering intracranial white and
grey matter. These binary masks had been generated using MIDAS, a semi-automatic
procedure described elsewhere (Freeborough et al., 1997; Leung et al., 2011). The rigidly
aligned intracranial-masked baseline and 12-month MRI were then affinely aligned, again to
account for possible scaling or voxel size errors, followed by a series of nonrigid
registrations. The nonrigid registration used was a free-form deformation, with a flexibility
defined by the spacing of a lattice of control points (Rueckert et al., 1999; Schnabel et al.,
2001). Nonrigid registration was performed using control point spacings of 10, 5, and 2.5
mm. The unmasked baseline anatomical segmentation was nonrigidly propagated to 12-
month MRI space using nearest neighbour interpolation. Individual tissue probability maps
for CSF, grey matter and white matter were obtained for the 12-month MRI using FSL
FAST, and the segmentation masked using the same procedure as for the baseline.

2.2.7. FDG-PET Normalisation—FDG-PET image normalisation is often performed
relative to the cerebral global mean. However, due to the nature of the disease process, both
MCI and AD patients have a lower glucose metabolic rate than HC across the whole brain.
Normalisation to the cerebral global mean therefore artificially scales up values from
patients, whilst scaling down those from HC, resulting in under-estimation of the relative
hypometabolism in patients compared to HC (Yakushev et al., 2008). In addition, such
normalisation results in areas of apparent hypermetabolism being observed in patients
compared to HC in regions of the brain that are relatively preserved in AD, including the
cerebellum, brainstem, basal ganglia, and sensorimotor cortex (Herholz et al., 2002). Recent
work suggests that improved group discrimination can be achieved by using the signal
intensity in these relatively preserved regions of the brain for normalisation, rather than the
cerebral global mean value (Borghammer et al., 2009; Yakushev et al., 2009). Our analysis
makes use of this “reference cluster” normalisation method.

We obtained a MNI space image of the reference cluster used in Yakushev et al. (2009)
from the author. Using the “Segment” module of SPM5 (http://www.fil.ion.ucl.ac.uk/spm),
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each baseline and 12-month MRI was linearly and non-linearly deformed (Ashburner and
Friston, 2005) to the MNI template. The inverse transformation was used to map the MNI-
space cluster into the native MRI space of each subject and timepoint using trilinear
interpolation. The cluster was also re-sampled to the higher resolution of the MRI.

2.3. Regional Feature Extraction and Classification
Each of the MRI-space FDG-PET images was overlaid with its corresponding masked
anatomical segmentation. The FDG-PET signal intensity per mm3 was determined for each
of the 83 anatomically defined regions. Global variations in the cerebral metabolic rate of
glucose between subjects were accounted for by normalisation to the signal intensity per
mm3 in the reference cluster. Typical examples of the images required for regional feature
extraction are shown in Figure 2. Normalised regional signal intensities were thus extracted
from both the baseline and 12-month FDG-PET images. Additionally, the regional changes
in FDG-PET signal intensity over the 12-month follow-up period were determined. Each
subject therefore had 249 regional features available for use in classification experiments.

We performed classification using a SVM classifier with LIBSVM
(http://www.csie.ntu.edu.tw/~cjlin/libsvm an integrated software for support vector
classification (Chang and Lin, 2011). Robust estimates of classifier performance were
obtained via a repeated random sampling approach, assessing the classification rates
between four clinically relevant pairs of diagnostic groups (AD/HC, pMCI/HC, AD/sMCI,
pMCI/sMCI). The mean classification accuracy, sensitivity, specificity and balanced error
rate for pairs of groups were evaluated over 1000 runs, in which 75% of the subjects were
randomly selected for training, with the remaining 25% used as test data. We tested five
regional feature sets: baseline signal intensities, 12-month signal intensities, relative changes
in signal intensity over 12 months, baseline signal intensities concatenated with 12-month
changes, and 12-month signal intensities concatenated with 12-month changes. For each
clinical group pair, unpaired t-tests between the distributions of classification results
obtained from the 1000 leave-25% out runs were performed to assess the significance of
differences in performance between the five feature sets. Since we accounted for the relative
sizes of the clinical groups when sampling the training sets and training the SVM classifier,
the sensitivity and specificity values obtained were fairly well balanced, and the balanced
error rate was very similar to the total accuracy. We therefore selected total accuracy as an
overall performance metric, because this allowed for more direct comparisons with other
published works which quote classification performance in terms of accuracy.

