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Abstract
Interregional connections of the brain measured with diffusion tractography can be used to infer
valuable information regarding both brain structure and function. However, different tractography
algorithms can generate networks that exhibit different characteristics, resulting in poor
reproducibility across studies. Therefore, it is important to benchmark different tractography
algorithms to quantitatively assess their performance. Here we systematically evaluated a newly
introduced tracking algorithm, global tractography, to derive anatomical brain networks in a fiber
phantom, 2 post-mortem macaque brains, and 20 living humans, and compared the results with an
established local tracking algorithm. Our results demonstrated that global tractography accurately
characterized the phantom network in terms of graph-theoretic measures, and significantly
outperformed the local tracking approach. Results in brain tissues (post-mortem macaques and in
vivo humans), however, showed that although the performance of global tractography
demonstrated a trend of improvement, the results were not vastly different than that of local
tractography, possibly resulting from the increased fiber complexity of real tissues. When using
macaque tracer-derived connections as the ground truth, we found that both global and local
algorithms generated non-random patterns of false negative and false positive connections that
were probably related to specific fiber systems and largely independent of the tractography
algorithm or tissue type (post-mortem vs. in vivo) used in the current study. Moreover, a close
examination of the transcallosal motor connections, reconstructed via either global or local
tractography, demonstrated that the lateral transcallosal fibers in humans and macaques did not
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exhibit the denser homotopic connections found in primate tracer studies, indicating the need for
more robust brain mapping techniques based on diffusion MRI data.
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1 Introduction
The prospect of mapping networks of interregional connections in the brain has recently
gained significant attention because of its promise for basic neuroscience and clinical
applications (Hagmann et al., 2008; Sporns et al., 2005). One way to derive interregional
brain connections is by reconstructing neuronal pathways based on measurements of
anisotropic diffusion of water molecules in the brain (Basser et al., 2000; Behrens et al.,
2003b; Mori et al., 1999). Such information is available through diffusion-weighted
magnetic resonance imaging (MRI) (Basser et al., 1994). Although estimating interregional
connections of the brain via diffusion MRI tractography is an indirect method and more
error prone compared to invasive tracing methods (Lewis and Van Essen, 2000; Markov et
al., 2011), its non-invasive nature makes it the only technique that can be ethically used to
study structural brain connectivity in humans. For example, structural brain networks
created using diffusion tractography have been employed to study the relationships between
such networks and aging (Gong et al., 2009b), interhemispheric asymmetry (Iturria-Medina
et al., 2011), intelligence (Li et al., 2009), the effects of early blindness (Shu et al., 2009),
and the relationship of structural and functional connectivity (Honey et al., 2009).

Two kinds of diffusion tractography algorithms can be used for creating anatomical brain
networks: local and global tractography. Thus far, all published studies on employing
diffusion tractography to reconstruct anatomical brain networks have utilized the local
tracking approach (Gong et al., 2009a; Hagmann et al., 2008). With local tracking, fiber
pathways are traced by starting from a seed region and then propagated in small successive
steps along the voxelwise local fiber (diffusion) orientation distribution function (ODF) in
either a deterministic or probabilistic manner (Gong et al., 2009a; Hagmann et al., 2008).
Local tracking is advantageous in that it is fast and each tract is independent of the others.
However, a major drawback that lies at the core of this approach is that a minor error in
propagating along the local steps can accumulate and significantly affect the final result
(Behrens et al., 2003b). Additionally, probabilistic local tracking suffers from distance-
related biases that need to be corrected in order to arrive at an accurate reconstruction of
brain networks (Li et al., 2011).

Global tracking represents a new approach to identifying brain networks, which involves the
simultaneous reconstruction of all the trajectories that align with the directions of least
hindrance to water diffusion in the brain by finding a solution that best fits the measured
diffusion data (Fillard et al., 2009; Kreher et al., 2008; Reisert et al., 2011). It has a better
ability to resolve ambiguous local fiber orientations, as it considers more than just the local
information. As diffusion tractography is often an ill-posed inverse problem with multiple
solutions (Reisert et al., 2011), global tracking may be more stable in the presence of noise
and imaging artifacts in the data. For example, in a recent competition, the performances of
ten popular tractography algorithms on a fiber phantom were compared quantitatively.
Among them, one global tracking algorithm significantly outperformed all others in terms of
the position, tangent directions and curvature of the reconstructed fibers (Fillard et al.,
2011). This outstanding performance is noteworthy: if such a performance could be
replicated in vivo in humans, it would greatly benefit brain connectivity studies that rely on
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the robustness of tractography outcomes. However, a more thorough investigation is needed
to assess whether this technique’s superior performance can be directly transferred to in vivo
situations, where fiber configurations may be more complex than those of the fiber phantom.
This concern arose from the observation that the fiber pathways in the phantom are highly
coherent in most areas except at intersecting regions (Fig.1) (Fillard et al., 2011). Since a
larger field of view is utilized for reconstruction in the global tractography, it can infer the
orientation information in ambiguous isotropic areas from neighboring anisotropic areas
without the need to solve the fiber orientations in the ambiguous areas. Because large
regions of fiber coherence combined with small regions of crossings are not typical in the
brain, a quantitative assessment in vivo is warranted.

Another issue concerning the validation of reconstructed brain connectivity is that no
absolute ground truth of connections exists in real brain tissues. Rich connectivity
information derived in nonhuman primates using invasive tracers is probably the most
promising “gold standard” for validating tractography-derived anatomical brain networks.
However, the potential of this rich source of connectivity information have not been fully
explored by the diffusion MRI community. To the best of our knowledge, no study to date
has quantitatively evaluated the accuracy of tractography-reconstructed brain networks with
regard to specific fiber systems and connection distance, etc. We believe that knowing
which connections are more prone to being reconstructed correctly, and to what degree the
accuracy varies across fiber-tracking algorithms and type of brain tissue, are necessary for
the reliable application of diffusion tractography. As a result, we investigated these
questions and explored the strengths and limitations of current diffusion tractography
algorithms for creating and characterizing anatomical brain networks.

In this study, we quantitatively assessed the performance of global tractography on three
different systems: a phantom, post-mortem macaque brains, and in vivo human brains. In an
attempt to identify an optimal framework for creating anatomical brain networks, we
compared the current results with the brain networks reconstructed using a previously
proposed framework (Li et al., 2011). We take the results from macaque tracer studies as the
gold standard for assessing tractography-derived brain networks in macaques (Lewis and
Van Essen, 2000). For humans, we first delineated eight major pathways using global
tractography and qualitatively compared the results with those obtained by a local tracking
approach implemented in FSL. We then conducted an analysis of the somatotopic
organization of transcallosal fibers linking the primary motor cortex of two hemispheres to
investigate whether the two state-of-the-art diffusion tractography algorithms used in this
study could accurately reflect the known somatotopic characteristics of the transcallosal
motor fibers.

