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Reconstructing the macroscopic human cortical connectome by Diffusion Weighted Imaging (DWI) is a
challenging research topic that has recently gained a lot of attention. In the present work, we investigate
the effects of intra-voxel fiber direction modeling and tractography algorithm on derived structural network
indices (e.g. density, small-worldness and global efficiency). The investigation is centered on three semi-
independent distinctions within the large set of available diffusion models and tractography methods: i) single
fiber direction versus multiple directions in the intra-voxel diffusion model, ii) deterministic versus probabilistic
tractography and iii) local versus global measure-of-fit of the reconstructed fiber trajectories. The effect of algo-
rithm and parameter choice has two components. First, there is the large effect of tractography algorithm and
parameters on global network density, which is known to strongly affect graph indices. Second, and more
importantly, there are remaining effects on graph indices which range in the tens of percent even when
global density is controlled for. This is crucial for the sensitivity of any human structural network study and
for the validity of study comparisons. We then investigate the effect of the choice of tractography algorithm on
sensitivity and specificity of the resulting connections with a connectome dissection quality control (QC)
approach. In this approach, evaluation of Tract Specific Density Coefficients (TSDCs) measures sensitivity while
careful inspection of tractography path results assesses specificity. We use this to discuss interactions in the
combined effects of these methods and implications for future studies.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Reconstructing in vivo the macro-scale human connectome
(Sporns et al., 2005), which is themap of all the structural connections
in the human brain, represents a challenging and important research
topic in neuroimaging which has gained a lot of popularity in recent
years. An individual large-scale connectome is represented by a
graph with a set of nodes, representing a parcellation of the brain
anatomy, and a set of edges (equivalently: an edge-weight connectivity
matrix or binary adjacency matrix) which can be usefully analyzed
using graph theory and network analysis (Rubinov and Sporns, 2010).
The main technique by which individual structural connectome recon-
struction is made possible in vivo is diffusion-weighted magnetic reso-
nance imaging (DWI).

There are several steps in the post-processing pipeline for DWI data to
create a connectivity matrix that represents the macroscopic structural
connectome (Hagmann et al., 2007, 2008). Among themarewhitematter
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and cortical graymatter segmentation froman anatomical (T1-weighted)
MRI, parcellation of the graymatter into nodes of the connectome graph,
creation ofwhitematter seed points andmasks, intra-voxelwater diffu-
sion and/or fiber direction modeling, tractography to connect local di-
rections into long-distance connections and computation of edge-
weights between cortical nodes from tractography results. Earlier
work has investigated the effects of gray matter parcellation (Zalesky
et al., 2010), seed point placement strategy for tractography (Cheng
et al., 2011; Li et al., 2011) and the reproducibility of network indices
(Bassett et al., 2011a). For instance, Zalesky et al. (2010) show that
the small-worldness measure increases with a larger number of nodes
resulting from a greater degree of parcellation of the gray matter. In Li
et al. (2011), it is shown that the identification of network hubs in the
brain can depend on the tractography seed point placement strategy.

Herewe focus on the effects of intra-voxel fiber directionmodeling
and tractography algorithm on connectome graphs, each of which has
seen intensive development and a plethora of approaches over the last
decade. We center this investigation on three semi-independent
distinctions within this large set of available methods, as summarized
in Table 1: i) a single fiber direction compartment versus multiple
directions in the intra-voxel diffusionmodel, ii) a deterministic versus
a probabilistic tractography algorithm and iii) a local or step-wise

http://dx.doi.org/10.1016/j.neuroimage.2012.06.002
mailto:matteo.bastiani@maastrichtuniversity.nl
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Table 1
Different classes of intra-voxel diffusion models and tractography algorithms used in this work divided according to the dimensions: single-direction versus multi-direction
intra-voxel diffusion model, deterministic versus probabilistic tractography and local versus global tractography. Examples within each category are listed, with the representative
technique used in this study in boldface font. See main text for further explanation of specific methods and abbreviations. Tractography method class abbreviations: single-direction
deterministic (SDD), single-direction probabilistic (SDP), multiple-direction deterministic (MDD), multiple-direction probabilistic (MDP), single-direction global (SDG), and
multiple-direction global (MDG). References: [1] (Basser et al., 2000), [2] (Westin et al., 2002), [3] (Lazar et al., 2003), [4] (Parker et al., 2003), [5] (Behrens et al., 2003), [6] (Tuch
et al., 2003), [7] (Wedeen et al., 2008), [8] (Hagmann et al., 2008), [9] (Tournier et al., 2007), [10] (Tournier et al., 2010), [11] (Behrens et al., 2007), [12] (Parker and Alexander,
2005), [13] (Iturria-Medina et al., 2007), [14] (Sherbondy et al., 2008), [15] (Sotiropoulos et al., 2010), and [16] (Sherbondy et al., 2009).

Diffusion model Single-direction Multi-direction

Tractography method Deterministic Probabilistic Deterministic Probabilistic

Local tractography SDD
- DTI streamline [1]
- Tensor deflection [2,3]

SDP
- PICo [4]
- PROBTRACK [5]

MDD
- ODF streamline [6,7,8]
- CSD streamline [9]

MDP
- iFOD [10]
- PROBTRACKX [11]
- PAS-PICO [12]

Global tractography SDG
- DTI Graph-tractography [13]
- ConTrack [14]

MDG
- CSD Multigraph-tractography [15]
- BlueMatter [16]

1733M. Bastiani et al. / NeuroImage 62 (2012) 1732–1749
versus global measure-of-fit to the voxel-wise data in reconstructing
fiber trajectories.

Several models have been proposed to characterize intra-voxel
water diffusion hindered or restricted by white matter fiber tissue,
based on the diffusion-weighted MR signal. Diffusion tensor imaging
(DTI; Basser and Pierpaoli, 1996; Basser et al., 1994) represents the
most established post-processing technique for DWI data. It consists of
fitting a rank-2 tensor in each imaging voxel to model the molecules'
diffusion as a three dimensional Gaussian probability distribution
function (PDF). The uni-modal Gaussian PDF admits only a single
main direction of diffusion in a voxel.

It was recognized early on that being able to estimate a single fiber
direction per imaging voxel might not be enough. This is because
partial volume effects will average two or more fiber populations with
different local orientations in large parts of the imaging volume. Fur-
thermore, fibers might be tightly interdigitated, producing something
more like a 3-dimensional weave than multiple tight fasciculations.
This has stimulated investigation into new acquisition protocols, such
as high angular resolution diffusion imaging (HARDI; Frank, 2001;
Tuch et al., 2002), and new PDF reconstruction strategies that can
produce multi-modal functions. Initially diffusion spectrum imaging
(DSI; Wedeen et al., 2005) and Q-ball imaging (QBI; Tuch, 2004; Tuch
et al., 2003) were posited as techniques that estimate the actual spin
displacement of watermolecules withoutmaking any prior assumption
about the shape of the 3D PDF. A crucial abstraction made in QBI was to
model only the 2D orientation distribution function (ODF) on the
sphere. The identification of more than one diffusion direction in a
voxel enables superiorfiber tractography through regionswithmultiple
populations of fibers with different orientations (Wedeen et al., 2008).
Subsequently, many more methods have been proposed to identify
multiple fiber directions per voxel, including constrained spherical
deconvolution (CSD; Tournier et al., 2004, 2007), the extended ball
and stick model (Behrens et al., 2007), the diffusion orientation trans-
form (DOT;Ozarslan et al., 2006), the composite hindered and restricted
model of diffusion (CHARMED; Assaf and Basser, 2005), generalized
diffusion tensors (Liu et al., 2004; Ozarslan and Mareci, 2003) and gen-
eralized q-sample imaging (GQI; Yeh et al., 2010).

Once the fiber directions have been estimated for each voxel,
tractography algorithms aim to reconstruct the axonal fiber bundles
connecting different brain areas. The first tractography approaches
to be developed connect discrete steps along the preferential diffusion
directions (Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999),
the so-called deterministic ‘streamline’ approach. So-called tensor
deflection or tensor projection was introduced to use more than just
the primary eigenvector of the local diffusion tensor model (Lazar et
al., 2003; Westin et al., 2002). The streamline approach was soon
generalized to multi-direction fiber models (Tuch et al., 2003).
Probabilistic tractography approaches characterize the variability
of tractography results arising from the uncertainty of the estimated
local fiber directions (Behrens et al., 2003; Parker et al., 2003). This
contrasts them with deterministic approaches which give a single
deterministic answer for the connection of a given region-of-interest
(ROI) to any part of the brain.More precisely, the result of a probabilistic
tractography algorithm for every single well-defined seed point is a 3D
map of visitation counts for fibers through a voxel. The same noisy
streamline or diffusing particle principles have been applied to multi-
direction models to create what we call local probabilistic multi-
direction approaches (Behrens et al., 2007; Parker and Alexander,
2005; Tournier et al., 2010).