In addition, to allow a better assessment of the statistical significance of our results, we
performed permutation testing for all classification experiments. For each pair of clinical
groups, the diagnostic labels were randomly permuted, the data divided into training and test
sets, and the SVM classifier trained and tested as described above. This process was
repeated 1000 times per clinical group pair. Permutation tests thus provide a distribution of
classification accuracies under the null hypothesis, that the classifier cannot accurately
predict the clinical labels from the data provided. To assess whether our observed
classification accuracy for the clinical group pair was significantly different from chance, we
therefore performed an unpaired t-test between the distribution of observed accuracies, and
the distribution obtained from permutation testing.

A two-class SVM aims to construct a hyperplane that maximises the margin, which is the
distance between the closest points on either side of the boundary, known as the support
vectors. For a set of training data , where each subject has a feature vector x
= (x1, x2,…, xD), and a class label t ∈ {−1, 1}, a hyperplane separating the classes may be
written y(x) = wTx−b = 0. Since the data were unlikely to be linearly separable, we applied a
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soft-margin formulation of the SVM (LIBSVM “C-SVC”), in which the trade-off between
maximising the margin and minimising the training error is controlled by the penalty
parameter C. Additionally, the data were transformed into a higher-dimensional space using
the nonlinear function ϕ. A boundary that is nonlinear in the original feature space may be
better approximated by the linear boundary y(x) = wTϕ(x) − b = 0 in the transformed space.
This requires the solution of the optimisation problem (Cortes and Vapnik, 1995)

where ξ are slack variables which model the allowable degree of misclassification. The
nonlinear mapping was performed using a radial basis function kernel k(xi, xj) ≡ ϕ(xi)Tϕ(xj)
= exp(−γ‖xi − xj‖2) of width γ > 0. As part of the training process, it was necessary to
optimise the parameters C and γ. This was achieved by performing a grid-search using five-
fold cross-validation, such that the (C, γ) pair pair resulting in the highest cross-validation
accuracy was selected. The SVM classifier was then trained using the full set of training
data, before having its performance assessed on the test data.

3. Results
3.1. Classification Experiments

Two sets of cross-sectional features had been extracted for each subject (regional signal
intensities at each of the two imaging timepoints). For all four clinical group pairs, highly
significant (p < 0.001) increases in classification accuracy were achieved when using 12-
month signal intensities compared with using baseline signal intensities. Longitudinal
features had also been evaluated as the relative changes in signal intensity over the 12-
month follow-up period. For each of the four pairs of clinical groups, classification based on
the longitudinal information alone had significantly (p < 0.05) lower accuracy compared
with using either of the two cross-sectional feature sets.

We also assessed classification performance based on two feature sets which combined the
cross-sectional and longitudinal information. These were formed by concatenating the
longitudinal change features with the signal intensities at either imaging timepoint. For each
clinical group pair, highly significant (p < 0.001) increases in classification accuracy were
achieved when combining longitudinal information with 12-month data, compared with its
combination with baseline data. In addition, classification based on the combination of
longitudinal data with 12-month signal intensities was significantly (p < 0.05) improved
compared with using 12-month signal intensities alone.

The above results are illustrated as boxplots in Figure 3, and numerical results are provided
in Table 2 for the two cross-sectional feature sets and the best-performing combined feature
set (longitudinal change concatenated with 12-month signal intensities). Receiver operating
characteristic (ROC) curves for classification based on this combined feature set are
displayed in Figure 4, along with the area under each curve (AUC), which provides an
overall measure of classifier performance. All classification accuracies were significantly
different from chance, as assessed by permutation testing.