2 Methods
2.1. Subjects

In this study, data from a fiber phantom (Fillard et al., 2011), 2 post-mortem macaques, and
20 healthy right-handed human subjects (age: 20±1.0 yrs, 10 females) were analyzed. All
human subjects recruited in this study had no history of neurological or psychiatric
disorders. They all provided written informed consent and the study was approved by the
Emory Institutional Review Board.

2.2 Acquisition of MRI data and preprocessing
2.2.1 Fiber phantom—The experimental diffusion MRI data of the fiber phantom were
downloaded from the fibercup competition website
(http://www.lnao.fr/spip.php?rubrique79). The data were collected on a 3T Tim Trio MRI
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system with a dual spin-echo technique combined with bipolar gradients for minimizing
eddy-current effects. A twelve-channel receive only head coil (a GRAPPA factor of 2) in
combination with the whole body transmit coil were used. The specific parameters were as
follows: diffusion-weighting gradients applied in 64 directions with a b value of 1500 sec/
mm2; repetition time/echo time of 5000/94ms; field of view of 192×192 mm2; matrix size of
64×64; resolution of 3×3×3 mm3 and three slices and two averages. For more details
regarding the phantom reconstruction and data acquisition, please refer to the website
(http://www.lnao.fr/spip.php?rubrique79).

2.2.2 Post-mortem macaque diffusion MRI data—Diffusion MRI data from two
formalin-fixed postmortem rhesus macaque (Macaca mulatta) brains were acquired using a
Bruker 9.4T scanner. A 2D spin-echo MRI sequence was implemented at 0.55 mm isotropic
resolution with an echo time of 22.25 ms, a b value of 2000 s/mm2, and 60 diffusion
directions. We acquired three sets of diffusion-weighted data for subsequent averaging. The
total scan time was 72 hours per subject. The coverage of the diffusion MRI data in the post-
mortem macaques is shown in the supplementary Fig.1.

2.2.3 Human diffusion MRI data—Human MRI was performed on a Siemens 3T Tim
Trio scanner (Siemens Medical System, Malvern, PA) with a twelve-channel parallel
imaging phase-array coil. Foam cushions were used to minimize head motion. T1-weighted
images were acquired with a 3D magnetization-prepared rapid gradient-echo (MPRAGE)
sequence for all participants. The scan protocol, optimized at 3T, used a repetition time/
inversion time/echo time of 2600/900/3.02 ms, a flip angle of 8°, a volume of view of
240×256×176 mm3, a matrix of 240×256×176, and a resolution of 1×1×1 mm3, with 1
average. Total T1 scan time was approximately 10 minutes.

Diffusion MRI data were collected with a diffusion-weighted spin-echo echo planar imaging
(EPI) sequence (GRAPPA factor of 2). A dual spin-echo technique combined with bipolar
gradients was used to minimize eddy-current effects (Alexander et al., 1997). The
parameters used for diffusion data acquisition were as follows: diffusion-weighting
gradients applied in 60 directions with a b value of 1000 sec/mm2; repetition time/echo time
of 13,100/98 ms; field of view of 230×230 mm2; matrix size of 108×128; resolution of
2×2×2 mm3; and 64 slices with no gap, covering the whole brain. Averages of two sets of
diffusion-weighted images with phase-encoding directions of opposite polarity (left – right)
were acquired to correct for susceptibility distortion (Andersson et al., 2003). For each
average of diffusion-weighted images, four images without diffusion weighting (b=0 sec/
mm2)were also acquired with matching imaging parameters. The total diffusion MRI scan
time was approximately 20 minutes.

2.2.4 Data preprocessing—The preprocessing of all anatomical and diffusion MRI data
analysis was performed using Oxford Center for Functional Magnetic Resonance Imaging of
the Brain’s Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl/). Diffusion MRI data
were first corrected for eddycurrent distortion. Human T1-weighted images were
preprocessed with skull stripping (Smith, 2002), intensity bias correction (Zhang et al.,
2001), noise reduction (Smith and Brady, 1997), and contrast enhancement (squaring the
images and then dividing by the mean). For human diffusion MRI data, susceptibility
distortion was corrected following the method of Andersson et al. (2003) using Matlab
(Matlab7, Mathworks) codes incorporated in SPM5 (http://www.fil.ion.ucl.ac.uk/spm/).

2.3 Reconstructing the phantom and brain networks
In this study, global tractography implemented in the DTItool toolbox (Reisert et al., 2011)
was employed to reconstruct the anatomical connectivity of brain networks for three types of

Li et al. Page 4

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.lnao.fr/spip.php?rubrique79
http://www.fmrib.ox.ac.uk/fsl/
http://www.fil.ion.ucl.ac.uk/spm/


data sets. The procedures for deriving the connectivity networks will be described in detail
in the following section. In order to evaluate the performance of global tractography (GT),
we compared the results with those using a probabilistic, local tracking framework (LT) that
was proposed previously (Behrens et al., 2007; Behrens et al., 2003a; Li et al., 2011).

2.3.1 Node definition—The node is the most basic element of a network and its definition
has a direct influence on the outcome of the network connectivity analysis (Sporns et al.,
2005; Wig et al., 2011). For the fiber phantom, 12 regions-of-interest (ROIs) were drawn as
nodes at the intersections between the rim of the phantom and the fiber pathways (see Fig.1).

The macaque cortex was partitioned using the LVE00a scheme implemented in Caret 5.5
software (http://brainvis.wustl.edu/wiki/index.php/Main_Page) (Lewis and Van Essen,
2000), similar to the method used by Parkes L., et al., (Parkes et al., 2010). In order to use
this cortical partitioning scheme in our dataset, the FNIRT nonlinear normalization toolbox
available in FSL was first used to spatially match the single macaque F99UA1 MRI brain
volume in the Caret 5.5 to our post-mortem macaque brains. The high-resolution b0 image
was intensity inverted and was used to register with the F99UA1 T1-weighted image. Then,
the nonlinear warping transformation was applied to the LVE00a partitioning scheme to
transfer the parcellated LVE00a cortical regions to the diffusion space of our post-mortem
macaque brains.

2.3.2 Deriving interregional brain networks using GT—For details of global
tractography, the readers are referred to the studies by Mangin, Fillard, and Kreher et al. for
general information (Fillard et al., 2009; Kreher et al., 2008; Mangin et al., 2002) and the
study by Reisert et al., (Reisert et al., 2011) for specific information about the global
tractography we employed in the current study.

For the human cases used in this study, it typically took 20 hours to derive the whole-brain
connectivity on a cluster with 2.5 GHz Intel Xeon CPU, 64GB RAM to process each
subject. Table 1 shows the parameters used to derive the interregional connectivity in the
fiber phantom, the post-mortem macaques and the humans in the present study.

