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Abstract
The discovery of functional magnetic resonance imaging (fMRI) has greatly impacted
neuroscience. The blood oxygenation level-dependent (BOLD) signal, using deoxyhemoglobin as
an endogenous paramagnetic contrast agent, exposes regions of interest in task-based and resting-
state paradigms. However the BOLD contrast is at best a partial measure of neuronal activity,
because the functional maps obtained by differencing or correlations ignore the total neuronal
activity in the baseline state. Here we describe how studies of brain energy metabolism at Yale,
especially with 13C magnetic resonance spectroscopy and related techniques, contributed to
development of quantitative functional brain imaging with fMRI by providing a reliable
measurement of baseline energy. This narrative takes us on a journey, from molecules to mind,
with illuminating insights about neuronal-glial activities in relation to energy demand of synaptic
activity. These results, along with key contributions from laboratories worldwide, comprise the
energetic basis for quantitative interpretation of fMRI data.
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Introduction
In 1992, while the first demonstrations of blood oxygenation level-dependent (BOLD)
functional magnetic resonance imaging (fMRI) (Bandettini et al., 1992; Blamire et al., 1992;
Frahm et al., 1992; Kwong et al., 1992; Ogawa et al., 1992) caused great excitement in the
functional brain imaging community, there were concerns about how well the BOLD signal
reflected underlying changes in neuronal activity (Barinaga, 1997; Fitzpatrick and Rothman,
1999). This personal account by the authors describes how studies at Yale, in particular
those utilizing 13C magnetic resonance spectroscopy (MRS) in conjunction with calibrated
fMRI techniques and electrophysiology, helped reveal fundamental relationships between
brain function and energy metabolism in the context of BOLD signal change, as well as the
overall importance of baseline neuronal activity. These studies arose from basic work on
brain energy metabolism using 13C MRS that had begun at Yale in the 1980’s under the
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direction of Professor Robert G. Shulman (Behar et al., 1986; Petroff et al., 1986; Rothman
et al., 1985). Although we focus on work at Yale, we cover key contributions made at sites
worldwide and apologize for any work we may have neglected due to space limitations.

Human brain mapping became possible about three decades ago with positron emission
tomography (PET). Within a decade, however, PET functional measurements were replaced
by fMRI. But the basic concepts for mapping brain function are similar (for a historical
perspective see (Raichle, 2009)). PET measured changes in blood flow or volume (CBF,
CBV) and/or changes in glucose or oxygen metabolism (CMRglc, CMRO2) induced by
external stimuli, and fMRI uses the blood oxygenation level-dependent (BOLD) contrast,
which is a consequence of a complex combination of changes in CBV, CBF, and CMRO2
(Ogawa et al., 1990). The main advantage of fMRI over PET is that BOLD signal can be
mapped repeatedly in the same session because no external tracer is needed as the changing
concentrations of oxyhemoglobin and deoxyhemoglobin (i.e., diamagnetic and paramagnetic
respectively) during functional hyperemia provide the contrast.

However both contrasts revealed by PET and fMRI are qualitative because localization of
brain regions ignores the total neuronal activity in the baseline state. But both methods have
a key underlying assumption that changes in neuronal activity will be proportional to
changes in neuronal energy consumption (Shulman and Rothman, 1998). This energy
consumption may be measured directly via CMRO2 in PET and calibrated fMRI, as
described later which is a method that extracts change in CMRO2 with CBF and CBV
imaging by combining other magnetic resonance imaging (MRI) methods with BOLD
contrast. However PET mostly used CBF to reflect the neuronal activity indirectly, whereas
fMRI used BOLD contrast.

When the first PET and fMRI studies were performed in the human brain it was not known
what the relationship between functional parameters familiar to neuroscientists such as
neurotransmission or spiking activity and neuronal energy consumption. The work described
in this article focuses on two main questions relevant to interpretation of neuroimaging data:

• What is the relationship between changes quantitative measures of neuronal
activity (such as neurotransmitter cycling, synaptic and spiking activity) and
oxygen consumption?

• What fraction of total neuronal activity does the contrast measured by BOLD
represent?

Early PET and 1H MRS studies suggest non-oxidative energy contribution
during brain function

It had long been established that glucose is the main energy substrate in the brain and its
oxidation efficiently produces energy to support its function (Siesjo, 1978). However in the
late 1980’s Fox et al published some PET data that revealed diminished glucose oxidation
during sensory processing in awake human brain, where CMRglc and CBF changed
significantly but CMRO2 did not (Fox and Raichle, 1986; Fox et al., 1988). These PET
results, along with early theoretical calculations by Creutzfeld, supported a model of brain
function in which neuronal signaling had minimal oxidative energy costs (Creutzfeldt,
1975). This conclusion was surprising based on the generally accepted view of
disproportionately high energy costs of human brain function at rest, given its size relative to
the body (Aiello and Wheeler, 1995; Sokoloff, 1991). An implication of this model is that
the changes in activity mapped by fMRI were much larger than the brain activity in the
resting-state, and therefore to a first approximation, the resting brain activity could be
neglected. As we will describe below that MRS and other results, initially form Yale and
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later from elsewhere, showed that in fact the opposite is true. But the concept of negligible
resting-state activity still has a strong influence on the interpretation of fMRI results.