To demonstrate that classification was truly based on disease-specific imaging information,
rather than the intrinsic age and gender information captured in the images, we additionally
performed classification after accounting for these effects. A linear regression step was
incorporated into the classification procedure for every clinical group pair such that, for each
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of the 1000 repetitions, a regression model was estimated from the training data, and the
SVM trained on the residuals. The regression model was then applied to the test data, and
the SVM tested on the resulting residuals. Regression had no significant effect on the
classification accuracy for the majority of experiments. Using the best performing combined
feature set (longitudinal change concatenated with 12-month signal intensities), accuracies
after linear regression for gender and age at scan were not significantly different for AD/HC,
pMCI/HC, or AD/sMCI. However, the mean accuracy improved from 63% to 64% for
pMCI/sMCI.

3.2. Regional Features
We performed t-tests between pairs of clinical groups to identify the regional features which
give significant (p < 0.01, uncorrected for multiple comparisons) differences between
diagnostic groups. We considered both sets of cross-sectional features (baseline and 12-
month regional signal intensities), as well as the regional changes in signal intensity over the
12-month follow-up period.

The overwhelming majority of regions differed significantly between AD patients and HC
for both baseline intensities (65/83 regions), and 12-month intensities (73/83 regions). For
the 12-month data, as well as more regions reaching significance, significance levels were
higher than for the baseline data. Far fewer regions reached significance for the change
features (26/83 regions), and significance levels were lower than for either of the cross-
sectional feature sets. These results are illustrated in Figure 5, and similar patterns were
consistently observed across the remaining three clinical group pairs (pMCI/HC, AD/sMCI,
pMCI/sMCI). For these pairs of groups, fewer regions reached significance than between
AD patients and HC, and at reduced significance levels. The fewest significant regions, and
lowest significance levels were found between pMCI and sMCI patients.

For both sets of cross-sectional features, the five most significantly different regions
between AD patients and HC were the bilateral hippocampus, left parietal lobe, left posterior
temporal lobe, and right posterior cingulate gyrus. However, only one of these regions (right
hippocampus) was amongst the five most significantly different regions for the change
features, along with the right amygdala, right middle and inferior temporal gyri, right
posterior part of the superior temporal gyrus, and right posterior temporal lobe. For the
remaining three group pairs, the five most significantly different regions for each of the
three feature sets contained some combination of the regions identified between AD patients
and HC, with the parahippocampal gyrus also identified in some cases.

Interestingly, the amygdala was consistently identified amongst the five most significantly
different regions for the change features, but not for either of the cross-sectional feature sets.
In fact, it was the only region reaching significance for the change features between pMCI
and sMCI patients.

4. Discussion and Conclusion
We demonstrate that a combination of cross-sectional and longitudinal FDG-PET
information results in classification performance that is in line with the current state-of-the-
art. For the most commonly reported classification task of separating AD patients from HC,
our accuracy of 88% is comparable with other recent classification results based on multi-
modality imaging and non-imaging data (Hinrichs et al., 2011; Zhang et al., 2011), and also
with the results of high-dimensional pattern recognition methods applied to cross-sectional
MR imaging data (Cuingnet et al., 2011; Chupin et al., 2009). Classification results may
well be converging on a “glass ceiling” for this task, since diagnostic consensus criteria
themselves have an accuracy of around 90% (Ranginwala et al., 2008). For FDG-PET in
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particular, it is also important to consider the further confounding factor that approximately
10% of the ADNI AD patients have a pattern of glucose metabolism that is more consistent
with frontotemporal dementia (Thiele et al., 2009; Jagust et al., 2010).

We additionally attempt the less commonly reported classification task of separating pMCI
from sMCI patients. Our accuracy of 65% is encouraging compared with the most directly
comparable studies based on MR imaging data (Cuingnet et al., 2011; Wolz et al., 2010). It
has been reported that progression from MCI to AD occurs at a rate of 10–15% per year
(Petersen, 1999), with up to 80% of MCI patients developing AD over a six year period
(Petersen, 2004). To properly assess the utility of any classification method in predicting
such progression, longer clinical follow-up is therefore required than is currently available
for the ADNI participants.

