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Abstract
Discovering functional connectivity between and within brain regions is a key concern in
neuroscience. Due to the noise inherent in fMRI data, it is challenging to characterize the
properties of individual voxels, and current methods are unable to flexibly analyze voxel-level
connectivity differences. We propose a new functional connectivity method which incorporates a
spatial smoothness constraint using regularized optimization, enabling the discovery of voxel-level
interactions between brain regions from the small datasets characteristic of fMRI experiments. We
validate our method in two separate experiments, demonstrating that we can learn coherent
connectivity maps that are consistent with known results. First, we examine the functional
connectivity between early visual areas V1 and VP, confirming that this connectivity structure
preserves retinotopic mapping. Then, we show that two category-selective regions in ventral
cortex – the Parahippocampal Place Area (PPA) and the Fusiform Face Area (FFA) – exhibit an
expected peripheral versus foveal bias in their connectivity with visual area hV4. These results
show that our approach is powerful, widely applicable, and capable of uncovering complex
connectivity patterns with only a small amount of input data.
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Introduction
Functional Magnetic Resonance Imaging (fMRI) has been widely adopted by the
neuroscience community primarily because it allows researchers to unobtrusively sample
activity patterns from populations of neurons across the entire human brain, at a fine spatial
scale (typically a few millimeters). However, many methods for identifying distributed
functional networks underutilize the spatial resolution of fMRI, considering only the
aggregate properties of groups of voxels. For example, when computing functional
connectivity between brain regions, activity is often spatially averaged within each Region
of Interest (ROI) and simple statistical relationships (e.g. correlation) between these mean
timecourses are used as measures of connectivity between the regions (reviewed in Rogers
et al., 2007).

ROIs are generally defined by a contrast between two types of stimuli, constrained by rough
anatomical location. However, there is no reason to assume that all voxels within an ROI
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have identical functional properties. Indeed, recent work has achieved some success in
dividing existing ROIs into functional subregions. For example, lateral occipital complex
(LOC) (defined in Malach et al., 1995) has been shown to contain two functionally distinct
subregions (Grill-Spector et al., 1999), and the extrastriate body area (EBA) (defined in
Downing et al., 2001) has been split into three separate limb-sensitive areas (Weiner and
Grill-Spector, 2011).

Recent work has begun to investigate intra-ROI structure using measures of functional
connectivity. These methods have provided evidence of subdivisions within regions such as
the thalamus (Zhang et al., 2008), medial frontal cortex (Kim et al., 2010), the amygdala
(Roy et al., 2009), anterior cingulate cortex (Margulies et al., 2007), and the precuneus
(Margulies et al., 2009), and have been used to uncover the functional connectivity structure
of early visual cortex (Heinzle et al., 2011).

However, these methods are unable to jointly model the functional connectivity properties of
individual voxels for typical fMRI dataset sizes. Almost all current methods avoid
simultaneously learning the connectivity properties for all voxels, by spatially
downsampling to a small number of subregions (Margulies et al., 2007; Roy et al., 2009),
only learning parameters for one voxel or subregion at a time (Chai et al., 2009; Cohen et
al., 2008; Kim et al., 2010; Zhang et al., 2008), or both (Margulies et al., 2009). Each of
these approaches has some disadvantages. Downsampling requires prior knowledge of the
anatomical subdivisions in a region (Roy et al., 2009) or of the relevant spatial scale of
connectivity differences (Margulies et al., 2007), making it ill-suited for exploratory studies.
Learning voxel parameters separately can make comparisons between voxels difficult; for
example, if two voxels are assigned different levels of connectivity with a seed region, there
is generally no way to tell whether these two voxels predict different parts of the seed
timecourse, or if one voxel is simply a noisy copy of the other. Jointly learning connectivity
weights allows us to pinpoint those voxels that contribute unique information about the seed
region, by simultaneously considering the timecourses of all voxels.

