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18F_flutemetamol is a positron emission tomography (PET) tracer for in vivo amyloid imaging. The ability to
classify amyloid scans in a binary manner as ‘normal’ versus ‘Alzheimer-like’, is of high clinical relevance. We
evaluated whether a supervised machine learning technique, support vector machines (SVM), can replicate
the assignments made by visual readers blind to the clinical diagnosis, which image components have highest
diagnostic value according to SVM and how '8F-flutemetamol-based classification using SVM relates to structur-
al MRI-based classification using SVM within the same subjects. By means of SVM with a linear kernel, we ana-
lyzed '8F-flutemetamol scans and volumetric MRI scans from 72 cases from the '®F-flutemetamol phase 2 study
(27 clinically probable Alzheimer's disease (AD), 20 amnestic mild cognitive impairment (MCI), 25 controls). In a
leave-one-out approach, we trained the '8F-flutemetamol based classifier by means of the visual reads and tested
whether the classifier was able to reproduce the assignment based on visual reads and which voxels had the
highest feature weights. The ®F-flutemetamol based classifier was able to replicate the assignments obtained
by visual reads with 100% accuracy. The voxels with highest feature weights were in the striatum, precuneus,
cingulate and middle frontal gyrus. Second, to determine concordance between the gray matter volume- and
the '8F-flutemetamol-based classification, we trained the classifier with the clinical diagnosis as gold standard.
Overall sensitivity of the 'F-flutemetamol- and the gray matter volume-based classifiers were identical
(85.2%), albeit with discordant classification in three cases. Specificity of the '®F-flutemetamol based classifier
was 92% compared to 68% for MRI. In the MCI group, the '8F-flutemetamol based classifier distinguished more
reliably between converters and non-converters than the gray matter-based classifier. The visual read-based
binary classification of 8F-flutemetamol scans can be replicated using SVM. In this sample the specificity of
18E_flutemetamol based SVM for distinguishing AD from controls is higher than that of gray matter volume-
based SVM.
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Introduction

Amyloid imaging has the potential to become a clinically impor-
tant diagnostic tool in the field of Alzheimer's disease (AD) and
related disorders. One of the parameters for clinical use that has
recently received much attention is the reliability of binary assignments
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of scans into an ‘AD-like’ versus a ‘normal’ pattern. In the phase 2 study
of 18F-flutemetamol, the '8F labeled analog (Koole et al., 2009; Nelissen
et al,, 2009; Vandenberghe et al., 2010) of ''C-Pittsburgh Compound B
(PIB) (Ikonomovic et al., 2008; Klunk et al., 2003, 2004; Lockhart et
al., 2007), 27 patients with clinically probable AD, 25 healthy controls
and 20 patients with amnestic mild cognitive impairment (MCI) partic-
ipated. Five independent readers who were blind to the clinical diagno-
sis assigned each of the 72 scans to a ‘raised’ or a ‘normal retention’
category. In case of disagreement the decision was based on a majority
verdict. In all AD cases, readers concurred in their assessment except for
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one reader in one AD case. Likewise, scans in all healthy volunteers
were rated consistently between the 5 readers (Vandenberghe et al.,
2010). Among the MCI cases, 9 were assigned to the ‘raised retention’
and 11 to the ‘normal retention’ category (Vandenberghe et al., 2010).
A first purpose of the current study was to evaluate whether a super-
vised machine learning technique, support vector machines (SVM)
with a linear kernel (Kléppel et al., 2008b), could be trained to replicate
the outcome of the visual reads and which image components contrib-
uted most to the binary SVM classification.

In SVM with a linear kernel, the algorithm is trained to classify scans
into two a priori defined classes (e.g. patients vs controls). During train-
ing the algorithm tries to find the hyperplane that optimally separates
(maximizes the margin between) the two classes (Fig. 1). Subsequently,
performance is tested using a test set. The outcome parameters of SVM
are based on the accuracy of classification on the individual case level.
Although other classification techniques such as logistic regression, lin-
ear discriminant analysis, neural networks, ... can be used, we opted for
SVM because it is well established as a classification technique for neu-
roimaging data (Chincarini et al., 2011; Davatzikos et al., 2008; Kl6ppel
et al., 2008a,b; Magnin et al., 2009; Padilla et al., 2012; Plant et al., 2010;
Vemuri et al., 2008). This allowed us to directly compare performance of
a same classifier method between the MRI and the PET modality. A key
advantage of SVM over other methods is that it allows inferences to be
made at the level of the individual (Orru et al., 2012). Furthermore, it
can handle huge sets of values per case in a multivariate way and is
therefore ideally suited for analyzing images consisting of 10,000 s of
voxels representing a given feature without need for volume of
interest-based data reduction. From a clinical standpoint, it is important
to empirically define to which degree in vivo amyloid imaging and
structural MRI within the same subjects provide redundant, comple-
mentary or contradictory information. The second aim therefore of
the current study was to evaluate the degree of concordance of binary
SVM classifications based on either '®F-flutemetamol or gray matter
volume maps.