It should be noted that although the “global tractography” used here has an identical name
with that proposed by Jbabdi, et al (Jbabdi et al., 2007), the two approaches are not related:
Jbabdi et al.’s method utilizes explicit parameterization of the connections between remote
brain regions and uses this global connection to guide local fiber orientation estimations.
Unlike the global approach used here, which reconstructs all the fiber pathways in the brain
simultaneously, in the Jbabdi et al. method, the fiber-tracking procedures are independent of
each other.

2.3.3 Constructing the interregional connectivity map of the networks—Maps
of the interregional connectivity for the fiber phantom, macaque brains, and human brains
were created based on the outputs of global and local tractography. Each target region
became a node in the graph. Each connection between two regions became an edge. When
the two end-points of a reconstructed fiber were located in two different target regions (nu,
nv), that specific fiber was counted, contributing one unit to the connectivity strength of the
edge (e(u,v)). After the total number of fibers was counted for each brain region pair, it was

divided by the mean of the areas of the two target regions , where Su and Sv represent
the areas of the interface masks of the two regions, to normalize for the area differences
across brain regions, and is termed the normalized connectivity density (NCD) here (Gong
et al., 2009b; Hagmann et al., 2008).
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The connection density of a mammalian brain network is estimated to range from 10 to
60%, depending on the methodologies employed in the studies (Felleman and Van Essen,
1991; Hagmann et al., 2008; Jouve et al., 1998; Kaiser, 2011; Young, 1993). Here we used
the density estimation of 10—30% (Kaiser, 2011) by thresholding the brain networks of
macaques and humans from 10 to 30%, with 50 evenly distributed intervals (i.e., 10%,
10.4%, 10.8%…). As each of the network measures was computed at a specific threshold,
we estimated the integrals of each metric, over the range of the different network densities,
as a summary metric. We also tested a wider range (10—60%) and found that the major
conclusions in the study did not change when including more weak connections in the
networks (see Results section).

The details of reconstructing brain networks using LT can be found in Li et al, 2011 (Li et
al., 2011) and will be only briefly described here. Instead of counting the number of
“probabilistic streamlines” connecting each seed- and target-region pair to obtain the index
of the connectivity strength, in LT the derived tract volume was first thresholded by a
percentage of the total samples sent during the tracking process for that cortical region pair
(0.02% was used in the present results, but a series of other thresholds was also tested), and
then binarized to calculate the thresholded tract volume. This thresholded tract volume,
encoding the information of connectivity strength, tract volume, surface areas of the cortical
region pairs and distance between them, were subsequently employed as the index for the
strength of connectivity.

2.4 Evaluation of the reconstructed networks
2.4.1 Evaluation of the reconstructed networks of the fiber phantom—We
characterized the reconstructed phantom network using graph-theoretic measures, and
compared them with the gold standard. The details of the graph-theoretic measures used in
the present study were described previously (Li et al., 2011) and are summarized here
briefly. The first quantity used to characterize the brain network was the degree, defined as
the number of connections to that node in the network, regardless of weight (Sporns et al.,
2005). A natural generalization of the degree to a weighted network is given by the strength,
which is defined as the sum of the weights of the connections from nodes that are connected
to a given node i. Both degree and strength are local measures and therefore do not consider
non-local effects, such as the existence of certain crucial nodes with small degree and/or
strength but that act as bridges between different subgraphs. In this context, a widely used
quantity called nodal betweenness centrality (BC) was utilized to express the structural
importance of these nodes. It is defined as the fraction of shortest paths between pairs of
nodes that pass through a given node. Specifically, the BC of a weighted network is given
as:

(2)

where  is the number of all shortest paths from node k to node j, and  is the number
of shortest paths passing through node i in a weighted graph.

In this study, all the graph-theoretic measures were calculated using the Matlab functions
implemented in the Brain Connectivity Toolbox
(https://sites.google.com/a/brain-connectivitytoolbox.net/bct/Home) (Rubinov and Sporns,
2010). Complex networks usually consist of several modules. Within a module, nodes are
densely interconnected with other nodes in the same module, but are relatively sparsely
connected with other nodes outside the module. The different modules within the phantom’s
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network derived using the global tractography approach were detected and classified based
on the algorithm proposed by Newman (Newman, 2006) and compared with those using LT.

2.4.2 Evaluation of reconstructed brain networks in the post-mortem
macaques—The macaque cortex structural connections derived by invasive tracer studies
were extracted (Lewis and Van Essen, 2000) (Fig.2). As discrepancies were found in the
connections between Lewis and Van Essen’s original study and the CoCoMac LVE00a
database (http://www.cocomac.org), we extracted the results directly from the original
paper. In that study, several sites were injected multiple times with different type of tracers.
As a result, we set the following criteria for recording the connectivity information: if a site
was injected multiple times, the case with the strongest connectivity was used; if
inconsistent results were reported for a connection tested with different type of tracers, the
case with the highest connectivity strength for that connection was used (see below for
details).

Confirmed absence of a connection was denoted by a value of 0, while confirmed presence
of a connection was denoted by a value of 1 (weak), 2 (medium) and 3 (strong), depending
on the connectivity strength. Cortical regions with possible connections that were not
investigated were denoted by a value of −1. The confirmed connections were modified so
that they are bidirectional and symmetrical. After the interregional connectivity matrices of
the macaque brain were derived for each hemisphere, a range of thresholds between 1 and
100% were applied on the connectivity strength and comparisons were made to the extracted
invasive tracer data. A measure of accuracy, defined as the percentage of correctly
determined connections (true positives, TP) versus the percentage of incorrectly determined
connections (false positives, FP), was plotted using a Receiver Operating Characteristic
(ROC) curve implemented in Matlab (Matlab7, Mathworks).

To further explore the possible correlations between the connectivity strength of brain
regions and the distance between them, we plotted the tracer-derived connections (Lewis
and Van Essen, 2000) with respect to the Euclidean distance between the centers of the
gravity of the brain regions from which the connections were derived. Moreover, to
investigate whether tractography-derived brain networks showed non-random patterns of
false positive and false negative connections as a consequence of distance, we compared the
mean distance between brain region pairs from which the connections were correctly
reconstructed (TP) with the ones that were incorrectly traced (False positives, FP; False
negatives, FN).

Similar procedure was also repeated on the diffusion data from four in vivo macaques. The
details of the data acquisition and preprocessing can be found in the supplementary text
information.