A final recent development step is to move from local step-wise
reconstruction of fiber trajectories to a global goodness-of-fit of the
entire candidate fiber. Here, the measure of fit quantifies the joint
likelihood of the fiber given all voxel data it passes through (Jbabdi et
al., 2007; Sherbondy et al., 2008, 2009; Tuch et al., 2002; Zalesky and
Fornito, 2009). The global fit measuremakes tractography less sensitive
tomodeling errors caused by local noise (Jbabdi et al., 2007). Recently, a
graph-based tractography algorithm (Iturria-Medina et al., 2007) and
its extension to a multiple direction fiber models (Sotiropoulos et al.,
2010) have been proposed. These algorithms reconceptualize the global
tractography problem as a shortest-path search in a graph, in which (in
contrast with the connectome graph, described above) nodes are repre-
sented by the center of each white-matter voxel. Since graph-weights
are then defined as the probability of voxel-center connections given
the local ODFs, a shortest path from one point to another in this graph
constitutes a globally optimized fiber. Since in a shortest-path search
all possible nodes are visited and the path lengths recorded, the n%
shortest paths then correspond to the n%most likely paths in the prob-
abilistic tractography sense. Thus, graph-based methods – and in fact,
global methods in general – are naturally used as probabilisticmethods.
The onlyway to force a global graph based approach to be deterministic
is to select only its highest percentile results for consideration, which
corresponds to looking at only the single shortest path that connects
two points. This is why in Table 1, global methods are considered to
be probabilistic, with the possibility of a deterministic interpretation
when only the highest percentile results are considered.

The first aim of this paper is assessing the effects of two different
intra-voxel diffusion model classes and four different tractography
algorithm classes (see Table 1) on the whole-brain connectivity
matrix. To this end we evaluate the outcome of applying all method
combinations to construct a cortical connectivity matrix. Commonly
used graph measures are then calculated to evaluate their sensitivity
to the employed diffusion model and tractography algorithm. This
means that the question on which tractography approach to choose
for in vivo connectome reconstruction becomes evenmore important.
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Therefore, in the second part of this paper we present a connectome
dissection quality control (QC) approach that combines careful in-
spection of tractography path results with tract specific density coef-
ficients (TSDCs) that quantify sensitivity and specificity.

Methods

MR data acquisition

Whole brain scans of two healthy male subjects (aged 25 and 29)
were acquired after obtaining written informed consent. Previous
investigationshave shown that the reproducibility of structural network
indices over different subjects is very high (Bassett et al., 2011a). In
addition, we investigate intra-subject reliability by computing 10
different random surface parcellations (Zalesky et al., 2010) for each
subject (described below). The experiment was approved by the local
ethical committee of the Faculty of Psychology and Neuroscience.

A Siemens 3 T MAGNETOM Allegra MR scanner equipped with a
high slew-rate head gradient-coil (amplitude 40 mT/m, slew rate
400 T/m/s) and an 8-channel phased-array head RF-coil was used to
acquire the data. A double refocused spin-echo diffusion sequence
was used to acquire 131 volumes of data, with TR=6600 ms, TE=
94 ms, b-value=3000 s/mm2, 88×88 matrix, 52 axial slices, 2.5×
2.5×2.5 mm³ voxels, partial Fourier=6/8 and a bandwidth of
2840 Hz/pixel (echo-spacing 0.4 ms). A total of 120 diffusion gradient
directions were acquiredwith 11 unweighted (b=0 s/mm2) volumes
acquired after every 12 gradient directions and including the first and
last volumes. The total acquisition time for the diffusionweighted data
was 14:30 min.

A T1-weighted 3D MPRAGE scan (TR=2250, TE=2.6 ms, flip
angle=9°, 256×256 matrix, 192 sagittal slices, 1×1×1 mm voxels)
was acquired for gray/white matter boundary segmentation. Resting
state fMRI data was also acquired in the same session (not reported
here). The subject's head was immobilized using foam cushions.

Diffusion data preprocessing

Diffusion data were preprocessed in order to correct for bulk
motion and distortions induced by eddy currents using the FMRIB's
Diffusion Toolbox available in FSL (Behrens et al., 2003). The estimated
transformationmatrices were used to transform the diffusion gradient
directions accordingly (Leemans and Jones, 2009). No further trans-
formations were performed on the diffusion-weighted data (or on
the diffusion models estimated from it, see below). That is: all direc-
tional modeling and tractographywere performed in ‘native’ diffusion
data space.

All algorithms use the same white matter masks or waypoint
maps, through which the fibers were allowed to pass. In order to
obtain thesemaps, fractional anisotropy (FA) volumeswere thresholded
using two values and a 3×3×3median filter was applied to remove any
holes. To investigate the effect of FA threshold, twoversionswere created
at values of 0.1 and 0.2.

In the current study, we did not correct for EPI distortions by a field
map correction. In this head scanner with high slew rate capability,
the geometric distortion for diffusion imaging from EPI was found to
be relatively small compared to 2.5 mm isotropic voxels. Field map
correction was evaluated but was found not to lead to a significant
improvement in distortions.

Anatomical data processing

White matter (WM), gray matter (GM) and cerebrospinal fluid
(CSF) were segmented using FSL FAST (Zhang et al., 2001). The white
matter volume was then imported in BrainVoyager QX (v. 2.2; Goebel
et al., 2006) for further refinement and creation of a 100,000 vertex tes-
sellation of the WM/GM boundary of both hemispheres using the
surface reconstruction algorithm. The boundary surface was trans-
formed to the DWI data space by an affine transform to determine the
termination point of white matter fibers at the gray matter boundary.
By moving inward from the WM/GM boundary along the surface
normal to the closest WM mask voxel, ~30.000 unique WM/GM
boundary (WMbound) voxels were identified in diffusion data
space. These Wmbound voxels were considered as termination loci
when reconstructing the high-resolution connectome.

A lower-resolution connectome was obtained from the high-
resolution one by parcellating the WM/GM surface in 4000 random
equi-surface patches (the connectome graph nodes) using a modified
iterative constrained centroidal Voronoi tessellation (CCVT) approach
(Du et al., 2003) which is described in more detail in Appendix A. The
number of 4000 was motivated by Zalesky et al. (2010) and the aim
to use a large number of equi-surface parcels that simultaneously
minimizes the effect of parcellation and maximizes the sensitivity to
the effects of tractography approach. To further decrease the effect
of any single random parcellation all results presented are averaged
over 10 different random parcellations per subject. Standard errors
are computed over all 10 parcellations and over both subjects.

Voxel-wise diffusion model estimation

In this paper, two models representing two general classes of intra-
voxel diffusion and fiber architecture were used. As a single-direction
model, diffusion tensors (DTs) were fitted to the acquired data by linear
regression using a least-square minimization approach. The tensorial
matrix was then diagonalized by a Jacobi rotation technique to obtain
its orthogonal eigenvector system.

As a multi-direction HARDI based model, CSD fiber orientation
distributions (FODs) were reconstructed (Tournier et al., 2007) over
a five-fold tessellated icosahedron. This technique was selected for
its robustness in estimating orientational distributions from HARDI
data. Moreover, FODs represent actual fiber orientation distributions
rather than water-bound spin displacements, which leads to stable
and accurate local orientations that are very beneficial for both local
and global tractography purposes (Fillard et al., 2011). Subsequently,
up to three rank-1 6th-order tensors were fitted to every FOD
(Schultz and Seidel, 2008) in order to extract up to three main fiber
directions in each voxel. This technique allows estimation of the
actual fiber orientations without directional bias from the spherical
tessellation used when estimating the FODs.

All algorithms have been implemented in custom-written C++
code and in MATLAB (R2009b, The MathWorks, Natick, Massachusetts,
USA).

Tractography algorithms and parameters

To evaluate the different algorithm performances and the changes
in the reconstructed connectivity matrices, two parameters were
varied: FA andmaximumangle (minimum radius of curvature) between
two consecutive steps. The step size was set to 1 mm for all local
tractography methods, while for the graph-based global algorithms the
step size varies according to the neighborhood size used which, in this
work, has been set to 5×5×5 voxels (see below).

Two angular thresholds were used in this work: 30° and 90° which
cover the extremes of a realistic range. Thirty degrees represents a
very common choice in the diffusion imaging literature, especially
when using deterministic algorithms. The value of 90° widens the
possibilities, allowing fibers to turn at very sharp angles. Given the
anatomical variability, signal-to-noise ratio (SNR) and the size of the
imaging voxels with respect to white matter microstructure, it is diffi-
cult to justify any specific angle threshold on a neuro-anatomical
basis. Therefore, since this parameter is almost ubiquitously used in
tractography, it is important to explore the effect of two extremevalues.
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FA maps were thresholded at two different values which are
commonly used in the literature (0.1 and 0.2) in order to obtain two
different WM waypoint masks. These are binary masks containing
only those voxels where fibers are allowed to propagate. Since all
the tractography algorithms investigated in the present study were
run in original diffusion data space, we have chosen to use median
filtered FAmasks computed in that same space, instead of whitematter
masks obtained from T1-weighted volumes segmentation, in order to
achieve maximum integrity and alignment of WM masks to the diffu-
sion data. To avoid influences on FA such as partial volume effects at
theWM/GM boundary and in those voxels where more than two diffu-
sion directions are reconstructed a 3-dimensional median filter has
been applied to the thresholded WM volumes to fill holes in the
masks. Furthermore, in the WM binary masks, WMbound voxels were
always included in the volume after having thresholded the FA mask
and used the median filter. Since surface parcellation is performed in
anatomical space, alignment is still needed to define WMbound voxels
in diffusion space. However, this procedure is slightly more tolerant of
misalignment and distortions due to susceptibility gradients since we
coregister the surface points from anatomical space to diffusion space
by inward projection along the surface normals.