Since the radioactivity in PET lacks specificity, the molecular basis of MRS signals
provided an opportunity to test the Fox et al PET findings (Prichard and Shulman, 1986).
Unlike 1H MRI, which measures water in all compartments, 1H MRS measures other
endogenous molecules specific to intracellular and/or extracellular milieu. MRS is similar to
MRI, except that it uses differences in resonance frequency between dissimilar chemical
groups to measure the regional concentrations of endogenous molecules, including lactate,
glucose, glutamate, GABA, glutamine, etc. However, as discussed in more detail below, 13C
MRS in combination with infusion of 13C-labeled substrates like glucose, acetate, etc. the
rates of 13C label incorporation into cell-specific pools – e.g., glutamate and GABA are
predominantly neuronal, glutamine is predominantly glial – can be detected (for a recent
review see (Rothman et al., 2011)).

In the early in 1990’s, the Yale group utilized 1H MRS to measure transient lactate increase
and glucose decrease in the human brain during a similar visual stimulation paradigm as in
Fox et al (Chen et al., 1993; Prichard et al., 1991). While these results suggested some level
of non-oxidative glycolysis, the amount of lactate produced was quantitatively much smaller
than predicted by the Fox et al PET studies. Moreover, subsequent PET, 1H MRS, and
calibrated fMRI (see below) studies have shown there is several-fold larger increase in
CMRO2 with functional activation than originally measured by Fox et al, especially in
relation to the change in CBF which gives rise to the CMRO2-CBF coupling underlying the
BOLD contrast (Hyder et al., 2000; Hyder et al., 1998) – an issue which is discussed below
for calibrated fMRI. Therefore there was still a significant role for oxidative energy during
brain function that could potentially be tracked by 13C MRS (see below). These early 1H
MRS results from Yale were in good agreement with independent measurements from other
laboratories using 1H MRS and PET, at that time (Frahm et al., 1996; Merboldt et al., 1992;
Roland et al., 1987; Sappey-Marinier et al., 1992; Seitz and Roland, 1992; Vafaee et al.,
1998; Vafaee et al., 1999) and more recent measurements (Mangia et al., 2007; Mintun et
al., 2002).

13C MRS studies reveal high demand for oxidative energy during functional activation
Pioneering studies by Shulman and colleagues, originally at Bell Laboratories and later at
Yale, showed that 13C MRS had the potential to provide detailed measurements of metabolic
fluxes (for a historical perspective see (Alger and Shulman, 1984)). Following initial studies
in the late 1970’s in cell suspensions and perfused organs, the 13C MRS method, and a
related 1H MRS method called proton observe carbon edit (POCE), was applied to the
rodent and human brain (Behar et al., 1986; Cerdan et al., 1990; Fitzpatrick et al., 1990;
Gruetter et al., 1992; Petroff et al., 1986; Rothman et al., 1985; Rothman et al., 1992). A
surprising initial finding from the in vivo studies was that there was rapid 13C labeling of
glutamate and glutamine from glucose or acetate, which stood in contrast with results from
brain slices (Badar-Goffer et al., 1990; Badar-Goffer et al., 1992). Because the brain slices
were not activated, this feature (i.e., significant 13C labeling of glutamate and glutamine)
provided a clue about the relation of energy metabolism and function discussed in the next
sections. Based on the ability to detect in vivo turnover of 13C label from substrates (e.g.,
glucose or acetate) into various metabolites (e.g., glutamate, glutamine, lactate, or aspartate)
in real time, several metabolic fluxes (e.g., tricarboxylic acid cycle, glutamine synthesis,
neurotransmitter cycle, etc.) could be extracted with compartmental modeling of neuronal-
glial trafficking of metabolites (Gruetter et al., 1996; Mason et al., 1995; Mason et al.,
1992). The rate determined for glucose oxidation has been shown to be in good agreement
with CMRglc measured by other methods in animal models (e.g., in rats with arterio-venous
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difference or 2-deoxyglucose autoradiographic methods (Hyder et al., 2000) or in primates
with PET (Boumezbeur et al., 2005)) and in humans (Rothman et al., 2011)).