To address our primary question, we used the visual reads to de-
fine the 2 a priori classes and train the algorithm. We compared the
classification of the test cases with that based on visual reads. We
will also present a voxel-based map of topographical distribution of
the feature weights. Feature weights indicate how much each voxel

Voxel 2

Voxel 1

Fig. 1. lllustration of a linear support vector machine using 2 features, in this instance
voxels 1 and 2. In the current whole-brain PET study, each voxel can be thought of as 1
dimension in a multidimensional space. Legend: red: training cases belonging to class
A; green: training cases belonging to class B; blue: test case. Circled dots correspond to
the support vectors; m=margin, i.e. distance between support vectors; d: distance
from a case to the hyperplane; w=normal vector of the hyperplane, components w'
and w? are the weights of voxels 1 and 2.

contributes to the pattern that is used by the classifier to separate
the two groups. To address our second question, we used the clinical
diagnosis for definition of the a priori classes in order not to bias the
algorithm in favor of one or the other imaging technique. We eval-
uated how concordant the classification was between structural MRI
and '®F-flutemetamol.

Subjects and methods
Subjects

Our dataset consisted of the 72 '8F-flutemetamol and structural MRI
scans from the ALZ201 phase 2 study (Vandenberghe et al., 2010). In
this study, 27 patients who fulfilled the National Institute of Neurologi-
cal and Communicative Diseases and Stroke-Alzheimer's Disease and
Related Disorders Association criteria for clinically probable AD and
the Diagnostic and Statistical Manual of Mental Disorders-IV criteria
for dementia of the Alzheimer type (mean age: 69.6 years, S.D. 7.03;
Mini Mental State Examination (MMSE) score 23.3, S.D. 2.18) partici-
pated, 20 patients with amnestic MCI (Petersen, 2004) (mean age:
72.7 years, S.D. 7.09, MMSE 28.0, S.D. 0.94), 15 cognitively intact con-
trols above the age of 55 (mean age: 68.7 years, S.D. 7.61; MMSE 29.4,
S.D. 097) and 10 cognitively intact controls below the age of 55
(mean age: 37.9 years, S.D. 11.5; MMSE 29.4, S.D. 0.92). Inclusion and
exclusion criteria and demographic variables of this study sample
have been described previously (Vandenberghe et al,, 2010). Patients
were recruited through academic memory clinics and controls through
advertisement in local newspapers.

Image acquisition

18E_flutemetamol PET

At two radiopharmaceutical production sites, in Belgium and in
Denmark, the investigational medicinal product '®F-flutemetamol was
batch manufactured according to good manufacturing practice guide-
lines (EudraLex, volume 4, annex 3) using a TracerLab-FXF-N chemistry
platform (GE Healthcare). Subjects received a dynamic '8F-flutemetamol
PET scan consisting of 6 5-min frames recorded during the window at
85-115 min post injection. Dynamic brain scanning was performed at
3 different scanning centers using a 16-slice Biograph PET/CT scanner
(Siemens, Erlangen, Germany), an ECAT EXACT HR + scanner (Siemens,
Erlangen, Germany), and a GE Advance scanner. The reconstruction
method consisted of filtered back projection in case of the HR+ and
Advance scanners and iterative reconstruction (ordered-subset expec-
tation maximization) in the case of the Biograph 16. Scans were
reconstructed as 6 5-min frames (for details see Vandenberghe et al.,
2010). Further details are described in the original phase 2 paper
(Vandenberghe et al., 2010).

Volumetric MRI

T1-weighted magnetic resonance images were acquired using a
standard three-dimensional Magnetization Prepared Rapid Acquisition
Gradient Echo (MPRAGE) volumetric MRI scan at 3T (1 mm isotropic
voxels). Scans were acquired at 4 different MR scanning centers, two
of which used a Philips Achieva MRI (12 AD, 15 MCI, 20 controls),
with the two remaining centers using a Siemens Allegra (7 AD), and Sie-
mens Magnetom Trio (8 AD, 5 MCI, 5 controls), respectively. The maxi-
mum interval between the PET and the MRI was 30 days. Subjects also
received a Fluid Attenuated Inversion Recovery (FLAIR) MRI sequence.