To verify that the regional features used for classification made biological sense, we
performed t-tests between clinical groups to assess which regions gave statistically
significant group differences. Although a direct visualisation of the SVM weight vector
would be desirable, because of the nonlinearity of the kernel used, it was not possible to map
the weight vectors learned in the transformed feature space back to the original feature space
in a meaningful way. We therefore explored univariate changes using t-tests for the purposes
of visualisation. When considering the cross-sectional data, regional t-values between AD
patients and HC indicated significant differences across most of the brain. This finding is
consistent with the voxel-wise t-tests reported in Yakushev et al. (2009). The most
significantly different regions between groups included those known to be affected in AD
for all three feature sets, consistent with previous voxel-wise t-tests performed on the ADNI
FDG-PET data (Langbaum et al., 2009; Chen et al., 2010).

Similarly to Hinrichs et al. (2011), we found that the percentage change in signal intensity
over 12 months alone does not provide particularly impressive classification performance
between AD patients and HC (74% accuracy). Although the longitudinal data alone appear
insufficient for matching state-of-the-art classification performance, our results demonstrate
that they can provide some complementary information which can enhance classification
when used in conjunction with cross-sectional features. This suggestion is supported by our
t-test results, which show that the pattern of regional significances differs between cross-
sectional and longitudinal data. For example, the amygdala is identified amongst the best
five features for group discrimination only for the longitudinal data. The two cross-sectional
feature sets, on the other hand, have similar patterns of regional significances, although
improved group discrimination may be achieved with the 12-month data.

We additionally performed all classification experiments after accounting for the effects of
age and gender by linear regression. The lack of significant effect on accuracy observed in
the majority of cases indicates that the classification results were truly based on disease-
specific imaging information, rather than the intrinsic age and gender information also
captured in the images. The significant improvement observed between pMCI and sMCI
patients is in agreement with our previous findings (Gray et al., 2011c,b). In our previous
work, we had performed a global regression, whereby the coefficients for age and gender
were estimated using all the available data from all four of the diagnostic groups. We have
since demonstrated that there is little appreciable difference between the effect of the two
regression approaches.

The aim of this work has not been to introduce a novel classification approach, but instead to
use a readily available SVM classifier and simple feature combination approach (direct
concatenation) to demonstrate the utility of longitudinal FDG-PET information for
improving classification amongst four clinically relevant pairs of diagnostic groups. Having
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established that the longitudinal features can indeed enhance the results achieved using
cross-sectional data alone, it may be beneficial to investigate the application of kernel
combination methods, which are reported to be superior to simple concatenation for
combining feature sets (Zhang et al., 2011). Additionally, the possibility of multi-class
classification could be investigated, for example, using the LIBSVM “one-against-one”
multi-class strategy Chang and Lin (2011).

An important consideration of the described regional FDG-PET analysis approach is its
requirement for MR imaging data. Structural imaging, either with MRI or CT, is routinely
used in clinical practice to identify brain lesions that could lead to a clinical picture
mimicking a diagnosis of AD. Both MRI and FDG-PET are mentioned in the revised AD
diagnostic criteria (McKhann et al., 2011; Albert et al., 2011; Sperling et al., 2011) as
providing potentially useful biomarkers, and the recent development of hybrid MRI-PET
technology means that the simultaneous acquisition of both modalities could become a
practical solution for dementia imaging in the future. For example, one such system has
been approved for use in clinical practice in both Europe and the USA, and its clinical
application in oncology has already been demonstrated (Drzezga et al., 2011). The
requirement for MR data has the key benefit that regional volumes and volume changes are
also available for each patient, and these data could potentially be combined with the FDG-
PET information.

There are two methodological image processing issues which are important to discuss. The
first concerns our decision to nonrigidly propagate the baseline segmentations to follow-up
space, rather than, for example, using the MAPER segmentation procedure to automatically
generate independent follow-up segmentations. Despite the fact that erroneously labelled
voxels in the baseline segmentation are propagated to the follow-up image, intra-subject
consistency of the segmentation is important for measuring longitudinal change (Crum et al.,
2001), since uncorrelated errors lead to greater measurement uncertainty. The second is the
issue of FDG-PET image normalisation. The reference cluster normalisation method
(Yakushev et al., 2009) was proposed as a data-driven method, with the cluster derived
directly from the image data. However, we used an independently derived cluster for
normalisation to avoid introducing bias into the classification process. It was important to
first assess the validity of this approach, by determining whether the regions identified as
relatively preserved in Yakushev et al. (2009) are also valid for the ADNI dataset. We
therefore derived a reference cluster using the ADNI FDG-PET images, and calculated the
intraclass correlation coefficient (ICC) between the values obtained by sampling this ADNI
derived cluster and those obtained by sampling the independently derived cluster. The
resulting ICC of 0.95 suggests that the area of the brain identified is reliably preserved
across early AD and MCI, and thus is likely to provide a robust and portable reference
region for image normalisation.