Local deterministic algorithms were started both from a Cartesian
3×3×3 grid of seed points (0.83 mm spacing) in the interior volume
of every WM mask voxel and from those voxels which only belong to
the WMbound. All resulting tractography streamlines were then
investigated for intersection, on two opposite sides of the seed point,
with theWM boundary volume (i.e. all WMbound voxels). All probabi-
listic methods and global methods were started from all WM boundary
voxels, which is necessary for the resulting visitation maps to be inter-
preted as connecting seed points at the WM/GM boundary to other
WM/GM boundary points. In addition, when individual probabilistic
streamlines are investigated rather than visitation maps, Li et al.
(2011) show that distance related bias can increase when seeding
from the entire deep white matter.

For all local methods, deterministic or probabilistic, fibers shorter
than 10 mm or longer than 200 mm were removed. Furthermore,
looping fibers (i.e. fibers that return to already explored voxels) are
excluded from the analysis. For global algorithms by the very nature
of the shortest path finding approach, loops are automatically excluded.

Local single-direction deterministic (SDD)
Deterministic streamlines were obtained using Euler stepping

integration of the local direction field. Local direction finding takes
into account the first eigenvector based on the estimated rank-2 tensor.
Nearest neighbor interpolation of the entire diffusion tensor was per-
formed. At every starting seed point, a streamline was initiated parallel
to the local primary eigenvector. Deterministic local single-direction
tractography was performed with custom-written C++ code (c.f.
Roebroeck et al., 2008).

Local single-direction probabilistic (SDP)
The local streamline-based approach to compute probabilistic

indices of connectivity (PICo) as proposed by Parker et al. (2003) was
used. This approach estimates the uncertainty in the diffusion direction
estimation obtained by DTI and computes the connectivity strength
between two regions usingMonte Carlo methods. The number of itera-
tions, which is the number of streamlines initiated from each seed point
was set to 3000. The look-up table for orientation sampling matched to
FA was computed using the Bingham distribution. Probabilistic local
single-direction tractographywas performedwith the Camino software
package (Cook et al., 2006).

Single-direction global (SDG)
Graph-based tractography as described by Iturria-Medina et al.

(2007) was performed. The 3D neighborhood size was set to 5×
5×5 for each voxel to be connected to 98 nearest neighbors as
edges in the tractography graph. This samples the fitted DT ellipsoid
along 98 unique directions using the entire solid angle of 2∗pi/98 to
compute edge weights. Connection's strength between two WMbound
voxels is computed by multiplying the connection weights along the
shortest path which connects them. Global single-direction graph
tractography was performed with custom-written C++ code.

Local multi-direction deterministic (MDD)
Deterministic multi-direction streamlines were obtained using a

local co-linearity based approach (Hagmann et al., 2008; Wedeen et
al., 2008). That is, local direction finding consisted in following the
local direction most colinear to the current fiber tangent. Nearest
neighbor interpolation of the multi-direction field was performed.
At every starting seed point, streamlines were initiated parallel to
every local direction independently (i.e. maximally 27×3 streamlines
per voxel). Deterministic local multi-direction tractography was per-
formed with custom-written C++ code.

Local multi-direction probabilistic (MDP)
The employed algorithm uses orientations sampled from the FOD

at each step and initializes a great number of streamlines per seed
point in a way similar to the PICo algorithm. Per seed point, 3000
streamlines were initiated within a sphere whose center corresponds
to the center of everyWM boundary voxel and whose radius has been
set to half the voxel size (1.25 mm). Probabilistic local multi-direction
tractography was performed using the MRtrix package (Tournier et
al., 2007).

Multi-direction global (MDG)
When dealing with multiple directions extracted in every voxel,

the concept of a tractography graph (Iturria-Medina et al., 2007)
can be extended to the one of a multi-graph (Sotiropoulos et al.,
2010). In this case, the center of every voxel is not just a single
node, but a collection of j nodes, where j is the number of directions
extracted in a specific voxel. Therefore, the weight of an edge con-
necting two neighboring voxels will not be a scalar anymore, but a
j×m matrix, where j and m are the number of directions extracted
in the two considered voxels. Note that although the graph-based
algorithms used here (Iturria-Medina et al., 2007; Sotiropoulos et
al., 2010) do not account for edge length in the local edge weight
calculation, this could be included in the algorithm (Zalesky, 2008).
As for single-direction global tractography, the 3D neighborhood size
was set to 5×5×5 for each of the j direction voxel to be connected
to 98* j*m nearest fiber-component neighbors. This samples the fitted
higher-order tensor along 98 unique directions using the entire solid
angle of 2*pi/98 to compute edge weights. Multi-graph tractography
was implemented in custom-written C++ code.

Connectivity matrix weight computation and graph analysis

To move from a very high resolution tractography result that con-
nects all ~30 k voxels in the WMbound voxel set to the 4000×4000
binarized adjacency matrix, the following steps were followed. For
the deterministic algorithms, any streamline connecting any voxel
in one parcel to any voxel in another, connects the two parcels in
the final adjacency matrix (c.f. Zalesky et al., 2010). For the probabi-
listic and global algorithms the threshold on percentile visitation
counts or percentile graph weights was varied (between 80% and
99%) to investigate the effect of probabilistic thresholding. Furthermore,
the result from a probabilistic method is asymmetric (the count or
weight for A seeded from B is not necessarily equal to the count or
weight for B seeded from A). Thus, any non-zero count or weight
connecting any voxel in one parcel to any voxel in another in either of
the two directions, connects the two parcels in the final symmetric
adjacency matrix (c.f. Iturria-Medina et al., 2011). These binarization
steps to construct the final 4000×4000 adjacency matrix are aimed at
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eliminating the effect of an arbitrary threshold, patch-area normaliza-
tion orfiber-lengthnormalization. For each binarization the edge density
is computed as K/((N2−N)/2) with K the number of supra-threshold
edges and N the number of nodes, which here is always 4000.

Computation of graph measures was performed using the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). The small-worldness
index is defined as the ratio of the normalized averaged clustering coef-
ficient with the normalized path length of the considered graph (Watts
and Strogatz, 1998). To normalize the average clustering coefficient and
the path length of a network means to compare both measures with
those obtained from a random network which is matched in terms of
degree distribution. Given the size and the numbers of the graphs used
in the present study, the approach proposed by Zalesky et al. (2010)
was used, in which the average clustering coefficient and the path length
of a random network was estimated using the analytical formula for an
equivalent Erdös–Rényi random graph. A connectome is said to be
small-world if the ratio of the two normalized indexes is higher than
one, with the normalized clustering coefficient larger than one and the
normalized path length close to one.

Connectome dissection quality control

We suggest an empirical approach to quality control the tractography
results that uses connectome dissection. The connectome is partly
dissected into a few large associative bundles which are known to exist.
These are selected by specifying two cortical end ROIs (c.f. Catani and
Thiebaut de Schotten, 2008; Ffytche et al., 2010). The choice of tracts
and end ROIs partly dissects the connectome adjacency matrix into a
few submatrices, each of which corresponds to the selected bundle
(Cammoun et al., 2012). If anatomical expertise is used to select the
end ROIs carefully, one can now use the density (patch-to-patch con-
nection count) of each of these submatrices as an empirical index of
sensitivity. We define the tract specific density coefficient (TSDC) as:

TSDC ¼
K Nif g;fNjg
Nij j⋅jNjj

where Ni and Nj are the sets of nodes (cortical patches) corresponding
to the i-th and the j-th regions of interest, respectively, |N| is the number
of nodes in a set and K{Ni},{Nj} is the count of non-zero entries of the
submatrix of the whole brain adjacency matrix defined by the two
node sets. The TSDC always ranges from 0 to 1 and quantifies the
inferred strength of a known tract as expressed in thewhole brain adja-
cency matrix. 0 signifies absolute absence of inferred connections (low
sensitivity in case of a known tract). Since we normalize by |Ni|⋅ |Nj|, the
maximum value of 1 would mean that every single patch in an ROI is
connected to every single patch in the secondROI. This kind of complete
mutual convergence/divergence is neurophysiologically not necessarily
plausible in large associative cortico-cortical projections. This means
that although the target for a known connection is a TSDC considerably
higher than 0, one would normally not want a TSDC that approaches 1.
As a convention, we suggest here that a TSDC as a QC measure for
sensitivity (a sensitivity TSDC, to be contrasted with a specificity TSDC,
see below) should range between 0.1 and 0.5 for a cortical parcellation
with 4000nodes. Although thenormalization does not change the result
of any comparison between two different tractography methods for the
same tract, it crucially enables absolute interpretation of TSDCs and
comparisons between different tracts. Conceivably, it could be used to
quality control entire connectome matrices by requiring TSDCs in a
certain range for a considerable number of known tracts,which together
span a large fraction of the adjacency matrix.