2.4.3 Evaluation of the reconstructed brain networks in humans—In this study,
two methods were used to evaluate the performance of the two tractography methods (GT,
LT). First, we randomly selected one subject from our cohort and derived the eight major
fiber pathways using the two frameworks, based on the ROI placement method described by
Catani and Thiebaut de Schotten (Catani and Thiebaut de Schotten, 2008). We modified
their approach for tracking the arcuate fasciculus, however, because where we found one
ROI was inadequate to delineate the fiber pathway in the data reconstructed using GT and
LT. Instead, we used the method in Rilling et al’s study where two ROIs were drawn
(Rilling et al., 2008). The derived results of the eight major pathways were visually
compared. We also compared the fibers originating from the left precuneus across the two
methods to investigate whether there is a difference in trajectories and cortical projections of
the fibers traced in the two methods.
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Tracing studies in nonhuman primates have shown that the primary motor cortex (M1)
exhibits homotopic callosal projection (Fang et al., 2008; Gould et al., 1986; Pandya and
Vignolo, 1971; Rouiller et al., 1994), Specifically, M1 represented body movements from
tail to mouth in a grossly somatotopic mediolateral cortical sequence, with each section
having its densest callosal connection with the somatotopically matched contralateral
section. To test whether this observation could be replicated in our diffusion tractography
study, we conducted a somatotopic analysis on the transcallosal connection of the bilateral
precentral gyri in 20 human subjects. We first manually drew precentral gyral masks on the
MNI152 template and then evenly divided the mask into four segments along the
dorsoventral axis for each hemisphere. Subsequently, these eight sectors were transformed
into each individual’s space and multiplied with the subject-specific GM/WM interface
mask to obtain a GM/WM interface mask of the precentral gyrus. The interface masks for
each sector of the precentral gyrus were then used as nodes and the network of connections
between the eight nodes were reconstructed using GT and LT. The mid-sagittal slice of the
corpus callosum was used as the waypoint mask. It should be noted that although the
boundaries of the eight sectors do not correspond to exact somatotopic boundaries of body
movement-activated sites, each sector is located at approximately the same horizontal
position as its contralateral sector and therefore should be valid for testing the homotopic
distributions of the transcallosal fibers observed in nonhuman primate studies. Since the
actual density for the transcallosal motor network was unknown, we applied no thresholds
for the somatotopic analysis. After the anatomical networks were derived, connections
between homotopic sector pairs were statistically compared with the heterotopic sector
pairs.

To further confirm that our results would not be altered with different cortical mask
parcellations, we re-analyzed the transcallosal motor connections using functionally relevant
masks. Specifically, the sites representing foot, hand and lips movement determined in a
fMRI study (Lotze et al., 2000) were used as the cortical masks for transcallosal
tractography. More detailed information regarding the procedure of mask derivations can be
found in the supplementary text information.

A similar procedure was also carried out in the two of our post-mortem macaque data sets,
even though the statistical tests could not be conducted due to the insufficient sample size
(n=2). Specifically, the primary motor cortices (M1) in the LVE00a scheme were extracted
and then evenly divided into four segments along the superior-inferior axis. Subsequently,
these eight sectors were transformed into each individual’s space. The transformed masks
for each sector of M1 were then used as nodes and the network of connections between the
eight nodes were reconstructed using GT and LT. The mid-sagittal slice of the corpus
callosum was used as a waypoint mask. Again, no threshold was used for the reconstructed
networks as the actual density for this network was unknown.

3 Results
3.1 Evaluation of the reconstructed networks of the fiber phantom

The ground truth of the fiber phantom, the topology of the reconstructed networks, and the
accuracies of the networks obtained using the two approaches (GT, LT) are shown in Fig.3.
Consistent with a previous report (Reisert et al., 2011), the reconstructed networks using GT
successfully identified all the major pathways connecting the twelve ROIs, giving a faithful
representation of the topology of the actual network in the phantom. Moreover, the different
modules based on the connections were all correctly classified as indicated by the colors of
the circles (Fig.3 A). The major discrepancies between the reconstructed network and the
ground truth lie in the underestimated NCD between the nodes #11 and #10, likely due to
the large curvature of the pathway, and a false positive connection between nodes #3 and #4,

Li et al. Page 8

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



possibly because of their spatial proximity. It can be observed that GT significantly
outperformed LT in the phantom, as demonstrated in the topology of the reconstructed
networks as well as the ROC curves (Fig.3B,C). The mean NCD, the graph-theoretic
measures (degree, strength, BC) of the ground truth and the reconstructed networks using
GT are shown in Fig.4. The reconstructed network was shown to quantitatively represent the
original network in terms of graph-theoretic measures and correctly identified the hub (node
#12) in the network.

3.2 Evaluation of the anatomical brain networks in the post-mortem macaques
The anatomical brain networks of the four hemispheres from the two post-mortem macaques
were reconstructed using GT and LT and the results were compared with the ground truth as
determined with tracer injections. As three levels of connectivity strength were marked in
the Lewis and Van Essen study (Lewis and Van Essen, 2000) (Fig.2), we conducted ROC
analyses with three levels of ground truth: including i) all identified connections; ii) only
medium and strong connections, iii) only strong connections. The ROC curves for the binary
classification system of the post-mortem macaque brains are shown in Fig.5, in which the
medium and strong connections were used as the ground truth. The quantitative results of
the ROC analyses with all three levels of the ground truth are given in Table 2. The GT
approach consistently performed better than LT, regardless of the levels of the connection
strength chosen for the gold standard.

We further explored the relationships between the connections using the tracer and
tractography methods and the connection distance (Fig.6). The brain regions in the parietal
and temporo-parietal regions that are the focus of the Lewis’ tracer study have strong
connections with each other and predominantly medium to weak connections with the
frontal and temporal regions (Fig.6A). When the mean distance of the connections with
different strength (weak, medium and strong) in the tracer study were compared, a
significant difference in the mean of the three groups (F(3,206)=7.93, p<4.8e-4) was detected,
with the strong connections having significantly shorter mean distance than the other two
types of connections (P<0.05, Tukey-Kramer correction). We then compared the
tractography-derived maps (GT, LT) with that obtained by the tracer study and plotted the
FP, FN and TP connections (Fig.6B, C). Three characteristics were observed: (1) The
accuracy of the brain networks based on the two methods differed slightly, as demonstrated
in the areas under the ROC curve (AUCs) from Table 2 and Fig.6B,C. ( 2) the FP and FN
connections were not randomly distributed but instead showed a certain pattern.
Specifically, both tractography methods (GT, LT) tended to miss the long-range connections
linking the parietal and frontal regions, and falsely reconstruct connections among the
parietal regions and the regions in the ventral part of the lateral fissure/temporal regions. (3)
Similar results were obtained in four sets of in vivo macaque diffusion MRI data
(Supplementary Fig.2), suggesting that brain tissue type (post-mortem vs. in vivo) was
unlikely a major cause for the accuracy patterns. ANOVA analysis indicates a significant
difference in the mean distance between the FP, FN and TP connections in GT
(F(3,329)=71.7, p<1e-10), with all three types of outcomes exhibiting significantly different
mean distance, with the order TP<FP<FN (P<0.05, Tukey-Kramer correction). Similar
results were observed in LT (F(3,319)=105, p<1e-10, mean distance: TP< FP < FN, P<0.05,
Tukey-Kramer correction). These data were also examined using nonparametric methods
(Kruskal-Wallis test), with the same results.