Support vector regression (SVR) can learn joint voxel-level connectivity maps, but requires
a significant amount of data; for example, Heinzle et al. (2011) use more than 40 min of
training data (1600 timepoints) to learn connectivity structures in early visual areas. Scarcity
of training data is a common obstacle for characterizing individual voxels in fMRI
experiments. Typical fMRI datasets record activity from tens of thousands of voxels in the
human brain, but with only about a thousand timepoints per voxel. Several methods have
been successfully implemented to boost the number of recorded timepoints (e.g. rapidly
scanning only a select portion of the brain, (Bouvier and Epstein, 2011; Scalf et al., 2011)),
but all fMRI studies must contend with a severe data shortage for individual subjects caused
by this limitation. A recent survey of MVPA techniques (Misaki et al., 2010) has
demonstrated empirically that low-complexity models tend to perform better at decoding
information from patterns of activity than high-complexity models, which is theoretically
plausible given the limited number of timepoints available for model training.

Therefore, there is still a need for a method that can estimate voxel-level connectivity
structure with data set sizes more typical of fMRI experiments. For example, when
investigating stimulus-category-dependent changes in connectivity patterns, the amount of
data for each category can be on the order of only a hundred timepoints. To address this
issue, we propose a spatially regularized method for examining connectivity differences
within ROIs, which is specifically tailored to small training sets typical in the fMRI setting.
Our regularization approach simply imposes the constraint that connectivity properties
should vary smoothly across voxels, a highly plausible assumption given the nature of fMRI
data. Much prior work has been dedicated to incorporating spatial regularization into MRI
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and fMRI analyses, with goals such as functional classification and regression (Grosenick et
al., 2011; Ng and Abugharbieh, 2011), classification of gray matter concentration maps
(Cuignet et al., 2010), and inter-subject alignment (Conroy et al., 2009). However, none of
these regularized models are specifically searching for evidence of voxel-level structure
within an individual ROI.

In this paper, we present a spatially regularized method for uncovering connectivity
differences within ROIs, and demonstrate that it is possible to discover consistent structures
using only a small amount of training data. We validate our approach using two different
experiments, for which the ground truth connectivity is already known. In the first
experiment, we show that we can recover retinotopic connectivity patterns between early
visual areas V1 and VP. In the second, we replicate the known eccentricity biases in the
connectivity between visual area hV4 and both the Parahippocampal Place Area (PPA) and
the Fusiform Face Area (FFA), without using a specialized experimental design.

Materials and methods
Traditional connectivity analysis

The simplest way to characterize functional connectivity between two ROIs is to extract
mean timecourses by spatially averaging over all the voxels in each ROI, then computing the
Pearson product–moment correlation coefficient (r value) between the two mean
timecourses. A high r2 value indicates strong functional connectivity between the pair of
ROIs.

We can reformulate this analysis as a linear regression problem in which we use voxel
activation values from the first timecourse to predict the second timecourse. Specifically, we
choose a slope a and an offset b minimizing

(1)

where A1 and A2 are the (# voxels × # timepoints) data matrices from two ROIs, and meanv
denotes an average across voxels. The r2 value is then equivalent to the fraction of variance
explained (the increase in prediction accuracy from using a and b, as opposed to just
predicting the mean of the second timecourse, (Stockburger, 1996)):

where meant denotes an average across time.

We can interpret a · meanv1(A1) as a weighted sum, in which every voxel shares the same
weight c=a/(# of voxels in A1). This allows us to rewrite the traditional correlation method
as an optimization problem in a more general form:

(2)
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This is a convex optimization problem, and can be solved using a standard optimization
package (all optimization problems in our paper are solved using CVX, a package for
specifying and solving convex programs, (Grant and Boyd, 2011)).

Regularized connectivity method
Although the basic connectivity method described above provides valuable insight into the
functional organization of the human brain, it lacks a principled way to take into account
voxel-level spatial information present in the fMRI signal. However, simply removing the
constraint that all voxels must have the same weight leads to severe overfitting on typical
fMRI datasets, as will be demonstrated in the results section. Rather than revealing
interesting, generalizable connectivity patterns, the learned maps are driven mainly by noise
in the training data and fail to replicate across runs. In order to obtain meaningful weight
maps, we must place a constraint on the voxel weights which is less restrictive than that of
the traditional method (all weights equal), but more restrictive than the unconstrained
method (all weights independent).