Image preprocessing

I8E_flutemetamol PET

All PET frames were realigned, and a PET summed image was
created. We calculated standard uptake value ratio (SUVR) images
from the PET summed image using manually delineated cerebellar
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gray matter as reference region (Nelissen et al., 2009; Vandenberghe
et al., 2010). The PET summed image was coregistered to the subject's
T1-weighted MRI using a mutual information-based method (Maes
etal, 1997). The reoriented MRI was spatially normalized into Mon-
treal Neurologic Institute (MNI) space. The resulting transformation
was then applied to the coregistered PET summed images. The voxel
size of the normalized SUVR images was 2 x 2 x2 mm?>,

Volumetric MRI

MRI images were segmented into gray matter and spatially normal-
ized using the VBMS toolbox (http://dbm.neuro.uni-jena.de/vbmy/). In
this procedure the warping to MNI is performed using Diffeomorphic
Anatomical Registration Through Exponentiated Lie algebra (DARTEL)
(Ashburner, 2007) and a bias field correction is applied prior to the seg-
mentation. Gray matter images were modulated in order to create gray
matter volume maps. All images were masked using the SPM8 brain
mask excluding the ventricles. The voxel size of the final images was
15%1.5%1.5 mm°.

Image analysis

We used the machine learning package The Spider version 1.71
(http://people.kyb.tuebingen.mpg.de/spider/, Weston J., Elisseef A,
Bakir G., and Sinz F., Max Planck Institute for Biological Cybernetics,
Tiibingen, Germany), running under Matlab version 7.9 to calculate
the support vector machine (SVM) with a linear kernel using the de-
fault soft margin option. Each image represents a single point in a
high dimensional space in which each dimension corresponds to
one voxel within the brain mask. The coordinate is the intensity
value in that voxel. The weight of a feature (voxel) is the component
of the normal vector of the hyperplane along that voxel's dimension
(Fig. 1). It indicates how much that voxel contributes to the pattern
underlying overall classification. The feature weights of the classifier
will be presented as an image in MNI space.

Comparison with visual reads

In a leave-one-out approach we used the scans from the 25 AD
subjects which visual readers had previously assigned to the ‘raised
retention’ category (‘positive’ read) and scans from the 24 controls
which visual readers had previously assigned to the ‘normal reten-
tion’ category (‘negative’ read) (Vandenberghe et al., 2010). The
SVM was trained to classify a scan into one of two classes, ‘AD-like’
versus ‘normal retention’ pattern, using all scans less one. The test
set consisted of the remaining scan. By means of permutations we cy-
cled through the entire set so that each scan was used once as the test
set. In addition to the simple binary classification into ‘raised’ or ‘nor-
mal retention’, we will also report the distance of each scan to the
separating hyperplane: Larger absolute distances indicate a more ro-
bust classification.

In a second approach, the training set consisted of the full set of
positively read scans from 25 AD subjects and the negatively read
scans from 24 controls. The independent test set consisted of all
remaining '8F-flutemetamol scans from the phase 2 study: scans
from 20 MCI subjects, from two AD subjects which readers had
assigned to the normal retention category and from one control
which readers had assigned to the raised retention category. In
order to illustrate which brain components have most discriminative
value based according to this classifier, the feature weights for each
voxel will be shown on a normalized brain MRIL

Comparison with gray matter volume-based classifier

To compare an '8F-flutemetamol-based with a gray matter volume-
based classifier, we trained the classifier on the basis of the clinical
categories: clinically probable AD (n=27) versus controls (n=25), for
each modality separately. First, we applied a leave-one-out approach.
We compared diagnostic parameters (sensitivity and specificity) for an

18E_flutemetamol-based SVM versus a gray matter volume-based SVM
classification. Next, we evaluated concordance on a case-by-case level.
To assess the statistical significance of the distance to the hyperplane
in each case for each modality, a bootstrap approach was used based
on 1000 random assignments of the scans of the training set to one of
the two classes (AD-like versus normal). From the probability distribu-
tions we determined the statistical significance of the distance in each
test case, applying a threshold of P<0.05.

Second, to compare performance in the MCI cases, using the 27 clin-
ically probable AD cases and the 25 controls as training set, we applied
the classifier to the set of 20 MCI subjects. We compared performance be-
tween the '8F-flutemetamol-based and the gray matter volume-based
classifier. We also evaluated concordance on a case-by-case level. We
also compared the outcome with that of the visual reads of the '8F-
flutemetamol scans (Vandenberghe et al.,, 2010).

Per protocol a 2-year study visit was to be performed in all partic-
ipants. The study physician had to report whether the diagnosis had
changed. We will also report the outcome of this 2-year follow-up
visit in the MCI cases. All MCI cases were re-evaluated at this
follow-up visit except one.

Comparison with SPM analysis of between-group differences

We also evaluated to which degree the topographic pattern of fea-
ture weights corresponded to regional differences between the groups
in amyloid burden or gray matter volume. We performed an SPM anal-
ysis between the AD group and the normal control group using the PET
amyloid images or using the GM volume images. As a standard prepro-
cessing step, we applied an isotropic Gaussian smoothing of the images
using a kernel of FWHM =8 mm. As statistical threshold we used an
uncorrected P<0.001 at the voxel level combined with a FWE (family
wise error) corrected P<0.05 at the cluster level.

