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Abstract
Massively univariate regression and inference in the form of statistical parametric mapping have
transformed the way in which multi-dimensional imaging data are studied. In functional and
structural neuroimaging, the de facto standard “design matrix”-based general linear regression
model and its multi-level cousins have enabled investigation of the biological basis of the human
brain. With modern study designs, it is possible to acquire multi-modal three-dimensional
assessments of the same individuals — e.g., structural, functional and quantitative magnetic
resonance imaging, alongside functional and ligand binding maps with positron emission
tomography. Largely, current statistical methods in the imaging community assume that the
regressors are non-random. For more realistic multi-parametric assessment (e.g., voxel-wise
modeling), distributional consideration of all observations is appropriate. Herein, we discuss two
unified regression and inference approaches, model II regression and regression calibration, for
use in massively univariate inference with imaging data. These methods use the design matrix
paradigm and account for both random and non-random imaging regressors. We characterize these
methods in simulation and illustrate their use on an empirical dataset. Both methods have been
made readily available as a toolbox plug-in for the SPM software.
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INTRODUCTION
The strong relationship between structure and biological function holds true from the
macroscopic scale of multi-cellular organisms to the nano-scale of biomacromolecules.
Experience informs the clinical researcher that such structure-function relationships must
also exist in the brain and, when discovered and quantified, will be powerful informers for
early disease detection, prevention, and our overall understanding of the brain. Brain
imaging modalities, such as positron emission tomography (PET) and magnetic resonance
imaging (MRI), are primary methods for investigating brain structure and function.
Quantification of the structure function relationship using imaging data, however, has been
challenging owing to the high-dimensional nature of the data and issues of multiple
comparisons.

Statistical Parametric Mapping (SPM) enables exploration of relational hypotheses using the
design matrix paradigm (i.e., “y = Xβ”) without a priori assumptions of regions of interest
(ROIs) where the correlations would occur (Friston, Frith et al. 1990; Friston, Frith et al.
1991). SPM was initially limited to single modality regression with imaging data
represented only in the regressand (i.e., only y varied voxel by voxel) until extensions (e.g.,
Biological Parametric Mapping, BPM) were developed to enable multi-modality regression
(i.e., to allow X to vary voxel by voxel) (Casanova, Srikanth et al. 2007; Oakes, Fox et al.
2007) and provide for inference robust to artifacts (Yang, Beason-Held et al. 2011). These
multi-modal methods rely on the traditional ordinary least squares (OLS) approach in which
regressors are exactly known (i.e., conditional inference). OLS inference is not inverse
consistent; interchanging the regressor and regressand images would yield different
estimates of relationships (as reviewed by (Altman 1999)). Although conditional inference
may be reasonable in SPM, where scalar regressors are likely to have significantly less
variance than the regressand imaging data such an assumption is clearly violated when both
regressors and regressand are observations from imaging data (as in BPM).

Regression analysis accounting for errors in regressors would greatly improve the credibility
of the BPM model by reasonably considering the randomness of the imaging modality in
both the regressors and the regressands. Empirically successful statistical methods
accounting for random regressors have been developed including regression calibration
(Carroll, Ruppert et al. 2006) and model II regression (York 1966; Ludbrook 2010). The
specific contributions of this work are that, (1) we implement these methods (which are
established and accepted in statistical community) in the context of neuroimaging, (2) we
demonstrate that these approaches are compatible with the design matrix paradigm, contrast-
based hypothesis testing, and multiple comparison correction frameworks, and (3) we
evaluate application of these methods in simulations and an empirical illustration in the
context of multi-modality image regression. Herein, we focus on multi-modality inference;
possible extensions to temporal modeling are discussed but left as future work.

Notation
For consistency, we have adopted the following notation. Scalar quantities are represented
by italic, lower case symbols (e.g., σ2). Vectors are represented by bold, italic, lower case
symbols (e.g., y). Matrices are bold, upper case symbols (e.g., X). The symbol ~ is used to
note “distributed as,” with  used to represent the multivariate Normal distribution.
Subscripts are used to indicate context. For example, the subscript “obs” indicates the
observed value of a random variable. Superscripts are used with matrices to index columns
(i.e.,X(i) is the vector corresponding to the ith column of X) and with vectors to indicate
entries (i.e., β(i) is the ith element of β). Braces (“{ }”) are used to indicate sets, while “:” is
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used to indicate vector concatenation and “’” indicates transpose. The hat (^) indicates an
estimated value of a random variable.