To test the oxidative energy demand of functional brain activation, studies were performed
in animal and human visual cortex. At Yale, POCE was used in an anesthetized rat model to
demonstrate a large increase in neuronal glucose oxidation in the somatosensory cortex
during forepaw activation (Hyder et al., 1996; Hyder et al., 1997). Because the earliest
interpretations of BOLD signal increase were interpreted to reflect minimal rise in CMRO2
(Kim and Ugurbil, 1997; Ogawa et al., 1993), this Yale finding was especially controversial
at the time because a large increase in CMRO2 in the presence of a positive BOLD signal
was considered an artifact. This issue will be discussed more below in context of calibrated
BOLD and electrical activity recordings, but POCE studies of the human brain conducted
independently at Universities of Minnesota and Nottingham also showed a substantial
increase in CMRO2 with visual stimulation in the primary visual cortex (Chen et al., 2001;
Chhina et al., 2001). These POCE studies along with parallel studies using calibrated fMRI
(see below) have led to the general acceptance that increases in brain activity are primarily
fueled by ATP for oxidative glucose consumption, which in primary sensory cortices can be
metabolically quite significant (Shulman et al., 2001b). However the mechanism and
function of the enhanced non-oxidative metabolism remains an intense area of research,
although several models have been proposed (Chih et al., 2001; Magistretti et al., 1999;
Shulman et al., 2001a).

Relationship between oxidative energy and glutamatergic
neurotransmission

While 13C MRS and POCE (and early calibrated fMRI, see below) studies provided insights
into changes in oxidative energy metabolism with brain function, they did not deliver a
quantitative relationship between a parameter measuring neuronal function such as
glutamate neurotransmission or neuronal signaling as conventionally represented by
electrical activity. A potential way to study this relationship was inferred from the rapid 13C
labeling from glucose of glutamine in human and animal 13C MRS and POCE studies. In the
cerebral cortex, glutamate released from nerve terminals is taken up by surrounding glial
cells and returned to the nerve terminals as glutamine (for details of the process see
(Rothman et al., 1999)). The glutamatergic neurotransmission pathway is referred to as the
glutamate-glutamine cycle. If glutamine labeling from the glutamate-glutamine cycle could
be distinguished from other labeling sources for glutamine (e.g., removal of brain ammonia
in the glia by glutamine synthesis) this pathway of glutamatergic neurotransmission could be
quantitated by 13C MRS.

At Yale, the first study that tried to disentangle the contribution of the glutamateglutamine
cycle to glutamine synthesis was performed by measuring the increase in the rate of 13C
labeling of glutamine (from glucose) as a function of ammonia concentration and then
extrapolating to basal ammonia level. This study lead to an estimate of de novo glutamine
synthesis to remove ammonia being no more than a 10–20% contribution even in the
anesthetized rat cerebral cortex when metabolic rates are extremely slow compared to the
awake state (Sibson et al., 1997). These early 13C MRS studies of the glutamate-glutamine
cycle were supported by other studies at Yale and California Institution of Technology using
alternate labeling strategies with 15N and 13C labeled precursors enabling separate and direct
measurement of glutamine labeling from both de novo synthesis and the glutamate-
glutamine cycle (Kanamori et al., 1993; Kanamori et al., 1995; Shen et al., 1998; Sibson et
al., 2001). These heteronuclear MRS studies, in conjunction with advanced metabolic
modeling (Gruetter et al., 2001; Gruetter et al., 1998; Mason and Rothman, 2004), have been
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consistent with the glutamate-glutamine cycle accounting for the majority of mass flow into
the brain glutamine pool (for a recent review see (Rothman et al., 2011)).

After the demonstration that 13C MRS could measure the glutamate-glutamine cycle, the
Yale group performed a study in a rat model in which they measured the rate of the
glutamate-glutamine cycle and neuronal glucose oxidation (both fluxes measured in the
same 13C MRS experiment) at different brain electrical activities to address the question of
the neuronal energy cost of function (Sibson et al., 1998). 13C MRS was used to measure the
rates of neuronal glucose oxidation (CMRglc(ox),N) and neurotransmitter flux (Vcyc(tot)),
localized in the rat somatosensory cortex over a wide range of activities: from isoelectric
pentobarbital anesthesia, under which there is no neuronal signaling, to mildly anesthetized
states with higher neuronal signaling. The study found a linear relationship between Vcyc(tot)
vs. CMRglc(ox),N which is significant in several respects (Figure 1). Firstly it demonstrated a
linear relationship between neuronal activity as measured by glutamatergic function and
neuronal energy metabolism. Furthermore at the intercept where Vcyc(tot) falls to zero,
CMRglc(ox),N is about 0.1 μmol/g/min. Hence in the awake brain approximately 80% of the
neuronal energy demand is devoted to events associated with neuronal signaling, which
contrasted expectations at the time that majority of resting brain energy not being related to
signaling (see discussion above). 13C MRS experiments looking simultaneously at neuronal
energy consumption and the rate of the glutamate glutamine cycle have subsequently been
performed by several laboratories in both rats and humans (Bluml et al., 2002; Boumezbeur
et al., 2010; Chen et al., 2001; Chhina et al., 2001; Choi et al., 2002; Chowdhury et al.,
2007; de Graaf et al., 2004; Duarte et al., 2011; Gruetter et al., 2001; Gruetter et al., 1998;
Henry et al., 2010; Jiang et al., 2011; Lebon et al., 2002; Mason et al., 1995; Mason et al.,
2007; Oz et al., 2004; Pan et al., 2000; Patel et al., 2005a; Patel et al., 2005b; Serres et al.,
2008; Shen et al., 1999; van Eijsden et al., 2010; Wang et al., 2010; Yang and Shen, 2005).
The results of these studies have been highly consistent with the original findings of Sibson
et al and furthermore the human results also agree with the findings in rodent brain (Figure
1).