The mean strength of each type of connection derived with diffusion tractography (FPs +
TPs) as a function of connection distance was plotted and compared across the two methods
(Fig.7). It can be seen that the connectivity strength (NCD or NVD) decreases with distance
in both algorithms. More long-range connections with strong NVD were seen in LT. For
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instance, the mean distance of the connections with top 95% NVD is 7.51mm in LT, in
contrast to 6.04mm in GT (Fig.7).

Supplementary Fig.3 demonstrates the delineated fiber pathways in one post-mortem
macaque at the centrum semiovale by GT, where projection, commissural and association
fibers meet. Connectivity strength using different tracking parameters in GT were also
correlated with each other (weight = 0.053, 0.128; length=3, 4) and a good correspondence
in NCDs with various tracking parameters can be observed (Supplementary Fig.4). As our
above-mentioned results in macaques were obtained with a threshold range of 10—30%,
narrower than the range of 10—60% reported in various publications, we derived the
topologies of the false positive and false negative connections with the threshold ranges of
10—60% (Supplementary Fig.5) and found that the results are comparable with those in Fig.
6 (AUC for M4: 0.653; AUC for M3: 0.616).

3.3 Evaluation of the anatomical brain networks in humans
Eight major fiber pathway systems were tracked using GT in a single subject, with ROI
placements that have been previously described in the literature (Catani and Thiebaut de
Schotten, 2008). In order to compare differences in the spatial distribution of pathways
between GT and LT, we also tracked the eight fiber pathway systems utilizing LT as
implemented in FSL. As GT is not probabilistic in nature—that is, the tracking results are
shown as streamlines instead of a visitation map as in LT—we modified the results of GT so
that the number of streamline fibers intersecting a voxel was summed and represented as
visitation counts for that voxel (Fig.8). Two major conclusions can be drawn from the
figure: First, compared with the major white matter pathways derived from histological
examination in a previous study (see Burgel U et al., 2006 for details), those pathways
reconstructed using GT and LT were found to have a relatively good correspondence in
terms of tract trajectories and locations. Second, the fiber pathways derived using GT were
generally in good agreement with those using LT. The correspondence was especially high
in the relatively long and straight fiber pathways, including the inferior longitudinal
fasciculus (ILF) and the inferior fronto-occipital fasciculus (IFOF). Several discrepancies in
the results between the two approaches were also evident. For example, the callosal fibers
derived by GT showed more extensive lateral projections than those by LT, consistent with
the advantage of GT that has been mentioned previously (Kreher et al., 2008; Reisert et al.,
2011). Another possible instance of the superior performance of GT involves the cingulum
bundle (Ci), the posterior portion of which is more clearly revealed with GT than with LT.
For small tracts with large curvature, specifically the fornix (Fx) and the uncinate fasciculus
(UF), the GT tends to generate spurious pathways compared to LT, probably due to the bias
in the method towards curved fibers as reflected in the phantom results. We also compared
the fibers originating from the left precuneus across the two methods slice by slice to
investigate whether the trajectories (Supplementary Fig.6) and cortical projections
(Supplementary Fig.7) of the fibers differed across methods. In both maps, the fibers
followed the corpus callosum to connect with the right precuneus and traveled anteriorly
along the cingulum bundle and the inferior longitudinal fasciculus to connect with the
frontal and temporal lobes. The major differences lay in the projections with weak intensity
values, which probably reflect the fact that GT is not a probabilistic fiber-tracking algorithm.

Somatotopic analyses on the transcallosal fibers connecting the two primary motor cortices
were then conducted to check whether the quantified transcallosal connectivity using GT
and LT has the homotopic projections observed in tracing studies using monkeys (Fig.9). In
GT, the strength of the transcallosal connections of the four homotopic sectors were
significantly different (F(3,76)=53.26, p<10e-15), with the connection of L4-R4 significantly
stronger than the other three homotopic sectors (P<0.05, Tukey-Kramer correction). The
results in LT were similar, with the connection of L4-R4 significantly stronger than the other
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three homotopic sectors (P<0.05, Tukey-Kramer correction) (Fig.9). We then tested the
hypothesis that each sector of the precentral gyrus always has the densest transcallosal
connection with corresponding contralateral homotopic sector and the results are listed in
Fig.9. Both GT and LT generated similar results: only the homotopic sector pair of L4-R4
was shown to have the strongest transcallosal connection compared to their heterotopic pairs
( i.e., L4-R3, L3-R4), suggesting that the transcallosal connections of the other sectors in the
precentral gyri may not accord accurately with the observations in monkeys.

To confirm that the above conclusions would not be altered when different cortical masks
were used, we re-analyzed the data with functionally relevant cortical masks (supplementary
Fig.8). Specifically, by using the activation clusters representing foot, hand and lips
movements identified using task-based fMRI experiments (Lotze et al., 2000) as the cortical
masks, we showed that the connection between the left hand and right foot sector pair
(heterotopic pair) was statistically stronger than the one between the left and right hand
sector pair (homotopic pair), inconsistent with the results of tracer studies in nonhuman
primates, which indicate that the strongest transcallosal connections are between homotopic,
somatotopically territories.

For LT used in this study, the thresholded tract volume, instead of total count of
‘probabilistic streamlines’ (the waytotal in FSL), was employed as the connection index.
The total number of the streamlines was also tested (termed M2 in Li et al 2011) and similar
results were generated (supplementary Fig.9). The same procedure was also conducted on
the two postmortem macaques (supplementary Fig.10). Although no statistical comparison
was conducted due to the small sample size, similar trends were also seen in the two post-
mortem macaque data, with L4-R4 pair showing the strongest mean connections in only GT.
Other homotopic sector pairs failed to replicate the observations in the tracer studies in
nonhuman primates.

4 Discussion
The brain is organized as a distributed dynamic network with constant information flow
between different cortical and subcortical areas (Greicius et al., 2003). To fully understand
how the brain works as a network, the physical connections through the white matter, that
mediate the information exchange must be understood (Crick and Jones, 1993). Diffusion
MRI and tractography may hold promise to address this issue, as it is the only means that
can ethically be used to probe human white matter anatomy in vivo (Basser, 1995; Basser et
al., 2000). Despite this promise, several challenges to tractographic assessment of
anatomical brain connectivity must be overcome. The first is the selection of tractography
algorithms for such studies. Currently, there are dozens of fiber-tracking toolboxes
available, utilizing a wide range of mechanisms to estimate local diffusion orientation
distributions functions. A few examples include diffusion tensor imaging (Basser et al.,
1994), diffusion spectrum imaging (Wedeen et al., 2005), q-ball imaging (Tuch, 2004),
constrained spherical deconvolution (Tournier et al., 2007), and ball-and-stick modeling
(Behrens et al., 2003b), each of which has its own strengths and limitations. Moreover, even
when the same algorithm is used to estimate local fiber orientations, many other parameters
important for reconstructing brain networks, such as the tracking approach (i.e.,
deterministic or probabilistic) (Hagmann et al., 2008), connection method (initiating from
gray matter vs. white matter) (Li et al., 2011), and index selection (i.e., fiber count, mean
DTI-derived metrics) for connectivity measures, can all affect the outcomes, causing poor
reproducibility across studies. Therefore, the importance of establishing and assessing a
robust framework for deriving brain anatomical connectivity cannot be overemphasized. As
an extension of our previous effort (Li et al., 2011) in searching for a robust framework for
whole-brain tractography, we systematically evaluated a global tracking approach and
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compared its performance with a local tractography method on a phantom network, post-
mortem macaques and in vivo humans. The results demonstrated that GT significantly
outperformed LT on the phantom, but showed only modestly better performance on the
postmortem macaques, probably due to the high complexity of white-matter networks in the
real brains. Moreover, by comparing the tractography-derived connections with the ground
truth in macaque data using the two methods, we demonstrated for the first time on a
network scale that tractography-derived brain networks in brain tissues may exhibit
preferential biases towards specific fiber-tract systems that are largely unrelated to the type
of tissues (postmortem vs. in vivo) and the tractography methods (GT, LT) used in the
current study.