Theory
Our aim is to explain the observed intensity from one imaging modality, y, with a set of
regressors, X, of which at least one member is observed intensity from another imaging
modality. We begin with a typical general linear model (GLM) and reformulate it to
explicitly reflect the clinical imaging case of both random and non-random regressors. To
begin, GLM is formulated as,

(1)

(2)

where ηy is a parameterization of observational error in y, β is a vector of the fitted
coefficients, ε is the regression error in the model fit, and I is the identity matrix. The
observation error (ηy) and the equation (or model error) (ε) are assumed to be mutually
independent.

Let us consider the columns of the design matrix, X, in two disjoint sets: fixed regressors
whose values are considered to be exactly known, Xf, (i.e., the variance in observed values
is much less than the variance of the regressand) and random regressors, Xr, whose
observations have non-negligible variance (i.e., X=[Xr:Xf]). Note, β must be
correspondingly partitioned into βf and βr (i.e.,β = [βr:βf]). In BPM, all regressors in the
design matrix are treated as fixed regressors, but in fact, the image intensities in the design
matrix are observed with measurement error. The use of traditional OLS yields a non-
inverse consistent fit, as illustrated in Figure 1, due to the model that only considering
measurement errors occur in y, but ignoring the errors in x. If the roles of x and y are
exchanged, the estimated coefficients are altered (i.e., the errors are assumed to lie in x and
the fit is not inverse consistent).

In the more realistic regressor measurement error model, the Xr are not exactly known and
instead are estimated from observations, Xr,obs, containing measurement error:

(3)

where ηx is zero-mean Gaussian distributed measurement error with variances . Note
diag indicates a matrix with diagonal elements corresponding to the given vector. Herein, we
will discuss two methods that, unlike ordinary least squares, can account for the regressor
measurement error: regression calibration and model II regression.

Theory: Regression Calibration
Regression calibration is a simple, widely-applicable approach to measurement error
analysis described in (Carroll, Ruppert et al. 2006). The random regressors, Xr, are observed
multiple times to obtain replicated measurements, Xr,obs1, Xr,obs2,…Xr,obsd for d repeated
measurements. To create an estimate of Xr, one could simply average the repeated
measurements. However, regression calibration improves upon the average by accounting
for the covariance between all regressors (including the fixed regressors). In short, the new
estimated values for the random regressors, Mr, are obtained through approximation of
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E(Xr|Xf,{Xr,obsi}i=1…d), where E indicates the expected value. Using the new approximation
of Xr, a standard analysis on the estimated general linear model is performed,

(4)

For inference on the significance of β estimates, we used the residual bootstrap method as
reviewed in (Carroll, Ruppert et al. 2006).

Theory: Model II Regression
In medical image analysis, especially in functional MRI, it is difficult or impossible to
obtain replicated measurements for X. Additionally, replicated measurements are
complicated by the increased resource requirements, increased cost of experimentation, and
increased level of volunteer participation. To work within these constraints and avoid the
need for replicated measurements, we consider model II regression. model II theory diverges
from OLS through incorporation of the noise in random regressors (as in Eq. 3), and Eq. 2
becomes,

(5)

Let zi be a vector concatenating the observational errors in y(i) and in . Note that the
observational errors, zi, are errors across subjects and not conditional errors across an image.

Given that each  vector is observed from a unique experimental technique, the elements
of zi are independent and that the row vectors zi are also independent across subjects.
Therefore, the errors across zi follow a multivariate normal distribution (Friston, Holmes et
al. 1994):

(6)

Under these assumptions (normal, independent, and identically distributed), the log-
likelihood of the observed data, given the model in Eq. 5 and Eq. 6 is,

(7)

where there are n subjects (rows of X).

Maximizing the log likelihood, Eq. 7, is equivalent to minimizing . With
the assumption of independent observations, the covariance matrix, Σ, is diagonal with

entries . Hence, s can be re-expressed as,

(8)

where there are q regressor random variables and the subscript L2 indicates the L2 norm
(i.e., square root of the sum of squares). Eq. 8 is minimized when its partial derivatives with

respect to each dependent variable is zero. We first solve for each  by differentiating s

with respect to , setting the result to zero, and using the linear model relation (Eq. 5).
Some manipulation yields,
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(9)

Eq. 9 is now independent of the unknown Xr and provides an intuitive form as the error in
the numerator is balanced by the individual variances in the denominator and mirrors the
more readily available multivariate case with non-random X and the univariate case that
accounts for one random regressor (Press 2007). Eq. 9 is a function of two unknown vectors:
β and σ.