A third highly significant finding of the Sibson et al study is that the slope between
glutamate release/recycling and neuronal glucose oxidation is close to 1:1, or approximately
one molecule of glucose is consumed for every glutamate released. The high value of this
slope indicated that the glutamate-glutamine cycle is a major metabolic flux in the brain – on
the order of the tri-carboxylic acid cycle and glucose consumption (which has considerable
importance for models of glutamate excitotoxicity in disease). Furthermore the close to
stoichiometric 1:1 ratio implies a molecular mechanism for the coupling of the two fluxes.
The early 13C MRS results of Sibson et al were consolidated into a model of neuronal-glial
interactions proposing a novel role for lactate, which conventionally had been thought to be
an end product of glycolysis (Magistretti et al., 1999). The fundamental hypothesis was that
glial glycolytic ATP was produced rapidly enough to clear glutamate from the extracellular
space to prepare the nerve terminal for the next synaptic event. The recycling of one mole of
glutamate neurotransmitter between glia and neurons was associated with oxidation of one
mole of glucose molecule in neurons. However only by glia took up the glucose whereas all
the lactate generated by glycolysis in the glia was transferred to neurons for subsequent
oxidation.

While this model was consistent with the 1:1 observed relationship between ΔCMRglc(ox),N
and ΔVcyc(tot) measured by 13C MRS, it could not specify the energetics of glia and
GABAergic neurons because quantitative values for these pathways were not available back
then. Later we revised this model to include more up-to-date measurements (Hyder et al.,
2006). The revised model showed that glia could produce around 10% of total oxidative
ATP and GABAergic neurons could potentially generate about 20% of total oxidative ATP
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in neurons. Neurons could produce around 90% of total oxidative ATP and could be
required to take up directly as much as 25% of the total glucose oxidized. However glial
lactate would still make a major contribution to neuronal oxidation, but about 30% less than
predicted before. The relationship observed between ΔCMRglc(ox),N and ΔVcyc(tot) could
still be determined by glial glycolytic ATP as before. Quantitative aspects of this model
(Figure 2) are currently being tested, but so far the Yale group has shown that interruption of
glutamate release/recycling affects both BOLD contrast and oxidative demand (Kida et al.,
2001; Kida et al., 2006).

It should be pointed, however, that other models have been proposed to explain the
relationship based upon other molecular mechanisms, including redox potential balancing
requirements and the need of glycolytic ATP to pump glutamate into vesicles (Hertz et al.,
2007; Mangia et al., 2009; Simpson et al., 2007). The hopeful discovery of the molecular/
cellular mechanism(s) underlying the relationship between ΔCMRglc(ox),N and ΔVcyc(tot)
will provide important insight into why the brain requires glucose as its major fuel and may
be of importance in understanding the finding of altered brain glucose metabolism in a
variety of diseases. Thus the most up-to-date 13C MRS data from the rat and human brain
suggest that about 20% of neuronal energy demand in the awake brain is dedicated for non-
signaling or housekeeping needs, whereas the remaining 80% fraction of the energy supports
the signaling needs within cortical networks. This large 80% of the baseline energy, which is
necessary for consciousness (Shulman et al., 2009), as discussed below remains largely
unexplored in brain studies.