This study demonstrates that information extracted from serial FDG-PET through regional
analysis can accurately discriminate diagnostic groups, even at the early symptomatic stages
of the disease. This finding may be usefully applied in the diagnosis of Alzheimer’s disease,
predicting disease course in individuals with mild cognitive impairment, and in the selection
of participants for clinical trials. Importantly, we demonstrate the utility of serial regional
FDG-PET for patient classification in a realistic multi-centre setting. Although the use of
longitudinal data for the clinical diagnosis of AD is not necessarily practical, its use for
stratification of pMCI versus sMCI patients could still be valuable. For clinical trial
recruitment, in particular, it may well be acceptable to use longitudinal information acquired
over 12 months to gain additional certainty about whether a candidate fits the selection
criteria.
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We have identified several areas for further research. We have already begun to explore
some of the possibilities, such as using a more sophisticated method for data combination,
and making use of both MRI and PET in combination (Gray et al., 2011a). In the future, we
intend to additionally investigate the incorporation of non-imaging data, such as CSF
biomarkers or genetic information. Machine learning techniques using cross-sectional FDG-
PET data have been successful in discriminating AD patients from those with
frontotemporal dementia (for example, Kippenhan et al. (1994); Xia et al. (2008)), and we
would be interested to investigate the effect of incorporating longitudinal information on
such differential diagnoses. While it is possible that the ADNI dataset contains some
patients with other dementias, such as frontotemporal dementia or dementia with Lewy
bodies, these patients are not clinically labelled as such. To perform a thorough study on
differential diagnosis, a large and varied cohort of dementia patients with autopsy-confirmed
clinical diagnoses would be required, such as that described in Silverman et al. (2001).

Research Highlights

• cross-sectional and longitudinal FDG-PET for classification of Alzheimer’s
disease

• multi-region FDG-PET analysis using automatically generated whole-brain
segmentations

• combining cross-sectional and longitudinal features improves classifier
performance

• state-of-the-art classification of diagnostic groups using serial FDG-PET
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Figure 1.
Image processing pipeline, illustrating the images required for regional feature extraction
from the baseline and 12-month FDG-PET images. Horizontal arrows indicate image
registration and re-slicing steps. Vertical arrows indicate images used for feature extraction.
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Figure 2.
Typical examples of the images required for regional feature extraction from the baseline
images of a HC subject. From left to right: baseline MRI overlaid with baseline FDG-PET;
masked anatomical segmentation; baseline FDG-PET overlaid with normalisation cluster.
The regional colour map for the segmentation is as used in Gousias et al. (2008).
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Figure 3.
Classification accuracies for the four clinical group pairs based on the five feature sets
studied. From left to right for each boxplot: (a) baseline signal intensities, (b) 12-month
signal intensities, (c) change over 12 months, (d) combined baseline intensities and change,
(e) combined 12-month intensities and change. In each boxplot, the central red line
represents the median, the edges of the blue box represent the 25th and 75th percentiles, and
the black whiskers extend to the most extreme data points not considered outliers. Outliers
are plotted individually in red for points lying outside of the range ±2.7σ.
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Figure 4.
ROC curves for the combined feature set of relative changes concatenated with 12-month
signal intensities. AUC values for each clinical group pair are provided in brackets.
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Figure 5.
Regional t-values for comparisons between AD patients (n = 50) and HC (n = 54)
superimposed onto sagittal (top row) and coronal (bottom row) slices of a maximum
probability brain atlas, which has been masked according to the same procedure as the
anatomical segmentations. The feature sets tested are, from left to right: baseline signal
intensities; 12-month signal intensities; changes in signal intensity over 12 months. To allow
all three feature sets to be visualised using the same colour scale, so that their spatial
patterns may be compared, all t-values greater than 5.5 have been scaled to the maximum
value.
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