Hence, the variance ratios need to be known in order to minimize s by solving β; otherwise
the system of equations will be undetermined for σ (Carroll and Ruppert 1996). Note that
only the relative variance between observations factors into s (as opposed to the absolute

variances). If the ratios for  are known (or can be reasonably estimated), then the
optimization becomes well defined with an equal number of unknown to available
equations. We employ numeric Nelder–Mead method to optimize with respect to β. If we
add the further assumption that the ratio of the overall measurement error ratio across
subjects is proportional to the ratio of the image noise variance, then we can estimate the
measurement error ratio by estimating the ratio of image noise for each modality. We note
that the maximum likelihood estimate of β are asymptotically normally distributed. As
reviewed in (Penny, Friston et al. 2006), we can use the Fisher information to construct the

asymptotic distribution of contrasts of the parameter estimates (i.e., c’ ) and estimate t-
values (and corresponding p-values) for inference.

A common theoretical problem with applications of model II regression is that it is tends to
overestimate the influence of the error of the regressors (i.e., ηx and ηy) by ignoring the
equation error (∊) (Carroll, Ruppert et al. 2006). Here, we partially address this problem by
partitioning the total error in an arbitrary (but reasonably justified) manner according to the

relative variances of each measurement (i.e.,  versus ). Hemodynamics and/or
correlated error models could be addressed in this framework through estimation and pre-
whitening as is typically done with restricted maximum likelihood approaches for fMRI
time series (Friston, Glaser et al. 2002; Friston, Penny et al. 2002), but secondary noise
modeling is beyond the scope of this initial work.

Methods and Results
Regression calibration and model II regression were implemented in MATLAB as an SPM
Toolbox and integrated with a cluster processing environment as illustrated in Figure 2.
Regression calibration and model II regression are incorporated as regression method
choices in the BPM toolbox for the SPM software using Matlab (Mathworks, Natick, MA).
These modified software and demonstration data corresponding to the simulation examples
are released in open source at http://www.nitrc.org/projects/rbpm/.

Single Voxel Simulations
Regression Calibration vs OLS—For each of the following single voxel simulation
scenarios, a simulated voxel with 50 observations (i.e., subjects) was studied using a model
with one random regressor, one fixed regressor, and a single constant: y = xrβr + xfβf + β1 +
ε. In each of 500 Monte Carlo trials, regressors (xr and xf) were chosen randomly from the
uniform distribution [0 1], βT were chosen randomly from the uniform distribution [0 2],

Yang et al. Page 5

Neuroimage. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nitrc.org/projects/rbpm/


and errors were added to y and xr from a normal distribution with variances  and 
respectively. Two measurements for each xr,(xr,obs1,xr,obs2) were simulated. OLS was
performed using only the first measurement xr,obs1. Regression calibration was evaluated
compared to OLS with the relative root mean squared error (rRMSE) in β (βrRMSE), defined
over each Monte Carlo Simulation (sn) for regression calibration (RC) and OLS estimates
relative to the true (T) parameters:

(10)

A. Regression calibration vs OLS response to σx,r:σy ratios (Figure 3A). Simulations
were performed varying σx,r:σy. Regression calibration performs equally well as
OLS with small σx,r:σy, but becomes advantageous as more relative error is
introduced into xr observations. This advantage is most notable in random regressor
coefficient βr.

B. Regression calibration vs OLS response to number of random regressors (Figure
3B). The above model was altered by including up to four additional random
regressors with randomized coefficients. Over the model complexity range
investigated, regression calibration has universally smaller errors in all estimated
coefficients compared to OLS. Interestingly, the advantage of regression calibration
over OLS for βf and β1 increased with increasing model complexity, while the
advantage over OLS decreased for βr.

C. Regression calibration sensitivity to the number of replicated measurements (Figure
3C). To assess the response of regression calibration to the number of replicated
measurements, the number of random regressor measurements was increased from
two to ten. For the increasing number of replicated measurements, the accuracy of
regression calibration for βr, βf, and β1, is improved slightly over OLS. We note
that since the noise on the regressors was Gaussian in this simulation, regression
calibration (which assumes a Gaussian error model) was able to accurately model
the variance with limited numbers of observations.