Implications of the 13C MRS findings for the interpretation of fMRI
As described above, due to the belief of minimal resting brain activity at the time the most
accepted model for interpreting fMRI was based on the changes seen being proportional to
the total neuronal activity engaged in the task, an assumption that was inherent in the early
versions of statistical parametric mapping which remains the most popular method for
analyzing functional imaging data (Frackowiak et al., 2004). However by the mid 1990’s
there were findings of negative changes in the BOLD signal (as well as negative CBF
changes reported from PET studies), which represented a paradox from the viewpoint of
there being little resting neuronal activity compared with activated state. In 1998, Shulman
and Rothman proposed an explanation for the negative BOLD signal by applying the
relationship discovered by the 13C MRS results between neuronal glucose oxidation and
neuronal activity (as assessed by the glutamate-glutamine cycle) to estimate the total resting
brain activity versus the change in activity measured in the increments reported by PET and
early quantitative fMRI studies (Shulman and Rothman, 1998). They concluded, contrary to
common belief at the time, that the task-induced changes measured by BOLD signal were
substantially lower than the neuronal activity in the same regions when no task was present.
From this perspective the negative BOLD was no longer paradoxical – it simply meant the
brain region exhibiting the change during the task had less neuronal activity than in the
resting state. They also presented examples of how the large resting activity could change
the interpretation of an fMRI study. For example, no change in BOLD signal during a task
did not mean the region was not involved in its performance – its neuronal activity devoted
to the task could be the same as that used in its resting state (see the later section regarding
studies that examined the question of how much neuronal activity is needed for function).
Soon after the publication of the initial 13C MRS studies looking at the energy costs of
neuronal activity and resting state activity, Raichle and colleagues at Washington University
incorporated these findings along with other results from PET and fMRI to develop a model
explaining the function of resting state activity in terms of a default state of function, which
has extensively influenced the analysis and interpretation of fMRI studies of the resting-state
paradigm (Gusnard and Raichle, 2001).
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Calibrating the BOLD contrast to reflect oxidative demand during task
paradigms

From the earliest descriptions of BOLD contrast (Boxerman et al., 1995; Kennan et al.,
1994; Ogawa et al., 1993), it was clear that CMRO2 could be extracted, provided that CBF
and CBV were measured with the baseline BOLD signal. As fMRI and 13C MRS
developments continued to flourish in the 1990’s, several groups focused on novel MRI
methods for CBF and CBV imaging in vivo which proved to be seminal for the development
of calibrated fMRI studies (Detre et al., 1992; Kennan et al., 1998; Kim, 1995; Mandeville
et al., 1998; Williams et al., 1992). Because magnetic labeling of arterial blood proved to be
a sensitive enough perfusion tracer in brain tissue, the CBF method did not require
exogenous contrast agents and thus could be imaged reliably in both humans and animals.
The CBV method, however, was based on intravascular-borne exogenous paramagnetic
contrast agents that drowned out the diamagnetic BOLD effect during functional hyperemia.
Because this contrast agent-based CBV method was limited to animals, early human
“calibrated fMRI” studies combined BOLD and CBF measurements to estimate CMRO2
changes during functional activation (Davis et al., 1998; Hoge et al., 1999; Kastrup et al.,
1999; Kim et al., 1999; Kim and Ugurbil, 1997),

eq. [1]

where the subscript “o” represents the baseline state values for each parameter, S represents
the BOLD signal, M represents the baseline BOLD signal which is the product of the
transverse relaxation rate (with either spin-echo or gradient-echo) and the echo time, and the
parameters α and β are assumed to be 0.4 and 1.5, respectively, for field strengths of 1.5T.

Because 13C MRS methods can measure CMRO2 changes directly, an opportunity presented
itself at Yale to test the validity of eq. [1] by conducting multi-modal measurements of
CMRO2, CBF, CBV, and BOLD signal (with both spin-echo or gradient-echo) under various
levels of brain activity in rats at 7.0T (Hyder et al., 2001; Kida et al., 1999; Kida et al.,
2000). Some important observations from these studies have relevance for calibrated fMRI
studies, especially for those conducted at fields higher than 1.5T. First, it was observed that
the parameter β, which designates the CMRO2-CBF coupling in relation to the BOLD effect,
is closer to 1 at 7.0T (or higher). This β value is within expectations from stimulations of the
BOLD effect extrapolated to fields beyond 1.5T (Boxerman et al., 1995; Kennan et al.,
1994; Ogawa et al., 1993). Second, the value of the parameter α which describes the CBV-
CBF coupling is probably less than 0.4 and was estimated by PET in primate brain during
CO2 challenges (Grubb et al., 1974).

Most early human calibrated fMRI studies assumed a specific value of α because CBV
could not be independently measured. Animal studies at Yale suggested that the α value
could range from 0.1 to 0.2 (Hyder et al., 2001) because CBV and CBF dynamics were not
fixed during the time course of the functional activation (Mandeville et al., 1999). These
suggestions are now independently supported by subsequent findings from studies in rat, cat,
and human brain where CBV and CBF have been measured in the same session (Chen and
Pike, 2009; Jin and Kim, 2008; Kida et al., 2007). However it should be noted that these
CBV measurements reflect the entire blood volume in the vascular branching, whereas the
BOLD effect is sensitive to mainly the venous compartment. Recently some novel CBV
methods developed at University of Pittsburgh, which allows separation of the arterial and
venous compartments, suggest that the contribution of CBV changes incorporated into
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calibrated fMRI may be too large because it is the arterial compartment that contributes
most during functional hyperemia (Kim and Kim, 2005, 2011). These results have serious
consequences for calibrated fMRI because of the potential to underestimate changes in
CMRO2 by exaggerated contributions from CBV in eq. [1].