One plausible assumption is that voxel connectivity properties are likely to be spatially
correlated, with nearby voxels typically having more similar connectivity properties than
spatially distant voxels. This reflects a common view of cortical organization, and is
especially applicable to blood-oxygen-level dependent (BOLD) signals such as fMRI, since
the hemodynamic response is spatially smooth.

To incorporate this assumption, we developed a new method of assessing functional
connectivity patterns within ROIs (Fig. 1). We define an extension of the original
optimization problem (Eq. (2)), replacing the constraint that weights for all voxels must be
equal with a spatial regularization term in the minimization objective:

(3)

D is the voxel connectivity matrix, which we design to penalize the mean squared difference
between the weight ai of voxel i, and the weights of voxel i's neighbors. Each row of D
represents a directed edge from a voxel i to an adjacent voxel j: all entries in a row are zero,

except for the jth element  and the kth element , where di
is the number of neighbors of voxel i. Thus the regularization term is

 where N is the number of voxels in A1 and ni is the set of i's
neighbors. The hyperparameter λ controls the strength of the regularization, trading off
between an a that gives a good prediction of the seed timecourse A2 and an a that is spatially
smooth. λ can take on any positive value, with λ→0 producing completely unregularized
maps, and λ→∞ producing completely smooth (constant) maps.

In this paper, we define the voxel neighborhoods ni to enforce smoothness along the cortical
surface. After mapping an ROI onto a cortical flat map, we define the neighborhood of each
voxel to be its k-nearest neighbors. This approach is suitable for ROIs that are known to
have retinotopic structure on the cortical surface, such as early visual areas. Alternatively, a
more general approach could simply define ni to be all spatially adjacent voxels (touching
voxel i at least on a corner in the three-dimensional representation of the particular subject's
brain).

As in the traditional method, this optimization problem is convex and therefore has a global
optimum that can be found efficiently. On our test machine (with a 3 GHz processor) the
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optimal a can be found within 5 s, for a typical region with a few hundred voxels and a few
hundred timepoints.

Datasets
Human subjects—We tested our functional connectivity method on two separate
datasets. Both experiments were approved by the Institutional Review Board of Stanford
University, and all subjects gave their written informed consent. Subjects were in good
health with no past history of psychiatric or neurological diseases, and had normal or
corrected-to-normal vision. 13 subjects (1 female; age: 22–26 years; including one of the
authors) participated in the first experiment, and 8 subjects (2 female; age: 23–26; including
one of the authors) participated in the second experiment.

Scanning parameters—For both experiments, imaging data were acquired with a 3 Tesla
G.E. Healthcare scanner. A gradient echo, echo-planar sequence was used to obtain
functional images [volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle, 80°;
matrix, 128 × 128 voxels; FOV, 20 cm; 29 oblique 3 mm slices with 1 mm gap; in-plane
resolution, 1.56 × 1.56 mm]. The functional data were motion-corrected, each voxel's mean
value was scaled to equal 100, and linear trends were removed from each run, using the
AFNI software package (Cox, 1996). No other preprocessing (e.g. spatial smoothing, slice
timing correction, temporal smoothing) was applied. We collected a high-resolution (1 × 1 ×
1 mm voxels) structural scan (SPGR; TR, 5.9 ms; TE, 2.0 ms; flip angle, 11°) in each
scanning session. Images were presented using a back-projection system (Optoma
Corporation) operating at a resolution of 1024 × 768 pixels at 75 Hz.

Visual stimuli and experimental design—For our first experiment, we collected early
visual cortex responses from 13 subjects. We used a typical retinotopic mapping protocol, in
which a checkerboard pattern undergoing contrast reversals at 5 Hz moved through the
visual field in discrete increments (Sayres and Grill-Spector, 2008). First, a wedge
subtending an angle of 45° from fixation was presented at 16 different polar angles for 2.4 s
each. Next, an annulus subtending 3° of visual angle was presented at 15 different radii for
2.4 s each. Each subject passively observed two runs of 6 cycles in each condition, yielding
512 timepoints per subject (see Fig. 2).