Model II Regression vs OLS—Model II regression was compared to OLS using a
similar model as was used for comparisons with regression calibration. A simple model with
one fixed and one random regressor was used y = xrβr + xfβf + β1. For 50 observations,
regressors (xr and xf) were chosen randomly from the uniform distribution [0 1], βT were
chosen randomly from the uniform distribution [0 2] and errors were added to y and xr from

a normal distribution with variances  and , respectively. Model II regression and OLS
are performed on the same dataset. Relative performance of model II to OLS is quantified
by the rRMSE in β (Eq. 10).

A. Model II vs OLS response to σx,r:σy ratios (Figure 4A). Simulations were
performed varying σx,r:σy. The performance of model II regression and OLS are
comparable for small σx,r:σy, but model II regression becomes more advantageous
as more relative error is introduced into xr,obs. The improvement is observed
specifically on the random regressor coefficient βr, whereas the constants not
associated with random regressors, β1 and βf, remain with approximately equal
accuracy in estimation between the two models.

B. Model II vs OLS response to number of random regressors (Figure 4B). The above
model was altered by including up to four additional random regressors with
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randomized coefficients (randomly drawn from the uniform distribution [0 2]).
Model II has smaller errors in the βr estimates than OLS; however, model II
becomes less advantageous with increases in the number of random regressors.
Note that the number of observations was not increased to compensate for the
increased model complexity; therefore less data per regressor is available with
more regressors.

C. Model II sensitivity to the estimated ratio (Figure 4C). To assess the robustness of
model II against varying levels of accuracy in the σx,r:σy ratio estimates, the
estimated ratio of the variance was altered between 1/10th and 10 times its true
value, which was set at one. Under the cases simulated here, model II is insensitive
to the ratio mis-estimation range 0.5 to 2, and relatively insensitive over the range
0.1 to 3. At extremely incorrect ratio values, the βr estimate rapidly loses accuracy.
Based on this analysis we can apply model II regression using an estimated error
ratio, with reasonable confidence in the methods’ tolerance to mis-estimation of
variance ratios.

Volumetric Imaging Simulation—To explore the performance of these methods on an
imaging dataset, we simulated images of two modalities and regressed one modality on the
other modality. The true regressor images are simulated from smoothed gray matter (GM)
density images of 40 participants in the normal aging study of the Baltimore Longitudinal
Study on Aging (BLSA) neuroimaging project consisting of 79×95×69 voxels with
0.94×0.94×1.5 mm resolution (Resnick, Goldszal et al. 2000). To create repeated
measurements for regression calibration, we simulated two observed regressor images for
each subject. OLS and model II were applied to the first set of measurements. To test the
regression methods, a simple model with a single random regressor and constant was used, y
= βrxr + β1 + ε. Inside the caudate region: βr = 1.5, inside the putamen: βr = −0.6, and for
all other brain regions: βr = 0. The observed regressand images and the observed regressor
images were generated by adding zero mean Gaussian noise across subjects and the standard
deviation used for each voxel was chosen to maintain an SNR around 15 for each image
(SNR is defined as the mean signal divided by the standard deviation of noise).

Figure 5 presents the simulated images, the  from each method, and the t-map for the
regressor images (the spatial map of the test statistic for the null hypothesis). For clarity, the
number of replicated measurements used for regression calibration was two and the
estimated and true ratio for σx,r:σy was one for model II regression. The simulation method
was repeated 10 times to create 10 imaging datasets (each of the 10 imaging datasets
contained 40 × 2 xr images and 40 y images). The average false positive rate (FPR), average
false negative rate (FNR), and the root mean square error are calculated using the
uncorrected p-value < 0.001. The results are summarized in Table 1.

In this simple model, both OLS and regression calibration control the type I error rate as
expected (FP, Table 1). Meanwhile, regression calibration and model II regression improve
the true positive rate as compared to OLS regression (100-FNR, Table 1). For the root mean
square error, when the true coefficient is zero (βr = 0), the OLS method slightly outperforms
the regression calibration and model II regression; when the relationship between xr and y
exists (βr ≠ 0), both regression calibration and model II regression outperform OLS.
Regression calibration is slightly superior to model II regression (but requires additional
measurements).

Empirical demonstration of model II regression—Image-on-image regression offers
a direct opportunity to study associations between differing spatially located factors. As an
illustrative example, consider potential correlations between gray matter (GM) tissue density
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(a structural measure) and PET signal (a measure of functional activity). A first model
would associate tissue presence with greater functional signal. An analysis of modulating
factors for this relationship (such as disease condition, intervention, or task) could reveal
anatomical correlates of functional reorganization and shed light on the applicability of the
structural-functional hypothesis.