Here there are three important issues. First, as its name implies, a
TSDC is very specific to a tract and the accurate expert identification
of its end ROIs. Comparing algorithms with each other on the basis of
TSDCs will require looking at a couple of tracts. Here we have chosen
three (TSDCCC, TSDCSLFII and TSDCILF) that together cover an important
subset of the challenges that tractography algorithms face. The ROIs
for selecting these three bundles were derived from the literature
(Catani and Thiebaut de Schotten, 2008; Ffytche et al., 2010; Wakana
et al., 2004) andmanually selected on the reconstructedWMbound sur-
face. After a first manual selection, the ROIs are then constrained by the
actual parcellation used for the definition of the nodes of the
connectome, so that the refined ROI only contains those cortical patches
which are entirely comprised in the first selection. For the CCwe select-
ed a triangular patchwhose vertices are given by the anterior part of the
superior frontal gyrus, the dorsal part of the precentral gyrus and the in-
ferior frontal gyrus. For the SLFII we selected patches belonging to the
dorsolateral prefrontal cortex and the inferior parietal cortex as out-
lined in Ffytche et al. (2010) and Thiebaut de Schotten et al. (2011).
Note that there may be hemispheric differences (rightward asymme-
try) in the SLF II (Ramayya et al., 2010); much like those that have
been found repeatedly for the arcuate fasciculus (leftward asymmetry).
Here, we have only selected the ROIs lying on the left hemisphere. Final-
ly, for the ILF we selected patches lying on the anteriormost part of the
temporal lobe (temporal pole) and on the posteriormost part of the oc-
cipital lobe as outlined in Catani and Thiebaut de Schotten (2008) and
Wakana et al. (2004). Second, the behavior of TSDC is influenced by
the choice of the number of nodes that span the cortex obtained by
the cortical parcellation. High values approaching 1 are more easily
obtained for smaller number of nodes and coarser cortical parcellation
since tract specific submatrices of the connectome adjacency matrix be-
comedenser (Cammoun et al., 2012). Third, TSDCs for a set of tracts as an
evaluation of sensitivity must be balanced by also evaluating specificity.
This must be done in at least two ways. We first verify that the TSDC for
two ROIs which are known not to be connected (specificity TSDC) is
small. This requires identifying a set of pairs of non-connected ROIs.
Here, for illustration, we chose a set of subregions of the ROIs used to
track the corpus callosum, which causes them to be distance-matched
with the corpus callosum tracts. Crucially, we selected the anteriormost
part of the superior frontal gyrus in the left CC ROI and the much more
posterior precentral gyrus in the right CC ROI. Although heterotopic con-
nections through the CC are known to exist in the frontal cortex (Jarbo et
al., 2012), and the precentral gyrus might be connected to the contra-
lateral posteriormost superior frontal gyrus, we would expect a-priori
that there are no connections between these two ROIs. Thus, as a first
quantitative measure of specificity we require the TSDC computed for
these ROIs to be very small. However, this procedure will potentially
miss many false positives because even if tracts connect two true-
positive ROIs with a high TSDC, the tract paths themselves might take
an erroneous course between them. Therefore, secondly we evaluate
sensitivity TSDCs for known connections in conjunction with careful
inspection of tractography path results to identify erroneous tracking
results.

Results

Fig. 1 shows the edge density of the final adjacency matrices for all
methods. The results are very consistent over subjects and parcellations
(the standard error computed over subjects and parcellations was maxi-
mally 0.001 for local approaches and 0.003 for global approaches across
all parameter combinations). Density always decreases with increasing
probabilistic threshold: as more of the probabilistic tractography results
fall below threshold, final graph sparseness increases. In a similar way,
both a change in FA threshold from 0.2 to 0.1 and a change in angle
threshold from 30° to 90° tend to roughly double the connection density.
Generally, as can be expected, more liberal thresholds (lower probabilis-
tic, FA or minimum curvature thresholds) lead to higher global
connection density. Less intuitive, but evident in our analyses, global
methods tend to have up to twice the connection density of localmethods
at the same thresholds. The effect of probabilistic versus deterministic ap-
proaches is most clearly seen in Fig. 1 at the 30° angle threshold. As dis-
cussed above, one can take a deterministic interpretation of a global
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Fig. 2. Length histograms (1 mm bins) for deterministic streamline tractography
methods at FA threshold 0.1 averaged over 2 subjects. Only streamlines connecting
WMbound voxels are considered. Note that based streamlines shorter than 10 mm
and longer than 200 mm are excluded.
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tractography result by considering only the highest percentile results. In-
terestingly, this ‘deterministic limit of probabilistic results’ is also found
experimentally in the local multi-direction results at a 30° angle thresh-
old. This is interesting given that (in contradistinction with the global
methods) this represents a convergence in results in two separate local
tractography approaches.

Local probabilistic methods at very liberal thresholds, especially a
90° angle threshold in absence of a colinearity constraint based on
prior identification of main diffusion directions can lead to degenera-
tion of algorithm performance and pathological results. This manifests
itself in the reversal of some of the patterns above, such as a higher den-
sity for the single direction method. This degeneracy is especially appli-
cable to local probabilistic multi-direction methods, presumably
because of the greater noise sensitivity of these more complex methods
in combination with very permissive probabilistic direction sampling.

Since topological graph indices can be strongly dependent on the
edge-density of the network (van Wijk et al., 2010), we plot all subse-
quent results as a function of edge-density. Density generally decreases:
i)with increasing probabilistic threshold, ii)when going fromprobabilis-
tic to deterministic tractography, iii) with increasing FA and decreasing
angle thresholds, iv) when moving from global to local tractography,
and v) when moving from multi direction to single direction models. It
is important to only compare indices between density matched graphs
in order to assess the true effects of tractography algorithms and param-
eters on the topology of whole brain adjacency matrices independent of
their simple effects on global density as reported above. However, be-
cause adjusting the probabilistic threshold generally has an effect both
on density and possibly on topology, we have included corresponding
figures plotted as a function of percentile threshold in the supplementary
material.

Fig. 2 shows deterministic streamline length histograms for single
and multi direction methods at different angle thresholds. Note that
only streamlines connecting two WMbound voxels are considered
and that many more streamlines are started for MDD (in all FOD
directions at each seed point) than for SDD (in one direction at each
seed point). The first significant aspect is considerable short-length
(b 20 mm) streamline abundance, especially for the multi direction
method. Although numerous, streamlines of this short length are
unlikely to contribute much to the final adjacency matrix, since they
will often connect a node-ROI with itself, which is neglected. In
other words, one expects longer streamlines to contribute most to
adjacency matrix density. Indeed, a larger number of long (between
40 and 160 mm) streamlines in these histograms correspond to a
higher density in Fig. 1. This is seen prominently in MDD having a
greater density than SDD at the same thresholds. The short streamline
abundance is considerably tempered by amore liberal angle threshold
(90°), leading to less early termination and hence a greater number of
longer streamlines.

Fig. 3 shows the small-worldness index of the final adjacency
matrices for all methods. First, it is observed that small-worldness
(a coefficient larger than one; Watts and Strogatz, 1998) is a very
robust phenomenon in human structural networks obtained with
DWI tractography. It is observed over all tractography methods and
parameter values and its value is very consistent over subjects and
parcellations (the standard error computed over subjects and
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parcellations was maximally 3.621 for local approaches and 0.3 for
global approaches across all parameter combinations). This agrees
with and extends the finding of reproducibility of network indices
over scanning session and individuals for local deterministic
methods (Bassett et al., 2011b). Considerable effects of tractography
algorithm on small-worldness can be observed even when adjacency
matrices are density matched. At FA threshold 0.2 and angle thresh-
old 30°, MDD and SDD have coefficients 70% larger than for density
matched SDP. At the same FA and angle thresholds and a density of
0.005 MDP has a coefficient 26% larger than for density matched
SDP. Global versus local differences also are found to be up to 30%,
for instance at FA 0.2 and angle 30 and a density of 0.01, MDG and
De
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MDP have small-worldness coefficients of, respectively 21.83 and
28.45. Contrary to these effects of algorithm choice, small-worldness ef-
fect to be relatively insensitive to FA and angle thresholds.

The small-worldness coefficient results are best illustrated further
by separately inspecting the two components it consists of: normalized
path length and normalized average clustering coefficient, reported in
Figs. 4 and 5, respectively. Once again, the values for normalized path
length and normalized average clustering coefficients are very consis-
tent over subjects and parcellations (with a standard error over subjects
and parcellations of maximally 0.093 for local approaches and 0.008 for
global approaches for normalized path length, and maximally 1.431 for
local approaches and 0.885 for global approaches for normalized
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average clustering coefficients). A larger degree of small-worldness can
be caused by a smaller normalized path length, a larger normalized av-
erage clustering coefficient or both. For small world networks the nor-
malized path length should be close to one, which is true for most
methods and parameter sets, except for the SDP and the MDP for the
90° angle threshold or for low densities (high probabilistic thresholds).
The small-worldness difference of MDD and SDD with density matched
SDP is seen to be explained by a normalized path-length for MDD and
SDD that is 70–80% lower than that for SDP. Similarly, there is a 23% dif-
ference between SDP andMDP at FA 0.2 and angle 30°, with normalized
path length for SDP larger than for MDP which explains their difference
in small-worldness reported above. Finally, the local/global effect in
small-worldness can also be traced back to path-length, with 2.3 for
MDG and 1.9 for MDP.

Thus, the small-worldness results are largely contained within
the effect on normalized path-length, as is indeed supported by
Fig. 5 showing a relatively little effect of algorithm choice on cluster-
ing coefficient. However, in the lowdensity ranges,where deterministic
and probabilistic local approaches can be compared in terms of density
and the curve is steeper, differences are still up to 10%. Interestingly, the
absence of effect of FA and angle threshold on small-worldness is not
explained by the absence of effect on its constituents. Instead, the effect
of threshold parameters on both normalized path length and clustering
coefficient are large but equal, which leads them to be divided out in the
small-worldness coefficient.