Our second dataset consists of PPA, FFA, and hV4 responses from 8 subjects. We presented
two types of stimuli, as shown in Fig. 2: (1) boats and cars on a blank white background
(isolated objects); and (2) boats and cars with a street or water scene background (objects in
context). Images (450 × 450 pixels; subtending 24 × 24° of visual angle) were presented 100
pixels (5°) away from fixation in randomly determined directions. Subjects were informed
that each image contained either a boat or a car, and were asked to indicate as quickly as
possible whether the object was on the left half of the image or the right half of the image
(using a button box). Subjects performed 4 runs, with 16 blocks per run (with a 14 s gap
between blocks) and 9 images per block. The first 8 blocks of each run showed a boat or car
placed in a photographic scene; for each block, the object could violate a semantic
relationship (appearing in the wrong type of scene, e.g. a boat on a city street) and/or a
geometric relationship (appearing in the wrong position in the scene, e.g. a car above a tree
rather than on the street). Each presentation consisted of a 500 ms fixation cross, an image
flashed for 100 ms, a 300 ms mask, and then a 1300 ms response period (blank gray screen).
The last 8 blocks of each run showed a boat or car on a white background; these images
were identical to those presented in the first eight blocks, with the backgrounds removed
(and presented in a different random order). Each presentation consisted of a 500 ms fixation
cross, an image flashed for 350 ms, and then a 1300 ms response period (blank gray screen).
The total number of timepoints for each of the 8 subjects was 1224 (306 per run).
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ROIs
In order to measure the eccentricity biases of PPA and FFA in the second experiment, we
defined these regions using standard localizer runs conducted in a separate fMRI
experiment. Subjects performed 2 runs, each with 12 blocks drawn equally from six
categories: child faces, adult faces, indoor scenes, outdoor scenes, objects (abstract
sculptures with no semantic meaning), and scrambled objects. Blocks were separated by 12 s
fixation cross periods, and consisted of 12 image presentations, each of which consisted of a
900 ms image followed by a 100 ms fixation cross. Each image was presented exactly once,
with the exception of two images during each block that were repeated twice in a row.
Subjects were asked to maintain fixation at the center of the screen, and respond via button-
press whenever an image was repeated. PPA was defined as the top 300 voxels near
parahippocampal gyrus for the Scenes > Objects contrast, and FFA was defined as the top
100 voxels near fusiform gyrus for the Faces > Objects contrast. The volume of each ROI in
mm3 was chosen conservatively, based on previous results (Golarai et al., 2007). The
locations of early visual areas V1, VP, and hV4 were delineated on a flattened cortical
surface for each subject, using a horizontal meridian vs. vertical meridian general linear test
from the retinotopic mapping data to give the boundaries between retinotopic maps.

Results
VP-V1 connectivity

We know that voxels in early visual cortex exhibit strongly retinotopic population receptive
fields (Dumoulin and Wandell, 2008). Recent work has shown that the structure of
functional connectivity between early visual areas preserves retinotopic organization.
Specifically, the activity of a voxel in V3 is best predicted by voxels in V1 that correspond
to the same retinotopic position in the visual field (Heinzle et al., 2011).

In this section, we validate our method by showing how it can be used to discover such
connections between retinotopic areas of the early visual cortex. We apply our connectivity
method to the early visual cortex dataset with V1 as area A1 and a single voxel in VP
(ventral V3, or V3v) as area A2 (Eq. (3)). For each voxel in VP, we obtain a separate
connectivity map a of voxel weights in V1.

To quantitatively measure the precision of the learned V1 maps, we first assign a preferred
angle and eccentricity to each voxel in V1 and VP. We use the t-statistics from a standard
general linear model (GLM) to quantify the preference of each voxel to each wedge angle
and each annulus radius (Holmes et al., 1997). Specifically, for each voxel v in the two
areas, we take a weighted average of all stimulus angles, with weights proportional to that
voxel's t-statistic for that angle θi (ignoring negative t-statistics):

where θi ∈ {0, 22.5, 45, 67.5,…337.5} and  is the marginal t-statistic for angle i at voxel v.