Following this approach, we perform regression analysis of the relationship between
anatomical MRI GM images and functional PET images. We used a sub-cohort of 23
healthy participants (14 M/9 F, 60-85 y/o at baseline). Each subject was studied annually for
eight years with a T1-weighted MRI sequence (1.5T, GE Medical Systems, SPGR,
0.9375×0.9375×1.5 mm, 256×256×124 mm field of view) and PET data (GE 4096+
scanner, 15 slices of 6.5mm thickness, 60s). The baseline scan was denoted as year 1 and the
last scan was denoted as year 9. The data were preprocessed with SPM5
(http://www.fil.ion.ucl.ac.uk/spm/software/spm5). The structural scans were normalized to
MNI-space, segmented and smoothed (12 mm Gaussian kernel) to obtain smooth GM
density images. PET images were normalized, smoothed (12 mm Gaussian kernel) to MNI-
space, and calibrated for global blood flow measurements to form cerebral blood for
measurements and normalized to [0 1] scalar.

Regression was performed in both directions in order to quantify both structure→function
and function→structure relationships. The “structure” data was constructed by
concatenating all smoothed gray matter data for year 1 and year 9 and all subjects, and the
“function” data was constructed by concatenating all corresponding, smoothed, calibrated
PET images. Hence, the regression model used one random regressor and one single
constant. Note that this analysis is simplified to illustrate the use of these methods; a
traditional application would also include confounds (age, gender, pre-existing conditions,
year of scan, etc.) and an analysis of time courses and interaction terms. An extended
characterization of the BLSA data is ongoing and beyond the scope of this work
demonstrating statistical methods.

As is common in practice, only one measurement for each modality image is available and
regression calibration cannot be applied. The model II σx,r:σy ratio is estimated following
the method in (Rajan, Poot et al. 2010), with the window size for the method selected
according to the image modality. The raw data and the resulting OLS and model II
regression lines for a single voxel comparison are displayed in Figure 6. The model II
regression model is symmetric, i.e., the mapping PET→GM is the inverse of the mapping
GM → PET while OLS is not. The corresponding estimated variances for model II are also
smaller than the corresponding estimated variances in OLS forward regression and OLS
inverse regression.

Conclusions
Properly accounting for error is essential for valid parameter estimation and statistical
inference. Herein, we have demonstrated that a consideration of observation variability is
feasible within the confines of a design matrix paradigm. Furthermore, we can readily
consider simultaneous treatment of parameters with measurement error alongside
traditionally defined fixed parameters. Our formulation of “random observations” remains
within the context of a “fixed effects” model as the βr are deterministic parameters, as
opposed to the classic “random effects” model where parameters are stochastic. These two
approaches are complementary and could be combined for an appropriate experimental
framework. Extension of the random regressor concept to time series, hierarchical, and other
complex model designs is a fascinating area for continuing research.
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We have observed substantial improvements in model fit using regression calibration and
model II regression as opposed to OLS (Figure 3A, Figure 4A). While performance of
regression calibration and model II were robust to increasing model complexity (Figure 3B,
Figure 4B) and prior estimation of observation variability (applicable to model II only,
Figure 4C), the improvements were not universal. When the OLS is appropriate (i.e.,

), OLS performs comparable to regression calibration (Figure 3A) and for model II
there was a slight increase in observed error relative to OLS (Figure 4A); however, as the
relative variance in xr increased, the OLS assumption of fixed regressors becomes
increasingly violated and increased variance could be observed in the OLS estimates. We
emphasize that the simulations neglect the many of nuances of empirical studies (e.g.,
correlations among regressors); these results should be viewed as guide to when alternative
regression approaches should be evaluated as opposed to definitive evidence that a particular
method is best suited.

On average, differences between the advanced statistical methods and OLS may be subtle as
seen in the parameter estimates and statistical maps in Figures 5 and 6. As Table 1
highlights, OLS appears quite robust against false positives; however, this may come at the
expensive of reduced power and accuracy. In practice, it is important to consider the impact
of the inference approach on individual voxels, as local findings drive interpretation and
consideration of the multiple sources of measurement error may lead to different parameters
estimates and/or different significance values. Model II and regression calibration can be
further adapted to accommodate diverse regression scenarios. For example, a non-
parametric method would be more suitable when the distribution assumptions are unknown
(Nichols and Holmes 2002) while robust regression methods could be applied in the case of
outliers (Huber, Ronchetti et al. 1981; Diedrichsen and Shadmehr 2005; Yang, Beason-Held
et al. 2011).