Finally, global network efficiency is another graph measure
that is often used to quantify the overall shortest path length dis-
tribution. It is inversely related to the characteristic path length
(Fig. 4). Indeed, Fig. 6 (standard error computed over subjects and
parcellations was maximally 0.002 for local approaches and 0.003 for
global approaches across all parameter combinations) shows global ap-
proaches to be more efficient than local, multi direction to bemore effi-
cient than single direction and global network efficiency to increase
with increasing density.

For the connectome dissection quality control (QC) we chose to
select the second branch of the superior longitudinal fasciculus (SLFII),
the inferior longitudinal fasciculus (ILF), both in the left hemisphere,
and part of the transcallosal projections (CC) for subject 2 as shown in
Fig. 7. Fig. 8 plots TSDCCC, TSDCSLFII, TSDCILF and TSDCFP for four different
tractography algorithms and over a range of percentile thresholds for
probabilistic algorithms. Here TSDCFP is the TSDC for the selected false
positive connection between the anteriormost part of the superior fron-
tal gyrus in the left CC ROI and themuchmore posterior precentral gyrus
in the right CCROI. Note that, inwhat follows, the probabilistic threshold
is always selected on the basis of the whole brain tractography results.
Hence, these thresholds are not necessarily equivalent to selecting the
nth percentile of paths connecting just the selected ROIs, but they are
equal to those applied for the whole brain adjacency matrices. Focusing
first on the sensitivity TSDCs, at very low percentile thresholds for CC
and SLFII graph-based global algorithms have TSDCs close to 1, whereas
TSDCILF for the selected example is an order of magnitude lower for rea-
sons we discuss below. TSDCs for deterministic algorithms range be-
tween 0.007 and 0.11 for the selected tracts, with TSDC for MDD being
always 2 to 10 times higher than that for SDD for the same tract. Finally,
TSDCs for graph based algorithms approach those of deterministic algo-
rithms only for very high thresholds (99th percentile; again we discuss
the ILF below). Therefore, we will focus on comparing the tractography
results mostly at the intersections of the global and local TSDC curves
below. Focusing next on the specificity (false positives) TSDCFP, pleasing-
ly it shows false positive TSDC scores to be much lower than sensitivity
TSDCs. As one would expect for stochastic algorithms when thresholds
are low enough, significant false positives start to arise. However it can
be seen that for probabilistic thresholds above the 90th percentile false
positive TSDC falls below 0.01. Interestingly, this offers a partial solution
to choosing a good operating range of probabilistic thresholds, namely
that range which simultaneously keeps sensitivity TSDCs between 0.1
and 0.5 and specificity TSDCs below 0.01. Here this would amount to a
threshold between the 91st and the 98th percentiles. Sensitivity TSDCs
which fall below 0.1 (as for the ILF here) point to infidelities in
tractography results, which illustrate its role as a quality control criterion
as discussed below.

Specificity TSDCswill potentially miss false positives because even if
tracts connect two true-positive ROIs with a high TSDC, the tract path
between themselves might take an erroneous course. Therefore, we
continue to evaluate false positives by carefully examining tractography
paths for sensitivity TSDCs. We begin our evaluation with the well-
known and often used example of the inter-hemispheric projections
through the body of the corpus callosum. It is known that the trans-
callosal projections connect a large inferior–superior extent of the later-
al frontal cortex. This is reflected in our selection of cortical ROIs for the
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CC in Fig. 7 which span the lateral frontal cortical surface (from the lat-
eral superior frontal gyrus to the operculum) for a few centimeters an-
teriorly to the central sulcus on both hemispheres. These trans-callosal
projections pass through the bodyof the corpus callosum (CC) and cross
with several other major fiber tracts. Among these are the superior lon-
gitudinal fasciculus (SLF) and the corona radiata (CR), both of which
cross and intersect with each other and with transcallosal fibers in the
centrum semi-ovale. Thus, the ability of a tractography algorithm to
connect the entire inferior–superior extent of the lateral frontal cortex
through a three-way crossing is reflected in the TSDCCC. Fig. 8 shows
that the TSDCCC is greater formultiple direction approaches than for sin-
gle direction and greater for global methods than for local methods for
all probabilistic thresholds (except the 99th percentile compared to
MDD).

To illustrate the difference in the actual streamlines or tractography
paths that underlie these differences in TSDC (and global statistics of the
adjacencymatrices in Figs. 1–6), Figs. 9 and 10 show the corresponding
local and global tractography path results. Fig. 9 shows deterministic
streamlines for SDD and MDD at a liberal FA threshold and at two
angle thresholds (the right-hand 90 degree panels correspond to the
TSDCCC reported in Fig. 8). The absolute number of streamlines and
Fig. 7. An illustration of the suggested connectome dissection QC approach. A) The selecte
connections (in blue) shown on an inflated cortical surface representation. Different shad
the nodes of the adjacency matrix. B) The corresponding selected submatrices in the conn
hemispheres, respectively.
average lengths for each of the four cases are listed in Table 2 (compare
to Fig. 2) and the connected patches on the cortex are reported in
Supplementary Fig. S5. Fig. 9 shows two effects which can impact global
statistics. First, MDD is more successful in identifying the lateral trans-
callosal projections (c.f. Tuch et al., 2003; Wedeen et al., 2008), which
is confirmed by a higher TSDCCC in Fig. 8. Even at very liberal anisotropy
and angle thresholds SDD only identifies a few lateral callosal projec-
tions, some of which track wrongly into the SLF or CR along their way.
That is, there is a large amount of false negatives in the SDD results,
even at liberal thresholds. Second, the MDD results at two different
angle thresholds show a classical sensitivity/specificity trade-off. A
few of the inferior lateral trancallosal projections which are missed at
the 30° threshold are correctly reconstructed at a 90° threshold. Howev-
er, this is at the cost of a large number of false positive streamlines that,
again, connect both lateral surfaces to SLF or CR pathways. This sensitiv-
ity/specificity trade-off for the transcallosal projection is improved fur-
ther in the corresponding SDG and MDG results shown in Fig. 10 with
the corresponding connected cortical patches reported in Supplementa-
ry Fig. S6. Here, results are shown for the same liberal thresholds on FA
and angle as Fig. 8 and in the right side of Fig. 9, now at three different
probabilistic thresholds. Note that, because of virtually equal density
d pairs of cortical end ROIs: SLF II (in red), ILF (in green) and part of the transcallosal
es of the same colors are used to highlight the individual cortex patches which form
ectome adjacency matrix. Yellow and purple squares represent the right and the left
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adjacency matrices at any threshold for these cases (see Fig. 1, upper
row, second panel), we are justified in quantitatively comparing the
SDG and MDG connections for the same percentiles (van Wijk et al.,
2010). It can be seen that at 90th and 95th percentile thresholds most
of the expected transcallosal inter-hemispheric projections are correctly
identified with very few false positives with both methods. One can ob-
serve a greater tendency in SDG for false negatives at the green arrows
compared to MDG in the 99th percentile and slightly more false posi-
tives for SDG in the white circle in the 95th percentile. In summary,
the greater sensitivity and more complete inference of the trans-
callosal projections by MDG quantified by the TSDCCC is achieved with-
out a compromise in false negatives as observed in the tractography
paths and in the specificity TSDC in the 95th and 99th percentiles.

To assess the effect on connection topology in more spatial detail,
Fig. 11 shows the spatial distribution of degrees for nodes on the
cortical surface for both MDG and SDG for the same thresholds as
Fig. 10. The effect of probabilistic threshold is to sharply decrease the
absolute number of edges for each node and to focus the remaining
edges more on the most highly connecting hubs. Spatial degree distri-
butions can also be seen to be more focused for SDG than for MDG.
Specifically, connection hubs identified by both approaches in the
same location (for instance the lateral inferior frontal hub) are more
Fig. 9. Direction color-coded streamlines that connect the two CC ROIs on the left and righ
threshold 0.1 and two different angle thresholds. The corresponding submatrices obtained fro
spatially confined and have a higher absolute degree for SDG. However,
MDG defines some hubs, such as the lateral superior parietal area, that
are much less clear in the SDG.

Next, we look at the second branch of the superior longitudinal
fasciculus (SLFII), which is a slightly shorter associative tract char-
acterized by a high curvature and fewer tracts crossing it. Again
Fig. 8 shows TSDCSLFII to be larger for global tractography methods
than for local approaches except for the 99th percentile compared
to MDD. However, although MDD performs better than SDD, the
TSDCSLFII for SDG is larger than that for MDG for all probabilistic
thresholds. Fig. 12 shows the corresponding tractography paths, at
the 99th percentile for SDG and MDG, corresponding to the intersec-
tion of local and global TSDCSLFII. It can be seen that at these high
probabilistic thresholds the global algorithms preferentially connect
the ROI patches that are spatially closest, a tendency that reduces with
lower probabilistic percentiles (not shown for SLFII), which is also seen
in the corresponding connected cortical patches reported in Supplemen-
tary Fig. S7. This can also be seen by a concentration of density in the cor-
ner of their adjacency submatrix. Instead patch connections for the local
deterministic approaches, especially multi direction, are much more
spatially spread over the ROIs. MDD is seen to detect more separated
branches of the SLFII than SDD, SDG or MDG, which it is generally
t lateral frontal cortices in subject 2 for SDD (top row) and MDD (bottom row) at FA
m the adjacency matrix (see Fig. 7) are shown for every combination.