Another intrinsic problem in calibrated fMRI is the assessment of an independent measure
(or assumption) about the baseline BOLD signal (i.e., the so-called M parameter), which is
affected by a variety of experimental settings including the static magnetic field shim, which
can vary from study to study. By comparing ΔCMRO2 predicted from calibrated fMRI and
ΔCMRO2 measured from POCE, the Yale group showed good accuracy of calibrated fMRI
in animals with independent CBF and CBV imaging and direct M measurement under
optimal shim conditions (Hyder et al., 2001; Kida et al., 2000). An important component of
this early work was that M can be directly measured, from both spin-echo and gradient-echo
calibrated fMRI studies, a point that has been raised recently in the literature (Blockley et
al., 2012; Gauthier et al., 2011).

The use of calibrated fMRI has advanced considerably in many different laboratories (Bulte
et al., 2012; Chen and Pike, 2010; Chiarelli et al., 2007a; Chiarelli et al., 2007b; Leontiev
and Buxton, 2007; Leontiev et al., 2007; Lin et al., 2009; Liu et al., 2004; Restom et al.,
2007; Restom et al., 2008; Shen et al., 2008; Stefanovic et al., 2005; Uludag et al., 2004).
However the neuronal basis of the CMRO2 changes derived from calibrated fMRI remained
unresolved until recently. The Yale group compared neuronal activity recordings of local
field potential (LFP) and/or multi-unit activity (MUA) with calibrated fMRI results, in an
animal model, to show tight neurovascular and neurometabolic couplings in block-design
(Maandag et al., 2007; Smith et al., 2002) and event-related paradigms (Herman et al., 2009;
Sanganahalli et al., 2009) of normal brain and various types of epileptic seizure models
(Englot et al., 2008; Mishra et al., 2011; Schridde et al., 2008). Although relationships
between neuronal activity and stimulus features can range from linear to nonlinear,
associations between hyperemic components (i.e., BOLD, CBF, CBV) and neuronal activity
(i.e., LFP, MUA) are linear. These results showed that CMRO2 changes are correlated with
LFP and MUA in cerebral cortex.

Overall, the calibrated fMRI studies at Yale quantitatively explained the presence of large
CMRO2 changes observed during sensory stimulation in anesthetized rats with a positive
BOLD signal (Hyder et al., 1996; Hyder et al., 1997) with concomitant large changes in
CBF (Hyder et al., 2000; Silva et al., 1999). Notably, both in human and animal studies, the
measured ΔCBF/CBF and calculated ΔCMRO2/CMRO2 from calibrated fMRI studies (i.e.,
the CMRO2-CBF coupling) show a linear trend suggesting rapid oxygen equilibration
between blood and tissue pools within the physiological range (Hyder et al., 1998). In
support of this hypothesis, independent studies from Universities of Pennsylvania and
Pittsburgh show that tissue pO2 dynamics are just as fast as the CBF dynamics during
functional activation (Ances et al., 2001; Vazquez et al., 2008). Together, these results
propose that calibrated fMRI at high magnetic fields can provide high spatiotemporal
mapping of CMRO2 changes (Hyder et al., 2010).

What fraction of neuronal ensemble’s activity is needed for brain function?
Although BOLD signal had been shown to correlate with LFP and MUA dynamics
(Logothetis et al., 2001), no specific mechanism for this linkage had been identified yet. The
Yale group sought an energetic basis for this question because the model on the basis of the
Sibson et al 13C MRS studies (Figure 2) proposed a testable hypothesis that neurotransmitter
flux, and consequently oxidative demand, should be proportional to spiking frequency of
glutamatergic neurons (Smith et al., 2002). In an anesthetized rat model, Smith et al derived
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change in oxidative energy (ΔCMRO2/CMRO2) from calibrated fMRI during sensory
stimulation and compared it to changes in spiking frequency of a neuronal ensemble (Δν/ν)
within activated voxels identified by BOLD contrast. Smith et al examined the relationships
from two anesthetized levels and found good agreement between ΔCMRO2/CMRO2 and
Δν/ν, thereby relating the energetic basis of neuronal spiking frequency and
neurotransmitter flux.