Important areas for further development of model II and regression calibration remain. For
parametric regression, other error models besides Gaussian may be more appropriate for
specific imaging modalities and warrant further consideration. For model II, interpreting the
ratio of model variances is a subject of active consideration as one must consider the
potential impact of both the imaging variability and model fit error in multiple dimensions.
As discussed, we currently approximate this combined quantity as proportional to the
imaging variability alone. Developing methods to relax this assumption would greatly aid in
generalization of this approached.

Our presentation of model II regression herein is inverse consistent, provides a logical
framework for exploring relationships in multi-modal image analysis, and can help model
relative uncertainty in imaging methods. Regression calibration accounts for measurement
error and has been shown to improve on OLS in massively-univariate imaging scenarios.
The requirement of repeated measurements for regression calibration makes model II a more
likely choice for imaging data where repeat scans are uncommon. These methods are readily
available in open source as plug-ins for the SPM package. Sample datasets and program
documentation are available with the program for download.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Optimal regression fitting depends on how distance is considered. In traditional OLS (blue:
regress “x on y”), the sum of squared vertical distance is minimized (blue dash), while in the
reciprocal problem with OLS (red: “y on x”), the sum of squared horizontal distance (red
dash) is minimized. The resulting regression lines from the two approaches (solid blue and
solid red respectively) disagree with each other. The estimation result depends on in which
direction we minimize the distance such that a symmetric optimal model cannot be
achieved.
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Figure 2.
Regression calibration (A) and model II regression (B) address uncertainty in multiple
variables. Regression calibration uses repeated measures to estimate variance in the
regressors, while model II regression relies on an estimation of the relative variance between
the regressors and regressands to minimize error.
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Figure 3.
The rRMSE of regression calibration to OLS for each estimated coefficient (βr,βf,β1) are
plotted as a function of the ratio of the true standard deviations, σx,r:σy (A), the number of

random regressors,  (B), and the number of replicated measurements (C). (Note, y-axis
was visually optimized for each figure and are not common across A, B, and C.) With
increasing σx,r:σy ratios, regression calibration has increased relative accuracy in βr
estimates compared to OLS. The common simulation shared in (A, B, C) is indicated by a
gray line.
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Figure 4.
The rRMSE of model II to OLS for each estimated coefficient (βr,βf,β1) are plotted as a
function of the ratio of the true standard deviations, σx,r:σy (A), the number of random

regressors,  (B) and the accuracy of the ratio estimate (C). (Note, y-axis were visually
optimized for each figure and are not common across A, B, and C.) With increasing σx,r:σy
ratios, model II regression has increased relative accuracy in βr estimates compared to OLS
with increasing σx,r:σy ratios. In (C), the estimated ratio of σx,r:σy was allowed to deviate
from the simulated value,σx,r:σy = 1. The common simulation shared in (A, B, C) is
indicated by a gray line.
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Figure 5.
Simulated imaging associations. The first column shows two noisy regressor images for one
subject, the first measurement is used in OLS regression and model II regression while both
of them are used in regression calibration. The second column shows the paired noisy
regressand image. The estimated coefficient β map and the positive t-map are displayed in
the upper right-hand row of and lower left-hand row respectively. The β and t-maps are
shown for OLS, regression calibration (RC) and model II regression. The differences
between the methods are difficult to appreciate in a visual comparison; please see Table 1
for a quantitative summary.
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Figure 6.
Model II and OLS multi-modality regression analysis. OLS (A) and Model II (B) lead to
distinct patterns of significant differences (p<0.001, uncorrected) when applied to identical
empirical datasets and association models. Inspection of single voxel: PET vs Grey Matter
MRI (GM) illustrates the reasons for the different findings (C). The GLM model used for
the forward mapping is y = xrβr + β1, where y represents PET image intensities and
represents GM normalized image intensities. On the left-hand side of (C), example images
of PET and GM are shown, along with the location of the single example voxel whose
regression analysis is displayed in the right-hand plot. The individual data points (blue
circles) were fit using OLS (red lines) and model II regression (green dashed line). Note that
the inverse mapping for OLS (red dash) is not the same as the forward mapping (red solid
line). The model II mapping was found to be reversible and can be represented by the same
line. Resulting error bars and corresponding σx,r:σy value estimates are compared between
OLS and model II in the lower right-hand insert.
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