Fig. 10. Direction color-coded reconstructed fiber paths that connect the two CC ROIs for SDG (top) andMDG (bottom) in subject 2. From left to right, probabilistic thresholds are set
to the 90th, 95th and 99th percentiles. All paths are reconstructed using FA 0.1 and 90° as thresholds. White circles and green arrows represent false positives and false negatives,
respectively. The corresponding submatrices obtained from the adjacency matrix (see Fig. 7) are shown for every combination.
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considered to have (Ffytche et al., 2010; Thiebaut de Schotten et al.,
2011), and to have a greater spread of connections in themost posterior
regions. Furthermore, the superior performance of SDG and MDD in
terms of the higher TSDCSLFII seems to be combinedwith a low tendency
for false positives. Finally, MDG is seen to be more sensitive to noise and
even more constrained in the length of the tract than SDG in this non-
crossing tract.

Finallywe have selected the left ILF of subject 2 to show aberrant be-
havior that can occur even in datawith good SNRwhen identification of
local direction is imperfect. The ILF connects the anterior part of the
temporal lobe to the occipital lobe. It is characterized by a very straight
course along the temporal lobe and it is joined in its path by several
other fibers, such as the inferior fronto-occipital fasciculus (IFO). In par-
ticular the arcuate fasciculus (AF) curves down from its course from the
perisylvian cortex of the frontal and parietal lobes and converges to join
the direction of the ILF (Catani and Thiebaut de Schotten, 2008). This
convergence of directions of twomajor tractswithin the imaging voxels
creates particularly difficult local direction identification problem. This
is because crossing fibers are harder to identify for multiple direction
models as the different directions become more colinear. As can be
seen in Fig. 13 with the corresponding connected cortical patches
reported in Supplementary Fig. S8, the ILF is well identified by all
methods. However, Fig. 8 shows TSDCILF to be two to ten times lower
than that for the other two tracts for all methods except for SDD.
Table 2
The absolute number of streamlines and average streamline lengths for each of the
tractography results in Fig. 7.

Tractography method Number of streamlines Average streamline
length [mm]

SDD, 30° 3325 108.26
SDD, 90° 11,981 113.70
MDD, 30° 10,703 92.03
MDD, 90° 49,237 118.23
Furthermore, the TSDCILF for SDG and MDG shows a much steeper de-
clinewith an increasing probabilistic threshold.More careful inspection
of Fig. 13 shows the reason to be a relatively long tract in conjunction
with imperfect local direction segregation highlighted by the zoomed
inset. This shows MDD to take unrealistically nearly 90° turns which
seem to result from jumping out of the ILF into theAF and then converg-
ing back into the ILF again. MDG in contrast avoids tracing through this
region altogether. This is because MDG's global shortest path finding
mechanism penalizes such strong local curvature for the entire tract,
which for the relatively long ILF is already penalized for its length in
global probabilistic approaches.

Discussion

We have investigated how different tractography algorithms can
influence the estimation of several network indices that characterize
the human structural connectome, including small-worldness, average
clustering coefficient, characteristic path length, global network effi-
ciency and high density nodes. We show that the choice of the general
class of tractography algorithm in combination with the thresholds on
FA, angle and probabilistic percentiles can dramatically influence
these network indices. This is true in many cases even when global
density differences are controlled for, showing that this marks actual
differences in network topology.

It is important to note that the findings of small-worldness, high
global network efficiency and high density hubs per se, characteristic
for the human brain (Hagmann et al., 2008), are very robust over all
investigated methods and parameters. These findings are also very con-
sistent over two subjects and over different random surface parcellations
for any of the tested combinations. It is rather the relative strength of ex-
pression of these effects that is found to be affected by model, algorithm
and parameter choices. This is important because there is limited con-
sensus on what, even within our general classes methods, the reference
method for structural connectome tractography should be. Previous
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Fig. 11. Degree distribution plotted on the inflated WM/GM boundary surface for subject 2. Top row: SDG, bottom row: MDG. Columns represent the probabilistic thresholding of
the connectivity matrix for the 90th, 95th and 99th percentiles. Between brackets are the min–max degree intervals for each combination.
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work has usedmethods in a large subset of our general classes, including
MDD(e.g. Hagmann et al., 2008; Zalesky et al., 2010), SDD (e.g. Zalesky et
al., 2010), MDP (e.g. Li et al., 2011), SDG (e.g. Iturria-Medina et al., 2007)
and MDG (e.g. Iturria-Medina et al., 2011). There are many intra-voxel
diffusionmodels and tractography algorithms that could be used besides
the ones we have chosen here. We listed some of the available alterna-
tives in Table 1 and in the Introduction section. However, rather than
performing an exhaustive unstructured test of all or most available
methods, we have chosen to examine the effect of three common
distinctions that almost any approach is characterized by. These are the
distinctions between i) single fiber direction versus multiple directions
in the intra-voxel diffusion model, ii) deterministic versus probabilistic
tractography and iii) local versus global measure-of-fit tractography.
Within each class defined by these distinctions (SDD, MDD, SDP, MDP,
SDG and MDG) we chose one of the most used or most common
methods as the reference. Obviously, other choices could have been
made here. For instance in the SDD class, variants of the deterministic
streamline algorithm exist which use different local direction finding
(such as tensor deflection or TEND), step integration approaches (e.g.
4th order Runge–Kutta) and ODF interpolation techniques. DSI, QBI,
and the ball-and-stick model are all quite commonly used as multi-
direction models for tractography and PROBTRACKX (Behrens et al.,
2007) is an often used alternative for iFOD for local probabilistic
multi-direction tractography. Of course, the particular strategy selected
from each general class might not be representative of the class in gen-
eral in all its varieties and detail. However, for the level of general com-
parison that we aim at here, the subtle distinctions between methods
within a general class listed in Table 1 is not the focus of investigation.
In addition, a practical constraint is formed by the need to create a
whole brain connection matrix, requiring many thousands of runs of
any tractography algorithm, which is computationally challenging es-
pecially for probabilistic and global tractography methods.

The effect of algorithm and parameter choice has two compo-
nents. First, there is the large effect of tractography algorithm and
parameters on global network density, which is known to strongly
affect graph indices. We have found that connection density generally
decreases: i) with increasing probabilistic threshold, ii) when going
from probabilistic to deterministic tractography, iii) with increasing
FA and decreasing angle thresholds, iv) when moving from global to
local tractography, and v) whenmoving frommulti direction to single
direction models. Second, more importantly, there are remaining
effects on graph indices even when global density is controlled for
which range in the tens of percent. It is important to note that maxi-
mizing absolute small-worldness is never the aim in quantifying this
measure in any given individual or in a comparison. Instead, the aim
is to have a robust, specific and sensitivemeasure of global connection
topology in the brain as a useful dependent variable.

A pertinent question that has been addressed, at least in part, in a
number of previous studies – though not always in the context of
connectome reconstruction – is what reasons we have to choosemulti-
ple direction models over single, probabilistic over deterministic and
global over local tractography. Given the effect on topology measures
discussed above, the question of the optimal tractography approach
becomes even more important. Therefore, in the second part of this
paper we have presented an approach to quality control part of the
connectome adjacencymatriceswhich is suitable for comparing the dif-
ferent tractography approaches. Conceivably, it could be used to quality
control entire connectome matrices by requiring sensitivity TSDCs in a
certain range for a considerable number of known tracts and specificity
TSDCs to be low for a number of known not-to-be-connected ROIs,
which together span a large fraction of the adjacency matrix. This ap-
proach uses connectome dissection into a few large associative bundles
which are known to exist and calculation of quantitative TSDCs. This is
combined with careful inspection of tractography paths themselves to
allow for assessment of true/false positives and true/false negatives.
This brings us beyond the mere assessment of global measures, such
as graph density or average streamline length, to the actual connections
in the brain that are reconstructed by more streamlines or longer
streamlines. We can use these results to inform choices in the
tractography algorithms. Belowwe discuss themagnitude and direction
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Fig. 12. Comparison between reconstructed SLFII fiber paths in subject 2 using two different tractography approaches and the same thresholding parameters (FA=0.1, angle
threshold 90°). Columns represent the type of tractography approach (left: local deterministic, right: global), rows represent the intra-voxel diffusion model employed (top: single
direction DTI, bottom: multi direction CSD). Probabilistic thresholds for global approaches are obtained from Fig. 8 and are set to the 99th percentile. All paths are reconstructed
using FA 0.1 and 90° as thresholds. The corresponding submatrices obtained from the thresholded adjacency matrix are shown for every combination.
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of the effects of these choices on global connection topology measures,
how these choices interact with each other andwith threshold parame-
ters and the signal-to-noise ratio (SNR) of the DWI data, and which
choice is favored by the proposed quality control approach.