Results
Comparison with visual reads

The leave-one-out approach fully replicated the classification based
on the visual reads (sensitivity and specificity of 100%) (Fig. 2A). Like-
wise, when we trained the algorithm with the 25 scans from AD sub-
jects and the 24 scans from controls and applied the algorithm to an
independent test set consisting of the remaining 23 scans from the
ALZ201 study, the classifier reached a specificity and a sensitivity of
100% compared to the visual reads as gold standard (Fig. 2B).

Positive feature weights contributing to a ‘raised retention’ classi-
fication (Fig. 2C) were highest in precuneus, striatum, posterior and
mid cingulate, anteromedial frontal cortex and middle frontal gyrus.
Negative feature weights contributing to a ‘normal retention’ classifi-
cation were highest in cerebellum and periventricular white matter.

A classifier is determined by all voxels and their corresponding
weights. To show that voxels with a low weight can be neglected in
the classification process without loss of performance, we constructed
a new classifier using only those voxels with an absolute weight higher
than 0.005 (2990 voxels). This new classifier reached an accuracy that
was as high as when the original classifier was used.

When we excluded the scans from the 10 controls below the age
of 55, specificity and sensitivity remained the same for both ap-
proaches (100%).

Comparison with gray matter volume-based SVM in AD and healthy
controls

Using a leave-one-out approach with the clinical diagnosis as gold
standard in the 27 AD subjects and the 25 controls, specificity was
92% and sensitivity was 85.2% for the '8F-flutemetamol scans (Fig 3A).
The distance to the hyperplane was significant in nearly all cases
(Fig 3A). For the gray matter volume maps, specificity was 68% and


http://dbm.neuro.uni-jena.de/vbm/
http://people.kyb.tuebingen.mpg.de/spider/

520 R. Vandenberghe et al. / Neurolmage 64 (2013) 517-525

A
5 150 I
kel
> o
£ O
< £
3
2 0
©
=
ke
25
£
< -150 i ]
I [
HV AD
Il visual read positive on "8F-flutemetamol PET
I visual read negative on "8F-flutemetamol PET
B
200
+ 100 —
9
kel
> o
€ ©
< £
3
R 0
©
=
35
>
E
-100
\_Y_)( V LYJ

AD MCI HV

Fig. 2. '®F-flutemetamol-based classification of ALZ201 cases. A. Plots of distance of the test subjects to the hyperplane using a leave-one-out approach based on 24 healthy controls
with negative reads (green color) and 25 probable AD cases with positive reads (red color). B. Independent test set with '®F-flutemetamol scans from two probable AD cases with
negative read, 20 MCI cases, and one healthy control with positive read. Legend: X axis: individual cases. Y axis: distance from the hyperplane (arbitrary units). The sign of the y
value, positive or negative, corresponds to the class to which the case is assigned by the algorithm. Negative corresponds to ‘normal’ retention, positive to ‘AD-like’ but the sign of
the Y value is otherwise arbitrary. Green: read as ‘normal retention’ by the readers blind to the diagnosis. Red: read as ‘raised retention’ by the readers. C. Feature weights of the
classifier projected onto a normalized structural MRI in MNI space. Higher positive weights indicate that higher SUVR values in this voxel contribute more toward a classification as
‘raised retention’, whereas negative weights indicate that higher SUVR values in that voxel results in a higher likelihood of classification as ‘normal retention’. Scaled between
—0.005 and —0.001 (blue color range) and +0.001 and + 0.005 (hot color range). The scale of the feature weights is representing how much a voxel is contributing. We have
normalized this scale such that the sum of all weights is one. Only voxels with a weight more than 0.001 (in absolute value) are shown.

sensitivity was 85.2% (Fig. 3B). The distance to the hyperplane was sig-
nificant in most of the normal controls. It failed to reach significance in
any of the AD cases in the current sample according to the bootstrapping
method (Fig. 3B).

Among the scans from clinically probable AD cases, the 'SF-
flutemetamol-based SVM classified 4 cases as normal, two of whom
with a relatively large distance from the hyperplane. The latter two
corresponded to those that had also been assigned by the visual readers
to the ‘normal retention’ category. The '®F-flutemetamol-based SVM
classified two healthy controls as ‘AD-like’, one with a small and the
other with a larger distance from the hyperplane (Fig. 3A). The latter
case had also received a positive read of the '®F-flutemetamol scan
(Vandenberghe et al., 2010).

Among the scans from healthy controls, the gray matter volume-
based SVM classified 8 cases as ‘AD-like’, in two of whom there was
a very small distance from the hyperplane (Fig. 3B). The gray matter
volume-based classifier also assigned 4 clinically probable AD cases
to the normal category, two of whom corresponded to the two AD
cases classified as ‘normal’ based on the '®F-flutemetamol-based
SVM.

The highest feature weights for the gray matter volume-based
classifier were in medial temporal cortex bilaterally, posterior tempo-
ral cortex bilaterally, and medial parietal cortex (Fig. 4).