Similarly, we compute the preferred eccentricity for each voxel v by taking a weighted
average of the stimulus radii Ri:
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where Ri ∈ {0.73, 1.46, 2.92, 4.38,…18.98, 19.71} and  is the marginal t-statistic for radius
i at voxel v.

Finally, we can estimate the position of the population receptive field for v by converting to
Cartesian coordinates:

Given the population receptive field locations for each V1 and VP voxel, we can compare
the receptive field RF(v) of each voxel v in VP with the receptive fields of the V1 voxels in
v's connectivity map. If the V1 connectivity map for voxel v preserves retinotopic
organization, then the V1 voxels with high positive weights should have the same
retinotopic position as v. We therefore take a weighted average of the V1 receptive fields, in
which the weight for each V1 voxel corresponds to its learned connectivity weight (negative
weights are set to zero for this computation). This allows us to compare the receptive field of
VP voxel v with that generated by the connected voxels in V1, as shown in Fig. 3. To ensure
that the receptive field estimates are an independent measure of performance, we compute
the receptive field positions using the first run of the wedge and annulus data, and learn
connectivity maps using the second run.

Fig. 4 describes the results across all 13 subjects, with λ = 103 and k = 10. We observe a
marked decrease in the magnitude of the receptive field differences between VP and V1
when adding regularization, with the median difference reduced by an average of 31% (t(12)
= 11.19, p << 0.01, two-tailed paired t-test). With regularization, the V1 maps become much
more precise, with the majority of the positive learned V1 weights falling in a retinotopic
location similar to that of the VP voxel that generated them. This result demonstrates that
our regularized method produces V1 maps that are not only spatially coherent, but also
functionally correct. It also shows that our method can perform well even with very little
data; we use only 256 timepoints to estimate connectivity maps over all ~1000 V1 voxels.
The performance of any connectivity method on this dataset will be limited by the
uncertainty in our VP receptive field position estimates (introduced by the limited number of
wedge and annulus positions used, and the small number of temporal samples); we can
approximate this uncertainty by comparing the RF(v) calculated from a single run to the
RF(v) calculated from both runs. This loose error bound is plotted in Fig. 4, indicating that
our method makes significant progress toward the optimal result even with such a small
number of training timepoints. Similar results for regularized maps are observed over a large
range of λ and k values (see Supplementary Fig. 1).

hV4-PPA/FFA connectivity
Previous work has shown that there is a preferential response in PPA to peripherally-
presented stimuli, and in FFA to foveally-presented stimuli; this effect has been measured
both with discrete stimuli (Levy et al., 2001) and with traveling wave methods (Goesaert
and Op de Beeck, 2010). Experiments using diffusion tensor imaging (DTI) have provided
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evidence that this eccentricity bias is also present in the connectivity structure, with
projections to early visual areas terminating at peripheral eccentricities for PPA and foveal
eccentricities for FFA (Kim et al., 2005). Our connectivity method provides a simple way of
revealing such differential connectivity patterns, which does not require a specialized
experimental design or a large amount of data. We chose to learn connectivity maps from
PPA/FFA to area hV4 (as described in (Wade et al., 2002)), since it is the area in visual
cortex most closely connected to ventral regions and is therefore most likely to show strong
functional connectivity patterns.

We first examine the effect of varying λ on this dataset, and describe a principled approach
for automatically selecting the regularization strength. λ controls the complexity of the
learned connectivity patterns; as λ → ∞, we can learn only constant-weight maps, while as
λ → 0, the weights are allowed to vary completely independently and maps can be
arbitrarily complex.