4.1 Evaluation of the reconstructed brain networks in the fiber phantom
Although global tractography has been previously evaluated in the same fiber phantom
(Reisert et al., 2011), its robustness in quantitatively characterizing the phantom as a
network using graph-theoretic measures had not been investigated. Such an investigation is
necessary, because despite the wide uses of diffusion tractography and graph theory for
reconstructing and characterizing anatomical brain networks, the degree to which they can
quantitatively reconstruct and characterize a network with known ground truth has not been
explored yet. We found that GT robustly solved most complex fiber configurations in the
phantom network, such as the crossing, kissing, and branching fiber pathways (Fig.3). As a
result, the constructed network faithfully represented the topology of the original network
and correctly identified the hub (node #12) (Fig.4B). It can also be observed in Fig.4B that
the estimated degree, strength and betweenness centrality (BC) exhibit a high resemblance
with these derived from the ground truth, demonstrating the potential of the technique to
quantitatively characterize brain networks. The major inconsistency in the graph-theoretic
measures is the connection between node #10 and node #11 (Figs.4 and 5), a fiber pathway
with large curvature, and the connection between node #3 and node #4, a false positive due
to the proximity of the two nodes. NCD between nodes #10 and #11 was significantly lower
than that in the gold standard, indicating a possible bias in the method against fibers with
sharp curvature, which is not surprising given the cost imposed on sharply curving fibers in
the algorithm. We also compared the results obtained using global tractography with those
from a previously proposed probabilistic tracking method LT (Behrens et al., 2007) (Fig.3).
The comparison results indicated that the probabilistic tracking approach is inferior to global
tractography in capturing the fiber configurations in the phantom network (Fig.3B), in line
with the prior study using a different gold standard (Fillard et al., 2011).

Despite the outstanding performance of GT in the fiber phantom, the interpretation of the
performance differences between the two approaches is not straightforward: one distinctive
feature of the fibers in the phantom is that the diffusion directions of the fiber bundles are
highly coherent and unambiguous in most of the regions except where fiber bundles
intersect. In these areas, fiber bundles with almost identical diffusion properties kiss, cross,
and branch, making the delineation of the two principal diffusion directions in these areas
extremely challenging. Any local tracking algorithm that depends on the step-by-step
progression by sampling from the local fiber orientations will encounter great difficulty in
identifying the principal diffusion directions in these intersecting areas. In contrast, global
tractography enables inferring the orientation information in the localized ambiguous region
from that in the neighboring unambiguous regions by employing a larger field of view,
making the estimation of the fiber orientations in the ambiguous areas more accurate. Thus,
the technique might be especially suitable for solving fiber architectures such as these in the
phantom, making further evaluations of the technique in biological tissues necessary.
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4.2 Evaluation of the anatomical brain networks in the post-mortem macaques
Another approach for validating derived anatomical brain networks is to utilize the rich
connection information obtained in macaque monkeys obtained using chemical tracer
techniques (Lewis and Van Essen, 2000; Schmahmann and Pandya, 2006) as the gold
standard for connectivity. In this study, we evaluated our reconstructed brain networks with
reference to the results of Lewis and Van Essen (Lewis and Van Essen, 2000), which
focused on the connections of the posterior parietal cortex and portions of temporal
association cortex. Our comparison showed that in both hemispheres of two macaques, GT
demonstrated superior performance to the LT approach, albeit to a lesser degree than with
the fiber phantom. However, consistent with a previous study using a similar approach
(Iturria-Medina et al., 2011), the AUCs in the ROC plots from both methods were shown to
be small at all three thresholds of the gold standard, indicating low accuracy in the
tractographic estimation of brain connectivity. We then further investigated which
connections were falsely reconstructed and missed and whether there was a relationship
between the connections and distance in both tracer- and tractography-derived connectivity
maps. It is interesting to observe that in the tracer-derived map, the strong connections were
generally shorter in mean distance compared with the medium and weak connections. This
may suggest that neurons preferentially connect to their neighboring regions to form local
processing modules (Markov et al., 2011). A recent quantitative tracer study demonstrated
that more than 95% of labeled neurons arise from the connections within 1.9mm of the
injection sites in macaque visual areas, consistent with our observation that stronger
connections tend to connect with local brain regions (Markov et al., 2011).

For tractography-reconstructed brain networks, the connections demonstrated in the tracer
study, but missed in tractography approaches (FN), have the longest mean distance,
followed by FPs and TPs, regardless of the method used. The similar relationships between
the tracking accuracy and connection distance across the methods indicates that the two
tractography algorithms have similar distance effects. The non-random patterns of false
negatives and false positives present in both methods may also relate to specific fiber
systems, in addition to the connection distance. For instance, Fig.6 indicates that the missing
connections mainly link the frontal regions and the parietal regions, whereas the falsely
reconstructed pathways mainly connect the temporal and parietal cortex, which is
consistently observed in both postmortem and in-vivo macaque data.

We believe that these observations are valuable in that they provide solid evidence of the
differential sensitivity of diffusion tractography to interregional brain connections with
various distance and/or fiber systems. This differential sensitivity may be largely
independent of tractography algorithms and brain tissue types as demonstrated in the current
study. We hope that future studies that employ diffusion tractography to reconstruct brain
anatomical networks will benefit from these findings and methodology for interpreting and
validating their results.

Although not all the interregional connections in macaque brains were included in Lewis
and Van Essen’s study, there were a total of 576 edges for our validation study. Thus, we
believe that the results should be at least partially reflective of the performance of the two
techniques. In the future, effort should be made to find an approach to collate the abundant,
but heterogeneous, tracing results in monkeys for validation purposes.