To determine how subject differences in total gray matter volume
affected performance of the classifier, we performed an additional
analysis where we scaled the GM volume with total GM. Scaling
changed the classification of three cases. These cases corresponded
to the three cases who had a GM volume image with the smallest dis-
tance to the classifier in the original analysis. This scaling led to a re-
duction in sensitivity to 74.1%. Specificity remained the same.

In a secondary analysis, when we excluded the scans from the 10
controls below the age of 55, specificity of the '8F-flutemetamol
based classifier was 86.7% and sensitivity remained 85.2%. Sensitivity
of the gray matter volume-based classifier was 92.6% but specificity
further reduced to 20.0%.

Comparison with gray matter volume-based SVM in MCI

According to the clinician's judgment at the 2-year follow-up visit,
nine of the 20 MCI cases had converted to clinically probable AD. Of
the 10 cases which the '8F-flutemetamol-based classifier categorized
as ‘AD-like’, 8 converted to AD at the prespecified 2-year follow up
evaluation (Fig. 5A, yellow circles). One of these cases had initially
been read as ‘normal retention’ by the visual readers (Fig. 5A, green
bar with yellow circle). Among the 14 cases which the gray matter
volume-based classifier categorized as ‘AD-like’, 7 converted to AD
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Fig. 3. Comparison between 'SF-flutemetamol- and gray matter volume-based classifier in 27 clinically probable AD and 25 controls. Leave-one-out approach with clinical diagnosis
as gold standard. Significance was determined using a bootstrap method. A star indicates which cases were significant (P<0.05). A. Distance to the hyperplane of the classifier based
on '8F-flutemetamol scans (y axis). B. Distance to the hyperplane of the classifier based on gray matter volume maps (y axis) as input.
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Fig. 4. Feature weights of the classifier projected onto a normalized structural MRI in
MNI space. Classifier weights for the gray matter volume-based SVM. Voxels with a
high feature weight in favor of an ‘AD like’ classification are shown in hot colors, voxels
with a high feature weight in favor of a normal classification are shown in cold colors.
Scaled between —0.005 and —0.001 and +0.001 and +0.005. We have normalized
this scale such that the sum of all weights is one. Only voxels with a weight more
than 0.001 (in absolute value) are shown.

within 2 years (Fig. 5B, yellow circles). Two additional cases converted
which the gray matter volume-based classifier had categorized as
‘normal’ (Figs. 5B, C).

One MCI case who received a clinically probable AD diagnosis at
2 years follow-up was situated very close to the hyperplane of the
18F_flutemetamol-based classifier (Fig. 5A, 3rd column) but was classi-
fied as AD-like according to the gray matter volume-based classifier,
with a relatively large distance from the hyperplane (Fig. 5B, 3rd
column). This case also received a cerebrospinal fluid biomarker analy-
sis around the same period as the PET and MRI. A 342 was within the
normal range (743 pg/ml) while [181]phosphotau was increased
above the normal range (122 pg/ml) and total tau was at a borderline
level (296 pg/ml) (Hort et al., 2010). At the time of scanning this subject
had an isolated amnestic syndrome that progressed steadily thereafter,
with additional language and executive dysfunction abnormalities.
After 3 years of follow-up the clinical picture remained predominantly
cognitive with appearance of distinct compartmental changes including
repetitive behavior (continuous humming, repetition of stereotyped
sentences) and mild euphoria. A fluorodeoxyglucose PET 3 years after
the study scans revealed pronounced left frontal hypometabolism,
according to a pattern diagnostic for frontotemporal lobar degeneration
(FTLD). This case currently fulfills the criteria for clinically probable be-
havioral variant frontotemporal degeneration (Rascovsky et al., 2011).

Comparison with SPM analysis of between-group differences

Significant differences in amyloid ligand retention between the
AD group and the normal control group are shown in Figs. 6A and
B. A similar analysis of the GM volume maps revealed significant
decreases in GM volume in medial temporal cortex, the middle tem-
poral gyrus bilaterally, left angular gyrus, posterior cingulate and
precuneus (Fig. 6C).
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Fig. 5. MClI cases (n =20). The 9 cases who converted to clinically probable AD at 2 years follow-up are marked with a yellow circle. A. X-axis: MCI cases. Distance to the hyperplane
of the classifier determined with '8F-flutemetamol scans (y axis). Legend: Green: cases in whom the '®F-flutemetamol scan was read as negative, red: cases in whom the
18E_flutemetamol scan was read as positive. B. Distance to the hyperplane of the classifier determined with gray matter volume maps (y axis) as input. C. Distance to the hyperplane
of the classifier determined with '®F-flutemetamol scans as input (x axis) and with gray matter volume maps as input (y axis). Filled yellow circles: cases who converted to clin-
ically probable AD within the first 2 years following the PET according to the clinician's judgment.