A surprising finding by Smith et al was that not all neurons in the recorded ensemble
responded the same way to the forepaw stimulation (Figure 3). The histograms of neuronal
firing rates showed different distributions in the resting and stimulated states. For example,
in the deeply anesthetized level (or a low baseline state) about 60% of the population
showed an increase in firing, about 10% of the population showed a decrease in firing, and
about 30% of the population showed no change in firing. But these fractional responses of
the population were different from the lightly anesthetized level (or a high baseline state),
where the fraction that decreased their firing remained at 10% (see (Smith et al., 2002) and
(Hyder et al., 2002). for details). These fMRI and electrophysiology results from Yale
showed that the fraction of neuronal ensemble’s activity that underlies BOLD contrast is
highly dependent on the baseline state. Similar observations had been made with
electrophysiological measurements under a variety of conditions (McCasland and Woolsey,
1988; Scannell and Young, 1999). Overall these studies suggest that collaboration among a
large number of neurons – some of which are firing faster and others slower but all requiring
energy – is crucial for neuronal signaling.

Another interesting feature of the Smith et al studies was that the same forepaw stimulation
was applied from two anesthetized levels (i.e., low and high baseline states). Although the
histograms representing the two rest conditions showed different distributions, the
histograms for the two stimulated conditions were nearly identical (Figure 3). In other
words, the final values of CMRO2 and ν (and thus BOLD signal) reached upon stimulation
were approximately the same from both baselines (Hyder et al., 2002). If only increments
were required to support function then magnitudes should be independent of the baseline.
But if particular magnitudes of activity were required, then incremental sizes should
inversely correlate with baseline, being larger from a lower baseline (Shulman et al., 1999).
In support of this hypothesis, the results of Smith et al showed that particular magnitudes of
activity support neural function. These results confirmed that disregard of baseline activity
in fMRI experiments by differencing (or correlations) removes a large and necessary
component of the total neuronal activity in the resting brain.

The Smith et al findings are supported by other results, which have been measured by a
variety of techniques (e.g., fMRI, optical imaging, electrophysiology), applied to different
sensory systems (e.g., somatosensory cortex, visual cortex, olfactory bulb), across a wide
range of species (e.g., rat, cat, monkey, human), and under quite diverse behavioral states
(e.g., awake, sleep, and anesthetized. Measurements show that the magnitude of the evoked
response upon stimulation is, to a first-order, inversely related to the level of baseline
activity (Chen et al., 2005; Issa and Wang, 2008, 2009; Li et al., 2011; Masamoto et al.,
2007; Pasley et al., 2007; Portas et al., 2000; Smith et al., 2002; Uludag et al., 2004; Zhu et
al., 2009).

More recent studies at Yale by Maandag et al showed that the spatial extent of activation
spreading is also inversely conditional on the level of baseline activity (Maandag et al.,
2007). Since the separation of the two baseline states (e.g., as reflected by ΔCMRO2) in the
Smith et al and Maandag et al studies differed significantly, these early results about the
relevance of baseline for fMRI studies suggest that careful consideration about an absolute
measure of resting state is necessary. These results from Maandag et al also find support
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from other studies in the literature (Antognini et al., 1997; Disbrow et al., 1999; Disbrow et
al., 2000; Dueck et al., 2005; Erchova et al., 2002; Heinke et al., 2004; Imas et al., 2006;
Sperling et al., 2002). Most of these studies, which used either an anesthetic or a sedative to
alter the baseline state, suggest that evoked activity is more localized under levels of deep
anesthesia or higher sedation (i.e., low baseline state), whereas the response patterns expand
beyond the primary area under levels of light anesthesia or lower sedation (i.e., high baseline
state).

Thus contrary to the traditional approach of just varying the stimulus input, the brain’s input
can also be treated as an independent variable, because perception measured at the cortical
level depends on both exogenous and endogenous inputs (Ebner and Armstrong-James,
1990). While recent experimental evidence is changing the opinion that spontaneous
neuronal activity is simply “noise” (for recent reviews see (Hyder and Rothman, 2011;
Northoff et al., 2010; Ringach, 2009; Shulman et al., 2007)), it should be noted that classical
studies had raised the importance of spontaneous activity for understanding brain function
(Adrian, 1941). Future studies need considerations about properties of the stimulus (e.g.,
amplitude, contrast, etc.) in relation to baseline to study interactions of exogenous and
endogenous inputs (Davis et al., 2007; Silva et al., 2011). Since anesthetics and sedatives are
the primary means to experimentally alter the baseline states, better mechanistic
understanding is needed (Alkire et al., 2008; Franks, 2008). An alternate means of varying
resting brain activity without exogenous chemicals, as recently featured in studies from
Universities of California in San Diego and Berkley (Pasley et al., 2007; Uludag et al.,
2004), are needed for translation to humans.

Understanding healthy aging with multi-modal studies of 13C MRS and
calibrated fMRI

As applications of fMRI to disease states rise (Matthews et al., 2006), there is a growing
need to assess effects of healthy human aging because alterations in brain morphology,
cellular density, or metabolism could significantly influence the BOLD contrast (d’Esposito
et al., 2003). Alterations in mitochondrial function have been implicated in age-related
neurodegenerative diseases through reactive oxygen species hypothesis and have been
suggested to have a role in the loss of brain function with healthy aging (Reddy, 2007).
Healthy human aging is associated with a decline in cognitive, memory, and sensory
processes (Hedden and Gabrieli, 2004). But is there a quantitative neuroimaging correlate of
these cognitive findings?

