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Abstract
We present a statistical shape-analysis framework for characterizing and comparing
morphological variation of the corpus callosum. The midsagittal boundary of the corpus callosum
is represented by a closed curve and analyzed using an invariant shape representation. The shape
space of callosal curves is endowed with a Riemannian metric. Shape distances are given by the
length of shortest paths (geodesics) that are invariant to shape-confounding transformations. The
statistical framework enables computation of shape averages and covariances on the shape space
in an intrinsic manner (unique to the shape space). The statistical framework makes use of the
tangent principal component approach to achieve dimension reduction on the space of corpus
callosum shapes. The advantages of this approach are – it is fully automatic, invariant, and avoids
the use of landmarks to define shapes.

We applied our method to determine the effects of sex, age, schizophrenia and schizophrenia-
related genetic liability on callosal shape in a large sample of patients and controls and their first-
degree relatives (N=218). Results showed significant age, sex, and schizophrenia effects on both
global and local callosal shape structure.
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Introduction
The corpus callosum is the largest inter-hemispheric commissural pathway in the brain. It is
composed of an aggregated bundle of neural fibers of varying thicknesses that clusters to
form a mass at the midline and extends to topographically homologous regions in each
hemisphere. The corpus callosum has been widely investigated for its role in hemispheric
communication and in lateralized brain function and behaviors. Callosal morphology varies
with individual differences such as age, sex and intellectual ability (Luders et al., 2010,
2011). Several neurodevelopmental disorders also directly or indirectly affect the structural
integrity and connectivity of the corpus callosum. For example, variations in callosal size
and shape are associated with disease processes in autism and schizophrenia (Frazier and
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Hardan, 2009; Innocenti et al., 2003; Narr et al., 2000; Paul et al., 2007). In schizophrenia,
the structural integrity and shape of the callosum reflect a genetic predisposition for the
illness (Knöchel et al., in press; Narr et al., 2000, 2002). Bookstein et al. (2002b, 2007) and
Downhill et al. (2000) have shown abnormalities in callosal anatomy due to neuro-
toxicological insults to the fetus caused by prenatal alcohol exposure, resulting in fetal
alcohol syndrome (FAS). In addition to the structural abnormalities linked with many
neurological and psychiatric conditions, certain genetic disorders give rise to complete or
partial agenesis (lack of development) (Paul et al., 2007) of the corpus callosum in early
development. There are additional callosal malformations classified as dysgenesis (abnormal
development) (Kendall, 1983), hypogenesis (partial development) (Van Bon et al., 2008)
and hypoplasia (under-development) (Bodensteiner et al., 1994). Although the callosal fibers
project widely into each cerebral hemisphere, the callosal midsagittal boundary of the cross-
section is most widely studied (e.g., Downhill et al., 2000; Dutt et al., 2011; John et al.,
2008; Luders et al., 2007, 2009; Narr et al., 2000; Rotarska-Jagiela et al., 2008; Walterfang
et al., 2008; Weber et al., 2007; Witelson, 1989), both because there are reported
relationships between fiber number and callosal area (Aboitiz et al., 1992; Riise and
Pakkenberg, 2011) and due to the convenience in identification, representation, and analysis.
This two-dimensional representation reduces the anatomical complexity resulting from the
divergent extensions of the fiber branches to an efficient planar form, leading to
straightforward and highly reproducible measurements of important structural properties
such as the width, thickness, and area. In this paper we focus on the geometry of the
midsagittal callosal boundary, propose a method for representing the shape of the corpus
callosum, and also provide a statistical framework for performing morphometric analysis.
Specifically, these methods were applied to confirm and extend prior findings concerning
effects of sex and age and callosal shape abnormalities in schizophrenia and disease-related
genetic liability.

Background
Over the past decade, several researchers have proposed different methods for representation
and analysis of the cross-sectional boundary of the corpus callosum. We summarize some of
the prominent boundary-based approaches in this section. Fig. 1 illustrates these approaches.
An early morphometric approach by Witelson subdivides the corpus callosum into seven
regions to examine parcellated midsagittal areas (Witelson, 1989). A similar approach
(Clarke and Zaidel, 1994; Hofer and Frahm, 2006) also obtains a regional parcellation of the
corpus callosum based on the topographical structure of the fibers with respect to their
connections with cortical regions. For example, Fig. 1(A) shows a typical regional
subdivision scheme (Clarke and Zaidel, 1994; Rajapakse et al., 1996; Witelson, 1989) that
divides the callosal boundary into the splenium (temporal, inferior, and occipital nerve
fibers), the isthmus (superior temporal, posterior parietal), the posterior midbody (posterior,
parietal), the anterior body (motor), and the anterior third (prefrontal fibers). Another
approach (Fig. 1(B)) measures the width or the thickness of the callosal boundary by
calculating the distance to the medial line of the superior and the inferior boundaries (Luders
et al., 2010; Thompson et al., 2003). A follow-up to this approach (Adamson et al., 2011)
solves the Laplace equation between the superior and inferior boundaries and computes
streamlines to measure thickness. Alternately one can discretize the callosal shape by
identifying point landmarks on the boundary, and normalize the landmarks by centering and
scaling them appropriately (Fig. 1(C)). This allows one to conduct the shape analysis by
performing a Procrustes-based alignment of the landmarks (Bookstein et al., 2002a) and
computing mean landmark shapes, or by embedding the landmarks in a two-dimensional
planar region (Fig. 1(D)), and warping the whole region using methods such as thin plate
splines (Bookstein et al., 2002a) or diffeomorphic non-rigid registration (Guo et al., 2004).
In addition, there are other approaches (El-Baz et al., 2011) that represent the corpus
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callosum using a three-dimensional surface representation instead of a two-dimensional
boundary.