Discussion

An SVM can be trained to make binary assignments of !SF-
Flutemetamol scans in probable AD, amnestic MCI and controls that
closely match those made by visual readers. This provides supportive
evidence for the reliability of binary classification of '®F-flutemetamol
scans by visual readers in these populations. Image components that
have highest discriminative value are located in precuneus, striatum,
bilateral middle frontal gyrus and frontomedial cortex. In a direct
within-subjects comparison between '®F-flutemetamol and gray mat-
ter volume maps in AD and controls, the specificity of '®F-flutemetamol
was substantially higher than that of MRI. Likewise, in amnestic MCI the
gray matter volume-based classifier assigned more cases to the AD-like
pattern than the "F-flutemetamol based classifier.

In the current study, we made use of the structural MRI to calculate
the parameters for normalizing the PET to MNI space scans but in a
clinical context, other templates, e.g. based on '8F-flutemetamol, may
become available so that MRI would not be a prerequisite for this ap-
proach. We used the visual reads for training the classifier. Binary cate-
gorization of cases based on semi-quantitative assessment would have
yielded identical results given the strict concordance between visual
reads and semi-quantitative assessment in the phase 2 data of AD and
controls (Vandenberghe et al., 2010).

In this phase 2 study sample, SVM was able to fully replicate the
results from the visual reads when the classifier was trained based on
the visual reads. This corroborates the validity of the visual reads but
does not allow to determine the added value of SVM compared to visual
reads. In the second part, performance of the two approaches was
compared to the clinical diagnosis and there was again a high con-
cordance between classification based on visual reads versus SVM of
18E_flutemetamol scans. The only exception was one MCI converter

who had been read as negative but was classified by the flutemetamol-
based classifier as AD-like (Fig. 5). The introduction of machine-
intelligence usually improves on the results from human operators.
When however comparing the phase 2 study sample of clinically proba-
ble AD patients versus cognitively intact controls, visual reads are
performing so well (sensitivity and specificity of 93% (Vandenberghe
et al.,, 2010)) that SVM can only add little value. Performance of visual
reads however may be different in other samples, e.g. subgroups of
normal controls with SUVR values close to threshold or pathological
cases with atypical presentations such as logopenic aphasia, with values
closer to threshold (Leyton et al., 2011) than typical clinically probable
AD cases. In samples with higher proportions of cases with near-
threshold values, the discordance between visual reads and SVM may
rise, and so may the added value of the pattern classifier.
18F_flutemetamol has been introduced relatively recently (Nelissen
et al., 2009; Vandenberghe et al.,, 2010) and the amount of scans that
we have available in AD patients and healthy controls is still relatively
limited. For that reason, it is impossible to evaluate the diagnostic per-
formance of the '®F-flutemetamol-based classifier in a large test set
that is strictly independent of the training set. Furthermore, given the
recency of the phase 2 study, we do not have autopsy confirmation in
any of the cases included. The two-year conversion rate in our amnestic
MCI might serve as a comparator, but in the phase 2 study the evalua-
tion at follow-up was made by clinicians who were not blind to the ini-
tial imaging results, but was based upon their clinical judgment
informed by the earlier findings, and should thus be interpreted with
caution. This is also the main reason why we did not train the classifier
based on the 2-year conversion data to avoid circularity. Perhaps the
two most relevant cases in this respect are those in whom the clinician
diagnosed a conversion to probable AD despite the negative reads be-
cause the decision in these individual cases goes against the bias that
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the unblinded procedure could have induced. It is also worth noting that
the gray matter volume-based classifier assigned one of these two cases
to the AD-like group, mainly because of substantial hippocampal atrophy.
This case (case 3, Fig. 5) evolved into a clinically probable frontotemporal
dementia phenotype, with AD-biomarkers on CSF negative for AD. FTLD
cases may present with an amnestic syndrome (Hodges et al., 2004;
Knopman et al.,, 2005) and significant hippocampal involvement (Pao
et al,, 2011), in which case the MRI-based classifier may assign the scan
to an ‘AD-like’ pattern but not the '8F-flutemetamol-based classifier.
The second converter (case 11, Fig. 5) who had been read as negative
was classified by both the PET- and the gray matter volume-based classi-
fier as AD-like but with a distance very close to the hyperplane (Fig. 5).

Compared to the number of voxels included in each image vol-
ume, the number of cases included in the training set is relatively
low due to the limited number of '®F-flutemetamol scans available
at the time of writing. This could raise the criticism of a mismatch
between the sample size and the number of variables (voxels) used
for classification. It is, however, important to note that SVM is not a
voxel-by-voxel approach and that the classifier defines the hyper-
plane on the basis of a pattern. The mismatch between sample size
and number of discrete voxels within each image is therefore less
critical for a pattern classification than for a univariate approach.