4.3 Evaluation of the anatomical brain networks in humans
Assessing the accuracy of the reconstructed anatomical networks in humans is the most
challenging problem, for obvious reasons. Chemical tracing studies in post-mortem human
brains are very few and valid only for short connections (Clarke et al., 1999; Di Virgilio et
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al., 1999). The chemical tracing methods that have been extensively used in monkeys are
highly invasive and cannot be applied in living humans. Currently, most studies aimed at
validating tractography-derived connections in humans have been conducted by comparing
the derived results to these obtained with gross dissection of major white matter pathways
(Burgel et al., 2006; Mori et al., 2002). These approaches are only qualitative in nature and
error prone for fiber bundles proximate to the cortical regions (e.g., see the callosal body
derived in Burgel et al’s study). In this study, we first delineated eight major fiber pathways
in a randomly selected subject using GT and LT and visually compared the (dis)similarities
of the derived tracts. We found that there was an excellent agreement between the two
approaches in the long and straight fiber pathways, such as the ILF and the IFOF, between
the two approaches. Note that the more curved fiber pathways, such as the UF, were less
successfully tracked with GT, consistent with the results in the phantom network. This may
result from trade-offs in the settings of GT toolbox: choosing longer ‘fiber cylinders’ may be
more advantageous in solving crossing fibers, but at the expense of less success in tracking
bending fiber pathways due to their large curvatures.

A number of studies in nonhuman primates using tracing methods have shown that the
primary motor cortex (M1) exhibits homotopic callosal projections, as demonstrated by
labeled neurons within the regions corresponding to the contralateral injections (Fang et al.,
2008; Gould et al., 1986; Pandya and Vignolo, 1971; Rouiller et al., 1994), that is, M1
represents body movements in a generally somatotopic mediolateral cortical distribution,
with each section having its densest callosal connection with the somatotopically matched
contralateral section. In line with these findings in monkeys are results in humans using
fMRI, which showed focal activation in M1 for even ipsilateral hand movements (Kim et al.,
1993) and in resting state functional connectivity of motor cortex, which shows strongest
connectivity with homotopic sectors (Biswal et al., 1995; Lotze et al., 2000).

Early fiber-tracking algorithms that depended on a single diffusion tensor for estimating
local fiber orientation had a major limitation in tracking through regions of crossing
fibers(Behrens et al., 2007). As a result, more sophisticated tractography algorithms, either
employing complicated models for estimating local fiber orientations or a larger field of
view, have been designed to overcome this problem (Behrens et al., 2007; Behrens et al.,
2003a; Reisert et al., 2011; Tuch, 2004). One major advantage of these tractography
algorithms is their ability to trace more of the lateral projections of the callosal fibers,
because their intersection with the superior longitudinal fasciculus and pyramidal tracts
renders them difficult to reconstruct using earlier tractography algorithms. This advantage is
significant, since it is now possible to map more of the lateral callosal connections of the
brain with these more sophisticated tractography algorithms. One concern, however, is that
because the transcallosal fibers connecting the more medial regions of M1 have less severe
crossing-fiber issues and therefore are easier to trace, tractography algorithms might find
stronger connections between lateral sectors of M1 and medial ones, inconsistent with what
has been shown with tracing experiments in nonhuman primates. Here we tested this
hypothesis in our human and post-mortem macaque data, i.e., whether transcallosal
connections in the precentral gyri derived using diffusion tractography (GT, LT)
quantitatively reflect the homotopic organization that has been observed in invasive tracing.
Our results demonstrated that even though that GT and LT can trace the lateral projections
of the transcallosal fibers, as shown in Fig. 9 and supplementary Figs. 8, 9 and 10, the
strength of these callosal projections does not follow a homotopic distribution. Possible
causes for this include: (i) a bias of the tractography algorithms toward medial callosal fibers
that do not intersect with other fiber systems, (ii) much weaker homotopic transcallosal
connections in more lateral sectors compared to the medial sectors, making diffusion fiber-
tracking results unreliable, and (iii) sharper angles that need to be traversed for the lateral
connections vs. the medial ones.
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4.4 Limitations and future directions
In the current study, we utilized normalized “fiber count” as our measure of the strength of
anatomical connectivity in GT. It has been increasingly recognized that diffusion MRI
measures the degree of hindered water diffusion in axonal bundles, reflecting only a limited
aspect of physical properties of axonal bundles(Jones, 2010). Although a correlation study
showed that the structural connectivity measured using a similar “fiber count” measure is
quantitatively predictive of resting-state functional connectivity(Honey et al., 2009), a proof
of the effectiveness of the measure, we believe that future studies will benefit from choosing
indices of connectivity that incorporate physical attributes of myelinated axonal bundles,
such as axonal diameters (Assaf et al., 2008). It should also be noted that the “gold standard”
in validating macaque brain networks in the current study (Lewis and Van Essen, 2000) is
not perfect and continues to be refined (Markov et al., 2011). As a result, some of the false
positives in this study may ultimately turn out to be true positives and our results therefore
represent a lower boundary on the true accuracy of connection identification using diffusion
tractography. The findings in the current study are based on two model-based tractography
algorithms for negotiating the complex fiber configurations. It will be interesting to see
whether the same results will hold when model-free tractography techniques, such as
diffusion spectrum imaging, are used for reconstructing white matter connectivity in brain
tissues. Moreover, we used a local probabilistic tractography procedure in this study to
compare the results with those by global tractography. More validations are needed in the
future to confirm our findings in the post-mortem and humans by employing a local
deterministic tractography that has been widely used in brain mapping studies.

5 Conclusions
In an attempt to establish a robust framework for deriving networks of brain anatomical
connectivity, we quantitatively assessed a new tractography algorithm, global tractography,
on a phantom network, in post-mortem macaques, and in in vivo humans. Global
tractography was found to faithfully identify the topology, modules, and the hub of the
phantom network, significantly outperforming a previously proposed local tracking
algorithm. In real brain tissues, however, the technique only demonstrated slightly improved
performance compared to the local tracking approach. When the tracer-derived connections
were employed as the ground truth for validating tractography-derived brain networks in
macaques, we observed non-random patterns of false positive and negative connections that
showed distance effect, which are largely independent of the type of brain network (GT, LT)
and tissue type (post-mortem vs. in vivo) used. Moreover, a quantitative somatotopic
analysis on the transcallosal motor fibers in humans showed that although both global and
local tracking approaches can reconstruct the lateral transcallosal projections into the
primary motor cortex, the strength of these connections do not quantitatively mirror the
descriptions in macaque tracer studies, illustrating the need for more robust tractography
algorithms for brain mapping studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Glossary