Single versus multiple directions

Themain effect ofmoving from single direction intra-voxel diffusion
models to multi-direction models is an increase in the number of long
streamlines or tractography paths (see Fig. 2 and Table 2 for determin-
istic algorithms), which is further increased by liberal angle thresholds.
Thus, multi-direction models yield higher density and global network
efficiency and lower small-worldness than single-direction ones at the
same percentile threshold (see Supplementary Figs. 1–5). This agrees
with other reports of greater network connection density for determin-
istic tractography on multiple direction models compared to the DTI
model (Bassett et al., 2011a; Zalesky et al., 2010). For global approaches,
the spatial degree distribution is less focused on high density nodes for
MDG, perhaps because longer tractography paths are retained com-
pared to SDG (Fig. 11). When identifying exclusively topological differ-
ences by matching graph densities, small-worldness is seen to be larger
under some circumstances for multiple directions than single direction,
which is explained by a smaller normalized path length, with normal-
ized average clustering coefficient being relatively unaffected.

The connectome dissection QC is most decisive on the choice of
single versus multiple directions in the case of the inter-hemispheric
projections through the body of the corpus callosum. In agreement
with earlier reports (Behrens et al., 2007; Tuch et al., 2003; Wedeen
et al., 2008), this shows a preference for multiple direction models
over single direction ones for tractography. This is motivated by
higher TSDCCC and more veridical results for multiple direction
models, along with a low number of false positives for appropriate
probabilistic thresholds as quantified by the TSDCFP. Thus, this is an
interesting example of a justifiable method choice that has the effect
of decreasing the expression of high density nodes, since at least
part of the increased long range density is formed by true connections
that were otherwise missed.

A general point in fitting models to data is clearly exposed in com-
paring multiple versus single direction models, namely that of model
complexity and sensitivity to noise, or of bias and variance. A multi
direction model is more sensitive to the SNR of a diffusion weighted
dataset and will show greater variability in reconstructed fiber orienta-
tions as SNRbecomes lower becausemoreparametersmust be estimated.
This can result in spurious (false positives) or missing (false negatives)
fiber directions identified in single noisy voxels. The simpler single direc-
tionmodels such as DTI aremore robust against noise havingmuch fewer
parameters to identify which can work very well in areas with simple
fiber architectures such as the SLFII. This might represent a constraint
when deciding which model to use for the analysis of diffusion weighted
data.When performing a case–control study, for example, a simple single
direction DTI-based SDD approach can be preferable compared to an
MDD one, when it reduces the inter-subject variability within groups
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Fig. 13. Comparison between reconstructed ILF fiber paths in subject 2 using two different tractography approaches and the same thresholding parameters (FA=0.1, angle threshold
90°). Columns represent the type of tractography approach (left: local deterministic, right: global), rows represent the intra-voxel diffusion model employed (top: single direction
DTI, bottom: multi direction CSD). Probabilistic thresholds for global approaches are obtained from Fig. 8 and are set to the 74th percentile. All paths are reconstructed using FA 0.1
and 90° as thresholds. The corresponding submatrices obtained from the thresholded adjacency matrix are shown for every combination. The zoomed inset shows both the MDD
streamlines as thin lines and the MDG fiber paths as thick lines.
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explaining more variance at an acceptable cost of delivering more false
negatives.

Deterministic versus probabilistic

With increasing probabilistic threshold adjacency matrix density
decreases, as onewould expectwhen eliminating edges by thresholding
on probabilistic weights. Generally, this decrease in density is accompa-
nied by higher small-worldness (mostly through increase of normalized
averaged clustering coefficient) and lower global network efficiency
(see Supplementary Figs. 1–5). Furthermore, for the global algorithms
employed here, a higher probabilistic threshold increased the focus of
high density nodes, i.e. it increased the sharpness of peaks in the degree
distribution over the cortical nodes (Fig. 11). Since probabilistic weights
fall off with path length and as evidenced by a higher clustering (a
higher relative abundance of local connections), it follows that increasing
probabilistic thresholds prunes the network to lower density mostly by
removing long range connections.

When holding all other parameters constant, deterministic methods
generally capture all the extremes of the effects that were observed for
increasing probabilistic threshold. In other words, a ‘deterministic
limit of probabilistic results’ is observed experimentally in the case of
edge density and can be considered to form a 100% limit value for the
entire probabilistic threshold curves. Note that this is not meant to
imply that the high threshold limit of probabilistic tractography results
is necessarily equivalent to that of a deterministic algorithm seeded in
the same location. The high threshold limit value result for deterministic
approaches here only applies to global network characteristics derived
from whole brain tractography. When looking at pure topological
properties of the network bymatching the densities, deterministic algo-
rithms have much larger small-worldness than probabilistic algorithms
which is mainly explained by a much shorter characteristic path length.
This is true both for a seeding strategy for deterministic algorithms in
the entire WM (diamonds in Figs. 3–6) and only at the WMbound
(squares in Figs. 3–6). Normalized average clustering coefficient is less
affected by this choice, although differences up to 10% can be observed.

The conceptual advantage of probabilistic tractography is that it
quantifies both average pathways and variation in tractography
results (Behrens et al., 2003; Parker et al., 2003), which is desirable.
However, in the context of connectome reconstruction a practical prob-
lem is to choose a probabilistic thresholdwhich – aswe showhere – has
great influence on global network statistics. This problem has briefly
been touched upon before without extensive investigation by other au-
thors. In Hagmann et al. (2008) and Zalesky et al. (2010) connectome
reconstruction was performed with deterministic tractography and an
inter-node weight calculation that involves a number of connecting
streamlines, node area volume and/or surface and streamline lengths,
as was done here for SDD andMDD. In Li et al. (2011), a single probabi-
listic threshold is chosen by matching the resulting adjacency matrix
density to earlier work (Achard and Bullmore, 2007). Finally, some in-
vestigations of adjacency matrices derived from both functional MRI
data and DWI tractography have employed integration of results over
a smaller or larger range of threshold values on fMRI correlations
(from 50th to 99.9th percentiles; Achard and Bullmore, 2007) or
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probabilistic tractography percentile (from 99th to 99.9th percentiles;
Gong et al., 2009). This reveals that either by deterministic fiber recon-
struction or by selection of relatively high probabilistic thresholdsmost
work has strived for sparse networks (low density) along the continu-
um sketched in Fig. 1.

An absolute probabilistic threshold independent of a desired final
density level is difficult to set since probabilistic tractography visita-
tion counts or weights are hard to interpret in an absolute way
(Jbabdi and Johansen-Berg, 2011; Jones, 2008a, 2010). First, probabi-
listic weights for streamlines or paths fall off naturally with path
length, which in a large part explains the longer characteristic path
length compared to density matched adjacency matrices obtained by
deterministic algorithms. Second, a probabilistic weight quantifies a
mixture of noise in the data (affecting precision of the result), bias in
the employedmodel and the true likelihood of a connection (affecting
accuracy of the result). Subsets of these challenges have started to be
addressed by Monte Carlo or bootstrap approaches (Jeurissen et al.,
2011; Jones, 2008b; Morris et al., 2008). However, these methods
are computationally very expensive, even for a single seeding point
or ROI, and applying them to connectome reconstruction provides a
tremendous computational challenge. Interestingly, the connectome
dissection QC approach outlined here offers a quantitative way to de-
fine relatively narrow range of tolerable probabilistic threshold for
connectome tractography. This is the range of values which simulta-
neously offers good sensitivity and veridicality of connections (sensi-
tivity TSDCs between 0.1 and 0.5) and good specificity (specificity
TSDCs below 0.01). In the example of the transcallosal projections
this leads to a tolerable range between the 91st and the 98th percen-
tiles, which agrees to good qualitative delineation of these connec-
tions (see Fig. 10).

In addition to the effect of probabilistic threshold on tractography
path length, there is also an effect of different tractography seeding
strategies. Seeding from all of white matter is biased toward longer
fiber bundles because they are sampled with a greater number of
seed points, whereas seeding from the boundary is biased toward
recovering shorter bundles (Li et al., 2011). We have equalized this
seeding bias between tractography algorithms by using the same
boundary seeding strategy for all methods (squares in Figs. 3–6 for
SDD and MDD).

Again there are considerations of model complexity and sensitivity
to noise. Local probabilistic methods at very liberal thresholds, espe-
cially a 90 degree angle threshold in absence of a colinearity constraint
based on prior identification of main diffusion directions can lead to
degeneration of algorithm performance and pathological results.
This is understandable, given that less restrictive thresholds (FA and
angle) decrease modeling assumptions and resulting biases (such as:
‘low curvature is good’) but also increase variability in the results
through the effects of noise. As discussed above, this effect is more
pronounced for more complex models with more parameters, such
as multi direction models compared to single direction models
(Fig. 9). Pathological noise-dominated results can occurwhen this com-
plexity and lack of constraints is then combinedwith the controlled var-
iability introduced at each step by local probabilistic algorithms. Among
the range of combination ofmethods and parameters settings, the com-
bination of local probabilistic algorithms with a 90° angle threshold
without a colinearity constraint between fiber direction and local
diffusion direction (essentially a low-curvature bias) is certainly an ex-
treme one which is rarely employed in practice. However, it is impor-
tant to point out that the main reason to use a limited maximum
angle (minimum curvature) is not necessarily biologically inspired:
nerve bundles and white matter fascicles sometimes can turn sharply
(e.g. Roebroeck et al., 2008). Rather, it is the regularizing and smoothing
effect of the low-curvature assumption that helps in avoiding sensitivity
to excessive noise effects. Therefore, it is interesting to construct and
evaluate tractography algorithms that achieve a high robustness to
noise with fewer constraints.
Local versus global