Recent task-based fMRI studies in healthy human aging show that the BOLD response is
greater in younger subjects, but the CMRO2-CBF couplings established from calibrated
fMRI in aging and younger subjects are nearly identical (Ances et al., 2009). Moreover, the
resting-state fMRI studies show very little difference between the networks revealed in the
healthy young and aging brains (Koch et al., 2010). PET studies have noted 10–20%
reductions in overall CMRglc and CMRO2 with normal aging (Kalpouzos et al., 2009;
Martin et al., 1991), but these may not all be related to mitochondrial changes. Furthermore,
it is unclear whether these metabolic decreases are due to changes at the cellular level or are
secondary to brain shrinkage (Ibanez et al., 2004). Recent 13C MRS studies from the Yale
group shows that, compared with young subjects, neuronal mitochondrial metabolism and
neurotransmitter cycle flux (assessed with 13C-labelled glucose) was approximately 30%
lower in elderly subjects, but glial mitochondrial metabolism (assessed with 13C-labelled
acetate) was approximately 30% higher in elderly subjects (Boumezbeur et al., 2010). Taken
together, these multi-modal studies suggest that healthy aging is associated with reduced
neuronal mitochondrial metabolism and altered glial mitochondrial metabolism, which may
in part be responsible for declines in brain function.
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Concluding remarks
Functional brain imaging methods like PET and fMRI that highlight areas of activity in
vivid hues have revolutionized neuroscience, but has been limited by these methods not
directly capturing changes in neuronal activity or reflecting a measure of total neuronal
activity. Studies using multi-modal MRI, MRS, and electrical recordings have contributed to
quantitating the energetic changes underlying the BOLD signal and directly relating them to
changes in neurotransmission and electrical activity. They also have shown that the baseline
neuronal activity is much larger than the changes in activity induced by tasks, which in turn
has contributed to the recent interest in understanding its functional significance. The
response to task has been shown to be dependent on this baseline activity, which strongly
argues for its functional relevance, and thus every attempt should be made to image the
resting brain activity and metabolism quantitatively and new schemes should be sought for
its inclusion in data analysis. The underlying theme in these early Yale studies, and those
that continue today in several other laboratories around the world, is that functional brain
imaging studies can go beyond just mapping indirect correlates of function and instead
directly study total brain activity as well as the neurometabolic and neurovascular
components that support it in health and disease.
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Figure 1.
High neuronal energy demand and its relation to neurotransmitter cycling reveal a sizeable
level of neuronal activity in the awake brain. Experimental estimates of relationship between
total neurotransmitter cycling rate (Vcyc(tot)) and the cerebral metabolic rate of glucose
oxidation in neurons (CMRglc(ox),N derived using 13C MRS localized to the rat
somatosensory cortex (grey circles for Sibson et al (1998) and red squares are for all other
studies since then) and human visual cortex (blue triangles). The results suggest that about
80% of the resting energy consumption in the awake rat brain is dedicated to events
associated with neuronal activity. The trends, to a first-order, are similar between rat and
human brain 13C MRS data.
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Figure 2.
A revised coupling between synaptic activity and glucose metabolism. Glucose uptake
(green) is now ubiquitous. Astrocytic lactate flow (orange) to neurons is now less, with a
small amount being effluxed to blood. ATP is produced oxidatively (orange) in neurons and
astrocytes. ATP produced by glycolysis (yellow) fuels ion pumping and glutamine synthesis
in astrocytes. Abbreviations: Glu, glutamate; Gln, glutamine; Pyr, pyruvate; Lac, lactate in
astrocytes. See Hyder et al (2006) for details. Modified from Hyder et al (2006), Journal of
Cerebral Blood Flow and Metabolism, NPG.
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Figure 3.
Neuronal ensemble recordings. (A) Experimental variations across electrophysiological
measurements (shown for condition II, i.e., high baseline state, only) from the contralateral
forepaw region. Significant increases and decreases in spiking frequency (ν) within were
observed in ~60% and ~10% of the recordings, respectively (top and middle), whereas in
~30% of the recordings the stimulation did not induce any significant changes in n (bottom).
The vertical and horizontal bars represent the scales for ν and time, respectively. The thick
black horizontal bar represents the stimulus duration. (B and C) The comparison in a small
neuronal ensemble (72 neurons) between basal activity achieved with two dosages of α-
chloralose shows significantly different spiking frequencies at rest (P < 0.01), whereas upon
stimulation the spiking frequencies became similar (P > 0.25). See Smith et al (2002) for
details. Modified from Smith et al (2002), Proceedings of National Academy of Sciences,
USA.
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