We now use hV4 as area A1 and either PPA or FFA as area A2 (k = 10); the goal of our
optimization is to find a map of weights for the hV4 voxels that allows for the best
prediction of the mean PPA or FFA timecourse. For each subject, we train the model
parameters on one run and then test on the other three runs (results are averaged across the
choice of training run). The testing accuracies across a wide range of λ values (spaced
logarithmically with step ratio of 100.25) are shown in Fig. 5 (upper plot). At low values of
λ, the connectivity maps are highly complex. These maps severely overfit to the training
run, and fail to generalize to testing runs. At high values of λ, testing performance
converges to essentially the same result as in the traditional connectivity method, in which
all voxels have the same weight (unlike the traditional method, each hemisphere can have a
different constant weight). However, the surprising characteristic of the testing accuracy
curve is that it does not increase monotonically as λ increases. In every subject, the best
testing performance occurred at an intermediate value of λ, which shows that there exists a
non-constant connectivity structure which is stable between runs; across subjects, testing
performance was significantly increased over the traditional method (λ = ∞) for 10−0.25 <λ
<106.75 for PPA and 101.5 <λ <106 for FFA (t(7) <−1.89, p< 0.05, one-tailed paired t-test,
uncorrected). This result shows that our method can carefully balance the trade-off between
model complexity and data availability. Note that it is not possible to find generalizable
connectivity maps using only pre-smoothing rather than spatial regularization (see
Supplementary Fig. 2).

We obtain the best generalization performance around λ = 101, where we learn maps with a
smoothness of approximately 9 mm FWHM (see Supplementary Fig. 3). As shown in the
lower plot of Fig. 5, the connectivity maps in this regime have eccentricity biases in opposite
directions for the two seed regions, with PPA biased toward peripheral eccentricities and
FFA biased toward foveal eccentricities (correlation of learned weights with voxel
eccentricities is significantly different for 10−1.25 <λ <103, t(7) > 2.36, p < 0.05, two-tailed
paired t-test after z-transform, uncorrected).

Fig. 6 compares the eccentricity biases of the learned maps, with λ for each subject chosen
to maximize generalization accuracy. Using all 306 timepoints from a run, the hV4
connectivity map with PPA is biased toward larger eccentricities, with an average
correlation between eccentricity and connectivity weight of 0.21 (t(7) = 2.83, p < 0.05, one-
tailed t-test after z-transform) while the hV4 connectivity map with FFA is biased toward
smaller eccentricities, with an average correlation of −0.16 (t(7) = −2.24, p <0.05, one-tailed
t-test after z-transform) (PPA and FFA eccentricities significantly different, t(7) = 4.19, p<
0.01, two-tailed paired t-test after z-transform). We can obtain similar results using only the
148 “resting” timepoints in between stimulus blocks, in which subjects are simply fixating
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on a blank screen, suggesting that our method is sensitive to general functional connectivity
rather than a stimulus mediated effect (PPA: t(7) = 3.51, p<0.01, one-tailed t-test after z-
transform; FFA: t(7) = −2.39, p <0.05, one-tailed t-test after z-transform; Difference: t(7) =
4.88, p <0.01, two-tailed paired t-test after z-transform).

To demonstrate that our method is more powerful than simpler approaches, the hV4
eccentricity biases for connectivity with PPA and FFA are computed in two additional ways:
voxel-wise correlation (C), in which the weight of each hV4 voxel is set to the correlation
between the timecourse of that voxel and PPA or FFA; and an unregularized version of our
method (U) in which λ = 0. There are only two cases in which these methods give a
significant result — the correlation method shows a foveal bias for FFA when using all TRs
(t(7) = −2.27, p<0.05, one-tailed t-test after z-transform) and the unregularized method
shows a peripheral bias for PPA when using the resting TRs (t(7) = 5.60, p<0.01, one-tailed
t-test after z-transform). For both all TRs and the resting TRs, the difference between PPA
and FFA eccentricity biases is significantly greater using our method than using the
correlation method (all TRs: t(7) = 3.63, p <0.01, resting TRs: t(7) = 3.90, p<0.01, two-
tailed paired t-test after z-transform) or using the unregularized method (all TRs: t(7) = 4.20,
p <0.01, resting TRs: t(7) = 4.86, p <0.01, two-tailed paired t-test after z-transform). Our
approach is therefore significantly more sensitive than either performing independent
correlations between individual voxels and the seed region, or learning maps over all voxels
without using spatial regularization.