The distribution of cases belonging to the different study groups be-
tween the different centers in the phase 2 study was such that the cur-
rent dataset does not lend itself well to state-of-the-art systematic
study of between-center and between-scanner effects, their origin,
and their effect on case classification. Given the use of amyloid imaging
for clinical multicentre trials, this remains an important topic for further
investigation. In one retrospective large European multicentre study,
the between-center variability of ''C-PIB scans was relatively limited
(Nordberg et al., in press).

The main purpose of the current study was to evaluate binary
assignment of images based on discrete diagnostic categories. An
alternative approach would be a regression analysis to evaluate the
independent contribution of continuous variables such as cognitive
test scores, age, education level etc. on ligand retention (Pike et al.,
2011; Chételat et al., 2010, 2011) and gray matter volume. This com-
plementary approach however is outside the scope of the current
paper. We compared the distribution of the feature weights to the
anatomy of the between-group differences as determined by a classi-
cal SPM-based group contrast. Overall, regions with high classifica-
tion weights corresponded relatively well to regions containing
significant differences between the two groups (Figs. 6A, B). In a clin-
ical context, the diagnostic classification at the individual level, e.g. by
means of a classifier, is of the essence rather than differences based on
group comparisons.

The highest feature weights of the '8F-flutemetamol-based classifier
were mostly located where one would expect from the previous lit-
erature on beta-amyloid tracers, such as precuneus, cingulum and mid-
dle frontal gyrus (Nelissen et al., 2009; Vandenberghe et al., 2010)
(Fig. 2C). The high feature weights in striatum were not expected. This
finding may reflect that the striatum is typically less attended in visual
reads of beta-amyloid PET, in part because of imperfect delineation of
the gray and white matter which makes the boundary more difficult to
evaluate at the level of the subcortical structures than the cortical wind-
ings. The striatum is loaded with amyloid plaques in AD (Rudelli et al.,
1984; Gearing et al., 1993; Brilliant et al., 1997) and the ventral striatum

Fig. 6. SPM analysis comparing the AD group and the normal control group. SPM maps
are thresholded and projected onto a normal MRI in MNI space. A, B. Amyloid PET:
voxels showing a significant increase in SUVR value in the AD group compared to the
normal controls. A. thresholded at uncorrected P<0.001 at the voxel level combined
with a FWE corrected P<0.05 at the cluster level. B. thresholded at FWE corrected
P<10~° at the voxel level. C. MRI GM volume maps: voxels showing a significant
decrease in GM volume in the AD group compared to the normal controls. Thresholded
at an uncorrected P<0.001 at the voxel level combined with a FWE corrected P<0.05 at
the cluster level.
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is particularly vulnerable (Suenaga et al., 1990). In the dorsal striatum
the plaques are predominantly of the diffuse type (Gearing et al.,
1993) while in the ventral striatum, where we found the highest feature
weights, the plaques are associated with dystrophic neurites (Suenaga
et al,, 1990). The striatal plaques are immunohistochemically distinct
from cortical diffuse or neuritic plaques (Gearing et al., 1993) and have
been considered a reasonably reliable histopathological marker for AD
(Gearing et al., 1993).

The high feature weights in white matter may seem puzzling at
first since retention in this area does not differ between the control
group and the AD cases (Vandenberghe et al., 2010), and hence
might not be expected to influence the classification much. However,
the feature weights do not express how well an individual voxel on its
own allows one to discriminate between the two groups, but rather
are an expression of how much it contributes in a given voxel to the
pattern that allows the classifier to discriminate between groups.
This means that a voxel in white matter may have a high feature
weight if in combination with other voxels it leads to optimal classi-
fication of cases. A plausible explanation for the emergence of high
feature weights in white matter is that the SUVR PET values of the
boundary between white matter and gray matter contain important
discriminative information.