GT global tractography

LT local tractography

GM/WM gray-matter/white-matter

BC betweenness centrality

ROC Receiver Operating Characteristic

NCD normalized connectivity density

NVD normalized volume density
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Figure 1.
Illustration of the realistic fiber phantom. The green arrows represent actual fiber pathways.
The numbers index the approximate locations of the ROIs used for network reconstruction.
Different levels of brightness are used in the green arrows to differentiate the orientations of
the fiber pathways where they intersect. The background is a b0 image.
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Figure 2.
Illustration of the macaque parcellation scheme and the gold standard. (A): the partitioning
scheme of LVE00a on a standard surface (upper) and flat surface (lower). (B) The
anatomical connections were manually extracted from Lewis and Van Essen’s paper. Value
3, 2, 1 and 0 indicate strong, medium, weak, and absent connections, while value -1
indicates that no connection information is available from the tracer study. The 61 cortical
regions compared in the present study include: 1, 2, 23, 24ab, 24d, 3a, 4, 45, 46p, 46v, 4C,
5D, 5V, 6Ds, 6Val, 6Vam, 6Vb, 7a, 7b, 7op, 7t, 8Ac, 8Am, 8As, A1, AIP, DP, FST, IPa, Ig-
Id, LIPd, LIPv, LOP, MDP, MIP, MSTda, MSTdp, MSTm, MT, PIP, PO, Pi, PrCO, Ri, S2,
TAa, TE1-3, Tea-m, TF, TPOc, TPOi, TPOr, Tpt, V1, V3, V3A, V4ta, V4tp, VIPl, VIPm,
VP.

Li et al. Page 21

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
The topologies of the phantom network reconstructed using GT and LT. (A) The
reconstructed topologies of the phantom network using GT; The line width is proportional to
normalized connectivity density (NCD for GT and normalized volume density, NVD, for
LT). The size of each circle is proportional to the number of ROIs that it is connected to (the
degree). ROIs with the same color belong to the same module, classified based on the
connectivity information. (B) The reconstructed topologies of the phantom network using
LT. (C) Receiver Operating Characteristic (ROC) curves of the phantom network using the
two approaches were plotted and compared. The areas under the curve (AUCs) are 0.998
and 0.765 for GT and LT approaches, respectively.

Li et al. Page 22

Neuroimage. Author manuscript; available in PMC 2013 July 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Connectivity matrices and derived graph-theoretic measures for the fiber phantom. (A): the
gold standard (upper) and the integrated, normalized connectivity density maps derived
using GT (lower). It can be seen that the fiber pathways connecting different ROIs were
faithfully reconstructed. Exceptions include those connecting node #10 and node #11, which
was underestimated, and those connecting node #3 and node #4, which was a false positive.
(B) The degree, strength and BC of the gold standard (gs) and those based on the
reconstructed network.
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Figure 5.
The Receiver Operating Characteristic (ROC) curves for the left (L) and right (R)
hemispheres of the two post-mortem macaques (maq1, maq2). After the interregional
connectivity matrices were derived using GT and LT methods, a range of thresholds
between 1 and 100% were applied on these NCDs (NVDs) and then compared with the
LVE00a atlas. The ground truth used to evaluate the performance of the two approaches in
this figure included only the medium (2) and strong (3) connections. The quantitative results
summarized as the areas under the ROC Curve (AUCs) are listed in Table 2.
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Figure 6.
The connections determined by tracer and diffusion tractography methods, and their
relationship to connection distance. (A): The interregional connections derived using the
tracer study (Lewis and Van Essen, 2000), which focused on the parietal and temporal
regions. Different line widths and shades of red represent connections with different
strength. The mean and standard deviation of the Euclidean distance between the weak,
medium and strong connections are plotted on the right. ANOVA analysis indicates that
there was a significant difference among the mean of the three groups, with the strong
connection group having significantly shorter mean distance than the medium and weak
groups (P<0.05, Tukey-Kramer correction). (B): The false positives (FP, red), false
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negatives (FN, blue) and true positives (TP, green) of the tractography-derived connections
obtained using GT. The connections based on four hemispheres were averaged for the
analyses. The mean and standard deviation of the Euclidean distance of the FP, FN, TP
connections were plotted on the right. ANOVA analysis indicates a significant difference in
the mean distance among the three groups (F(3,329)=71.7, p<1e-10), with the order TP< FP <
FN (P<0.05, Tukey-Kramer correction). (C): Similar results were observed in the networks
reconstructed using LT. ANOVA analysis indicates a significant difference in the mean
distance among the three groups (F(3,319)=105, p<1e-10), with the order TP< FP < FN
(P<0.05, Tukey-Kramer correction).
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Figure 7.
The relationship between connection distance and NCD(NVD). Decreasing connectivity
strength (NCD or NVD) as the distance of connections increases can be observed in both
networks. The right column shows the mean distance of the connections with the top 50%,
80% and 95% connectivity strength included. The error bars are standard deviations.
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Figure 8.
Comparison of eight pathway systems reconstructed using GT and LT from a randomly
chosen female human subject. The ROI placements, based on Catani and Thiebault de
Schotten (Catani and Thiebaut de Schotten, 2008), were identical for the two methods. We
departed from Catani and Thiebault de Schotten only in the delineation of the arcuate
fasciculus (AF), where we found one ROI was not adequate for delineating the pathway and
therefore used a two ROI method (Rilling JK et al., 2008). For each fiber pathway system,
the maximal intensity projection (MIP) was used to visualize the derived fiber pathways and
images were projected on the axial, coronal and sagittal planes. The results of the derived
pathways were thresholded by the mean intensity of that specific fiber pathway. For each
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section, the upper and lower rows show the pathway reconstructed using GT and LT,
respectively. Obvious differences in the orientation and intensity in the MIP images between
the two methods were indicated using white arrows. The background is the subject’s FA
image. CR: coronal radiata; CC: corpus callosum; IFOF: inferior fronto-occipital fasciculus;
UF: uncinate fasciculus; AF: arcuate fasciculus; Fx: fornix; ILF: inferior longitudinal
fasciculus; Ci: cingulum.
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Figure 9.
The networks of transcallosal fibers connecting two hemispheres derived using GT and LT.
For both GT and LT cases, the network topology is shown in the middle, with lines
representing the connection strength (NCD for GT, NVD for LT). The four plots around
each network topology indicate the statistical results (P<0.05) after the multiple comparison
correction (Tukey-Kramer method), with circles representing the mean and bars representing
the confidence intervals. The connection strength between two edges (R-L) is significantly
different if their confidence intervals do not overlap. Purple circles and error bars in the
plots indicate the homotopic connections. Red circles and error bars indicate that the
corresponding connections are significantly different from the purple ones.
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Table 1

GT tracking parameters in the phantom, macaques and humans.

Parameters phantom macaques humans

Start temp. 0.1 0.1 0.1

Stop temp. 0.001 0.001 0.001

#steps 50 50 50

#iterations 3×108 3×108 3×108

Cylinder Width(mm) 1.5 0.15 1.000

Cylinder Length(mm) 4.5 0.5 3.000

Weight 0.035 0.032 0.053

Density Penalty 0 0.0 0.0

b-value 1.5 2.0 1.0
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