A potential concern regarding functional connectivity measures is that they may be driven
by local noise correlations, such that nearby voxels are good predictors of each other even if
the underlying neural signals are unrelated. To ensure that our results are not being caused
by relative positions of the ROIs, we ran a control analysis in which each hV4 voxel's
connectivity weight was simply inversely proportional to its distance from the seed region.
For bilateral ROIs, we set the weight of voxel v = 1/(dist from v to left ROI) + 1/(dist from v
to right ROI). Since both PPA and FFA are closest to the anterior (peripheral) side of hV4,
this model erroneously predicts that PPA and FFA should both show a peripheral
eccentricity bias (PPA: t(7) = 5.59, p <0.01; FFA: t(7) = 3.03, p <0.05; two-tailed t-test after
z-transform). Our results therefore cannot be explained simply by the physical arrangement
of the ROIs.

Discussion
We have shown that our method can successfully extract known functional connectivity
structures for two sets of regions. By adding spatial regularization to the traditional
functional connectivity measure, our estimate of the connectivity between V1 and VP was
made significantly more accurate, showing a clear retinotopic organization. We also
demonstrated the expected eccentricity biases in the connectivity between V4 and PPA/FFA;
unlike past experiments showing this effect (Levy et al., 2001; Goesaert and Op de Beeck,
2010), this was accomplished without using a specialized experimental design, and could
even be estimated from only resting-state data. The success of our method on these two
different datasets demonstrates that this technique is likely to be applicable to a wide range
of datasets and scientific questions. Note that we are able to learn these connectivity maps
using only ~200 timepoints, in contrast to the ~2000 timepoints needed for complex models
such as SVR (Heinzle et al., 2011). Therefore, this method could be highly useful for
detecting subtle variations in connectivity using small datasets. For example, it could
plausibly be used to detect differences in connectivity across stimulus conditions, since only
a small amount of data is required for learning.
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Although these two experiments examined relatively simple characteristics of the learned
weight maps (average retinotopic position or correlation with one of the spatial axes), our
method should be applicable to any type of connectivity pattern, including multi-modal
weight maps in which two separate sections of an ROI show high connectivity. Since the
smoothness of the learned maps is controlled by a continuous parameter λ, our method is
highly flexible and can learn arbitrarily complex connectivity maps, given enough training
data. For very large datasets, applying regularization will be less important, and the optimal
value of λ (giving the best generalization accuracy) will decrease towards zero. Our method
is therefore adaptive to the training set size, and will learn maps at finer and finer scales as
the amount of training data increases.

Now that this method has been validated with known connectivity results, there are many
opportunities to discover new connectivity patterns. One possible application would be to
learn connectivity maps in frontal regions, where functional ROIs are difficult to define. By
locating the voxels in the frontal lobe that are connected to known ROIs in sensory regions,
we may be able to identify how low-level sensory information converges in or is modulated
by higher-level regions. Also, given any ROI, we can describe its connectivity with the
entire rest of the cortex, by iteratively scanning a seed searchlight through all of cortex and
learning a connectivity map over the ROI for each seed position. This will allow us to
determine whether certain regions of cortex are connected to specific voxels in our ROI, as
in “functional fingerprint” methods (Kim et al., 2010).

There are several ways that our method could be extended in future work. One current
limitation is that weights can only be learned over one region at a time; that is, Eq. (3) is not
symmetric with respect to A1 and A2. Simply replacing meanv (A2) with a weighted average

 will yield the degenerate solution a = a2 = 0, so (non-convex) constraints must be
added to produce reasonable results. Another possible extension would be to learn weights
simultaneously across multiple subjects. After first obtaining a voxel correspondence
between subjects using a functional alignment technique (such as Haxby et al., 2011), we
could learn a global set of weights that is shared by all subjects. We could also allow the
weights to vary between subjects, but introduce a new regularization term that encourages
subjects to have similar weight maps.