The map of feature weights for the MRI-based classifier is consis-
tent with what is found in other SVM studies, with high values in
amygdala, hippocampus, lateral temporal cortex and around the pos-
terior cingulate sulcus (Vemuri et al., 2008; Liu et al., 2012). Our gray
matter volume-based classifier had a specificity of 68%, compared to
92% for the '®F-flutemetamol-based classifier. A larger proportion of
healthy elderly controls was classified as AD-like by MRI. When the
hippocampi in this dataset are segmented using an extended multi-
atlas segmentation method (L&tjonen et al., 2011) and volumes are
quantified, hippocampal volumes overlap between a significant por-
tion of healthy controls and AD cases (Thurfjell et al., 2012). A similar
degree of overlap is found when hippocampal volumes are rated visu-
ally (Duara et al., in press). As the hippocampus received high feature
weights in our gray matter volume-based classifier (Fig. 4), we can
probably partly account for the low specificity of the gray matter
volume-based classifier due to the overlap in medial temporal vol-
ume between the healthy controls and the AD subjects. Other SVM
studies of MRI in AD and controls yielded sensitivity values ranging
between 61 and 86% and specificity values ranging between 80 and
95% (Kloppel et al., 2008b; Vemuri et al., 2008; Magnin et al., 2009;
Liu et al, 2012). Our SVM approach was identical to that used by
Kloppel et al. (2008a,b). If the outcome of classifiers is compared be-
tween studies, it is important to ensure the comparability of the
groups (e.g. regarding stage and age). Our sample is an early-stage
AD sample in subjects below the age of 80. Other factors that could
theoretically have negatively affected performance of the MRI classi-
fier in our study is the usage of scans acquired from 4 different
centers and 3 different MRI scanners, without strict procedures to en-
sure between-center replicability. A recent study (Abdulkadir et al.,
2011) reported effects of hardware heterogeneity on the performance
of MRI based SVM classification in AD. They found that a change in hard-
ware could lead to a change of the decision value. Therefore, the results
are expected to improve when performed in only one center on a single
scanner. This said, the '®F-flutemetamol scans were also acquired at
multiple centers and specificity for this modality was clearly higher
than for MRL It is possible that other MRI features, such as cortical thick-
ness, would provide a higher degree of concordance between the PET-
and the gray matter volume-based classifier (Becker et al., 2011).
More advanced techniques for feature selection and extraction (Liu et
al., 2012), use of nonlinear kernels (Vemuri et al., 2008) or adding vari-
ables such as age and gender into the classifier model (Vemuri et al.,
2008) may also improve performance. The purpose however of the cur-
rent study was to compare a same mathematical approach applied to
either '8F-flutemetamol PET or structural MRI within the same subjects.

FDG-PET was not part of the '®F-flutemetamol phase 2 study pro-
tocol (Vandenberghe et al., 2010) and our study therefore does not
allow for a direct within-subjects comparison between FDG-PET
and '8F-flutemetamol. Other studies in AD, MCI, FTLD and controls
have evaluated the degree of concordance between ''C-PIB and
FDG-PET at the group level (Furst et al., 2012) and also with regards
to individual case classification, either on the basis of visual reads
(Rabinovici et al., 2007) or semiquantitative retention levels
(Devanand et al., 2010). In a substantial minority of patients with
clinical FTLD, ''C-PIB and FDG-PET visual reads were discordant
(Rabinovici et al., 2007). Diagnostic performance in AD, MCI and
controls appeared to be slightly better for !'C-PIB than for FDG-
PET, in particular in the MCI group (Devanand et al., 2010).

The prevalence of positive '8F-flutemetamol scans in the elderly
controls was similar to that observed in some of the other cohort
studies (Devanand et al., 2010) and relatively low compared to
most ''C-PIB scanned cohorts (Aizenstein et al., 2008; Pike et al.,
2011). This difference between cohorts will require further evalua-
tion of '8F-flutemetamol in larger samples distributed over a wider
age range. Relatively small differences in age range could possibly
have a large effect on the prevalence rates. Alternatively, difference
in prevalence between cohorts may reflect differences in sensitivity
between ligands or other methodological aspects. Thirdly, community-
recruited cohorts are prone to selection bias which may lead to differ-
ences in prevalence of positive amyloid scans between cohorts.

The distance from the hyperplane as such cannot substitute for the
retention values per se as a biomarker. It is a measure of the degree of
confidence with which the classifier assigns the case to a given class
and an expression of how robust this classification would remain
e.g. with minor variations in study sample or hyperplane orientation.
This ‘confidence’ may be related to (Ecker et al., 2010) but is theoret-
ically and fundamentally distinct from the degree of severity of the
underlying pathophysiological process. As a consequence, in our
opinion, the distance to the hyperplane will not be useful directly as
a biomarker, in contrast with the retention values per se.

A recent model of the progressive disease course of AD contends
that an increase in 3 amyloid load precedes regional volume loss,
prior to any clinical manifestations (Jack et al, 2010). Our cross-
sectional study was not designed to test this model specifically. A lon-
gitudinal study design would be required and, moreover, our sample
of healthy elderly controls was undersized to support the drawing of
firm conclusions with respect to this model. In our elderly controls,
more cases were classified as AD-like by the gray matter volume-
based classifier than by the '8F-flutemetamol-based classifier, differ-
ently from what the above model would predict.

To conclude, the strength of this study is the application of two
imaging modalities within the same subjects in a relatively large sam-
ple and the application of a mathematical procedure for diagnostic
classification in the same manner for both modalities. A supervised
machine learning technique can classify '8F-flutemetamol scans in a
binary way that is highly concordant with visual reads, corroborating
the reliability of binary visual reads of '8F-flutemetamol images
(Vandenberghe et al., 2010). The gray matter volume-based classifier
assigned more scans from healthy controls and more scans from MCI
cases to the AD-like category than the '8F-flutemetamol-based classi-
fier, suggesting that overlap between healthy aging and AD may be
more pronounced for MRI than for '8F-flutemetamol.
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