Going from a local to a global approach affects the estimation of
the reconstructed fiber paths in two important ways. First, global
methods lead to a higher connection density than their local probabi-
listic counterparts at the same percentile thresholds (see Fig. 1), likely
due to a higher number of longer connections. This means that to
match density between global and local probabilistic algorithms
implies applying a relatively high percentile threshold to the global and
a relatively low one to the local. Nevertheless, when density matched,
local shows higher small-worldness than global explained in a large
part by a shorter characteristic path length. This is because all long
tractography paths have been suppressed in the global results because
of the comparatively high threshold. Second, in the connectome dissec-
tion QC, the sensitivity/specificity trade-off of the reconstructed fiber
paths is qualitatively better for global methods than for the local deter-
ministic ones with the same parameters. For instance, in Figs. 9 and 10
global methods allow robust tractography even for very liberal thresh-
olds, such as a 90° angle threshold, which is reflected in a high TSDCCC
in conjunction with high specificity (low TSDCFP) for appropriate proba-
bilistic thresholds. This decrease in vulnerability to local noise is actually
themotivating property of global tractographymethods (Iturria-Medina
et al., 2007; Jbabdi et al., 2007; Sherbondy et al., 2009; Sotiropoulos et al.,
2010). In addition, the weighted shortest-path finding approach still dis-
courages very long-range connecting fibers (as local probabilistic
methods do) which is often a biologically plausible constraint in the
brain that can avoid false positives. See, for example, the false positive
connections between left and right lateral frontal cortices via the
brainstem in SDD and MDD in Fig. 9 that are absent for SDG and MDG
in Fig. 10. All in all, global algorithms showhigher TSDCs implying higher
sensitivity over large ranges of percentile thresholds, as shown in the
TSDCCC and TSDCSLFII. Crucially, this is in conjunctionwith high specificity
(very lowTSDCFP) for probabilistic threshold between approximately the
91st and the 98th percentiles. It is onlywhen comparing to deterministic
tractography at very high thresholds (which match TSDCs between
methods) that their short path bias weights in strongly as seen for in-
stance in Fig. 12. Here it is important to note that when not trying to
match density or TSDC to a deterministic algorithm, there is no a-priori
reason to apply such high threshold to global probabilistic results. Final-
ly, the example of the ILF shows interesting differences in behavior
between SDD, MDD and global algorithms. In this case, where identifi-
cation of local direction is imperfect, TSDC for SDD is the same as for
the other tracts, TSDC for MDD is reduced by a factor 2 to a factor 3
and TSDC for SDG and MDG is decreased by an order of magnitude.
This shows that for a combination of irregularities in the data and a
long tract, global algorithms can show a decrease in performances
which is, however, picked up very well by the connectome dissection
QC. Although the performance of SDD is very consistent across different
tracts, it is important to remark that it shows a consistently low sensi-
tivity. For instance, the TSDCSLFII and TSDCILF are as low as for the clearly
underconnected CC (see Fig. 9), despite specificity for SLFII (see Fig. 12)
and ILF (see Fig. 13) being rather good.

Two disadvantages of global methods must be mentioned. First,
there is their high computational cost. Probabilistic methods, global
even more than local approaches, were the most time consuming
methods to run for the very large whole-brain tractography sets. In
addition, this computational cost will increase more than linearly
with increase in spatial resolution of the DWI data as MR hardware
and sequences advance (e.g. Feinberg et al., 2010; Heidemann et al.,
2010). Second, to keep computational complexity within reasonable
bounds (in the limit: to avoid trying to exhaustively cover an infinity
of options), global algorithms need constraints on the allowable
shapes of pathways. This can be achieved either by discretizing a
parameterization (the so-called Hough-transform) of continuous curves
through the data (such as polynomials of a given order; Aganj et al.,
2011) or by discretizing the allowable curves on a 3D grid as in the



1747M. Bastiani et al. / NeuroImage 62 (2012) 1732–1749
graph-based tractography algorithms employed here. As a consequence,
from a local point of view, both the step size and the angle of local
curvature in moving from one gridpoint to the next are constrained
and anisotropic. That is, in the 5×5×5 local neighborhood used here
there are 98 discrete unique directions to move in with a few different
step sizes. It is important to note that this is indeed a very ‘local stream-
line’ way of looking at a global algorithm, since local possibly error-
accumulating steps are never actually performed in graph tractography.
Rather, the complete enumeration of all possible discrete traversals
through the entire dataset is searched. In this search for a shortest
weighted path the local weights are defined by the DWI data modeling
using the entire solid angle around a step direction such that any direc-
tional peak in the data is taken into account (Iturria-Medina et al., 2007;
Sotiropoulos et al., 2010). Nevertheless, it can be appreciated in Figs. 10,
12 and 13 that this approach will lead to fiber pathways that are more
discrete in nature. Thus, given the combined advantages of multi-
direction models and global tractography, investigation into computa-
tionally feasible global approaches with a minimum of pathway shape
constraints may prove useful for whole brain structural network recon-
struction studies.

Conclusion

We have shown that general choices in tractography algorithm in
combination with the employed thresholds on FA, angle and probabi-
listic percentiles have a large effect on derived human structural brain
network indices. This effect has two components. First, there is the
large effect of tractography algorithm and parameters on global
network density, which is known to strongly affect graph indices.
Second, more importantly, there are remaining effects even when
global density is controlled for. Although small-worldness, global
network efficiency and density are a robust finding over all investigated
methods and parameters, their absolute strength of expression can be
changed by several tens of percent, which is significant in their role as
a sensitive and accurate metric to distinguish subtle differences in
global network topology. Since maximizing the absolute value of
network indices is not the aim in itself, the reasons we have to choose
multiplefiber directionmodels over single directionmodels, probabilistic
over deterministic and global over local tractography methods are more
subtle.

We investigate this with the proposed connectome dissection QC in
which evaluation of TSDCsmeasure sensitivity and specificity in combi-
nationwith careful inspection of tractographypath results. Conceivably,
it could be usedwithin a semi-automated quality control framework for
entire connectome matrices by requiring sensitivity TSDCs in a certain
range for a considerable number of known tracts and specificity
TSDCs to be low for a number of known not-to-be-connected ROIs,
which together span a large fraction of the adjacency matrix. This
would require development or application of an atlas of such end-ROI
which can be mapped to individual datasets andmaturation of conven-
tions for tolerable TSDC value limits, which is an important topic of fu-
ture work.

Here, the results on sensitivity and specificity for a subset of
tractography paths corroborate earlier investigations that conclude a
superiority of multiple direction models for intra-voxel fiber direction
modeling. More tentatively, probabilistic tractography might be pre-
ferred over deterministic for its capacity to quantify the variability of
tracking results. However, the choice of probabilistic threshold in the
context of whole brain structural network delineation still remains
an open issue of importance. Interestingly, the connectome dissection
QC approach outlined here offers a quantitative way to define relatively
narrow range of tolerable probabilistic threshold for connectome
tractography. This is the range of values which simultaneously offers
good sensitivity and veridicality of connections (sensitivity TSDCs
between 0.1 and 0.5) and good specificity (specificity TSDCs below
0.01). Fig. 8 nicely shows that in this way TSDCs can quantify sensitivity
(CC and SLFII), lack of sensitivity (ILF) and specificity (FP). Probabilistic
local tractography algorithms can exhibit considerable noise sensitivity
when applied to multi direction models without strong constraints on
local tract curvature. Therefore, global approaches that exhibit less
sensitivity to local noise may be preferred, particularly when more of
the available SNR is used in the DWI acquisition to improve spatial
resolution. Development of global tractography methods that balance
reasonable computational demands with acceptable constraints aimed
at limiting the search space (such as discretization) might further
improve their applicability.
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Appendix A

Parcellation scheme

The equal-area surface parcellation procedure used in this work is
based on constrained centroidal Voronoi tessellations (Du et al.,
2003). This approach relies on the iterative Lloyd's algorithm, which
is often used in computer science to produce point distributions over
two or three-dimensional surfaces with blue noise characteristics. A
blue noise distribution ensures uniformity and regularity in the sampling
without showing any bias in the Fourier spectrum.

The proposed algorithm uses Voronoi patches to sub-divide the
initial surface into n different ROIs. By definition, a Voronoi patch
comprises all the points which are closest to its centroid. Initially, a
Voronoi tessellation is used whose centroids are randomly defined
(white noise distribution) over the two dimensional surface. Iteratively,
the algorithm shifts the centroid of each cell to its barycentre by mini-
mizing the following equation:

min
z∈S

∫Vρ xð Þ x−zj j2dx

where z is the new centroid, x are the points comprised in a certain
Voronoi patch, S is the surface, V is the Voronoi patch and ρ is a density
function, here uniformly set to 1. Note that, since finding the exact
barycenter on a 2D surface based on geodesic distances is an NP hard
problem, in the proposed algorithm it is always confined to be one of
the vertices in the patch and, therefore, trivially lies on the 2D surface.
This approach, being more computationally tractable, uses an approxi-
mate estimate of the real barycenter. At every step, the algorithm
computes the geodesic distances between all the surface points and
the neighbors of the current barycenter of a certain patch. The new
barycenter is the neighbor point which minimizes the proposed
equation.

The distances between the centroids and the other points are not 3D
Euclidean but geodesics along the 2D surface. The algorithm converges
to make the areas of the patches as close to each other as possible.
Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.06.002.
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