Conclusions
We have presented a new method for discovering functional connectivity patterns between
and within ROIs in the human brain. Our method is specifically tailored to the very small-
size datasets typical of fMRI (addressing the known issue of data scarcity in this setting),
and is capable of detecting subtle patterns at the voxel level. Our method is fast, can operate
efficiently with little input data, gives results consistent with prior work, and has proven to
be a good candidate for investigating the structure of functional connectivity in the human
brain.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Comparison of connectivity maps learned from traditional (a) and regularized (b) methods.
(a) In traditional functional connectivity analysis, connectivity with a seed region (blue) is
assumed to be identical for all voxels in an ROI (red). (b) Our method can learn a map of
weights in an ROI that describes the voxel-level connectivity between each voxel and the
seed region. It is possible to learn these maps using a small amount of training data by
imposing a spatial smoothness constraint.
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Fig. 2.
Stimuli used in our two datasets. (a) The first dataset consists of responses to two flickering
checkerboard patterns: a 45° wedge which rotates clockwise through the visual field, and an
annulus subtending 3° of visual angle that expands outward from fixation. (b) The second
dataset consists of cars and boats, presented either in isolation or in a scene context.
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Fig. 3.
Learned connectivity maps and receptive fields for 2 VP voxels, without regularization (a)
and with regularization (b). Two VP voxels are denoted by purple and green stars, and the
top 30 voxels from the learned connectivity maps are shown in respective color in V1
(triangles indicate the location of the fovea). The inset plots compare the average receptive
field of the connected V1 voxels (heatmap) with the actual population receptive field of each
VP voxel (gray circle, radius given by the average uncertainty in our receptive field
estimates). (a) The unregularized method produces maps with scattered weights, and the
receptive fields of the connected V1 voxels are poor predictors of the VP receptive field. (b)
The regularized connectivity method learns spatially coherent connectivity maps consistent
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with retinotopic organization, and the receptive fields of the connected V1 voxels are similar
to that of the VP voxel.

Baldassano et al. Page 16

Neuroimage. Author manuscript; available in PMC 2013 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Histogram comparing the precision of V1 maps generated from VP voxels. The x-axis
indicates the difference between the receptive field locations of VP voxels and the weighted
average of the receptive fields in corresponding V1 connectivity maps. Since the actual
functional connectivity between V1 and VP is known to preserve retinotopy, each VP voxel
and its learned V1 connectivity map should have similar receptive field locations. The y-axis
shows the fraction of VP voxels in each difference bin spanning 1.2° of visual angle. Red
bars (back) show results for regularized maps (λ = 103,k = 10), which demonstrate
significantly smaller differences than blue bars (front), which show results for non-
regularized maps (λ = 0). The dotted lines compare the median difference of both methods
to a loose lower bound, based on the uncertainty in our receptive field estimates.
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Fig. 5.
Effects of changing λ on learned hV4 connectivity maps. Connectivity maps over hV4 were
learned with different regularization strengths λ, for seed regions PPA and FFA. An
appropriate λ value can be chosen by maximizing the generalization performance of the
learned maps, based on held-out testing runs (upper plot). At these values of λ, PPA and
FFA show connectivity biases toward peripheral and central eccentricities, respectively
(lower plot). Shaded regions indicate standard error across subjects (controlling for
performance in the fully-regularized condition for the upper plot).

Baldassano et al. Page 18

Neuroimage. Author manuscript; available in PMC 2013 November 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
hV4 eccentricity differences for optimal values of λ. After choosing an optimal λ value for
each subject bfased on generalization performance (see Fig. 5), we compute the eccentricity
of hV4 connectivity maps for seed regions PPA and FFA, using our method (O), a voxel
correlation method (C), and our method without regularization (U) (results averaged across
four runs for each subject). Whether using all timepoints from a run (306 TRs) or using only
those timepoints during which no stimulus was presented (approx. 148 TRs), our method
finds that connectivity with PPA increases with increasing eccentricity, while the opposite is
true for FFA. The correlation and unregularized controls are much less sensitive, showing
significantly smaller differences between PPA and FFA eccentricity biases. Additionally,
our results cannot be explained simply by local noise correlations; since both PPA and FFA
are closer to the anterior (peripheral) side of hV4, such a model would predict similar
peripheral eccentricity biases in PPA and FFA (D). Error bars indicate standard error,
*p<0.05, **p<0.01.
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