Approach
Here, we represent the mid-sagittal boundary of the corpus callosum by a closed curve and
analyze its shape, by imposing appropriate geometric invariances including rigid motions
and scaling on the curve. We also provide a framework for dimension reduction of the
population shape variables through principal component analysis (PCA) in the tangent space
of the mean shape. This not only allows local geometric shape analysis via tangent vectors
to the geodesics to characterize infinitesimal changes along the boundary, but also highlights
global changes in shape covariates using the dominant modes of population variation. The
key advantage of this approach is that it permits the use of callosal shape as a geometric
phenotype in more sophisticated multivariate analyses investigating the influence of sexual
dimorphism, development, and disease on the structure of the corpus callosum.

We suggest that there is a difference between methods that perform registration as a prelude
to shape analysis, and those that perform intrinsic statistical shape analysis. The goal of
registration methods is to establish correspondences (one-to-one) between pairs of shapes,
usually in an ambient Euclidean space after factoring out affine/rigid/non-rigid motions and/
or uniform scaling. The resulting statistical analysis is then carried out in the ambient space
where the template is either selected as a predetermined observation from the population, or
constructed using Euclidean averages. The aim of an intrinsic shape analysis framework is
to additionally achieve accurate registration and correspondences between shapes and to
focus on the representation of the shape and the underlying shape space, thereby allowing
the computation of all the statistical estimates native to the space. Thus the objectives of
such an intrinsic statistical shape analysis framework encompass correspondence-based
registration methods while simultaneously integrating the tools for statistical analysis into a
nonlinear registration framework.

Our approach is fundamentally different from previously proposed approaches that represent
shapes as parametric contours using b-spline snakes (Brigger et al., 2000) or active contour
models for which a) the underlying representation is finite-dimensional (b-spline
coefficients, or landmarks for active contours), b) the primary focus is on registration or
segmentation, c) intrinsic statistical shape analysis is not possible. Thus to our knowledge,
this is the first approach where the corpus callosum is represented by an invariant
parameterized curve and directly analyzed by the shape of its boundary. Here, we outline a
comprehensive computational framework for corpus callosum shape as applied to the study
of a large number of subjects (N=218) including patients with schizophrenia, unaffected
relatives of patients and community comparison subjects. This framework provides i)
nonlinear elastic matching between callosal shapes for accurate local shape
correspondences, ii) a full path of deformations between callosal shapes that highlights local
shape differences, iii) an efficient computation of geodesics in the shape space of corpus
callosum curves, iv) a tangent vector that not only encodes the shape changes between
curves, but also helps to locally linearize the shape space, and most importantly v) tools for
computing shape means and covariances that enable a full statistical analysis of the
morphology of the corpus callosum that may associate it with individual differences such as
sex, age and disease state.

This paper is organized as follows. The callosal shape representation, the pre-shape space,
and the metric on the tangent space are described in the Corpus callosum shape
representation section. The methods for shape matching, representing invariances, and
computing the geodesics by factoring out nuisance variables are described in the Invariance
to nuisance variables and Corpus callosum shape matching sections. The intrinsic statistical
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shape analysis framework is discussed in the Karcher mean section that outlines the
procedure for the computation of the Karcher mean, performing the tangent principal
component analysis (TPCA) at the mean shape, and for reconstructing and synthesizing the
shapes from the TPCA model. In the Results section we will present the application of this
to a sample of 218 shapes to examine the effects of sex, age, schizophrenia and
schizophrenia-related genetic predisposition.

Methods
This section describes the curve-based boundary representation for the corpus callosum as
an element in a shape space, endowed with a differentiable geometric metric. Quantitative
differences between different boundaries are obtained by computing shortest paths or
geodesics between them on the shape space. These geodesics also provide a smooth minimal
energy deformation path from one boundary to another. The advantage of these paths are
twofold, i) the length of the path yields a single scalar value quantifying the difference
between two shapes, and ii) the gradual local changes of deformations along the path
provides a visual representation of the structural differences between the shapes.
Additionally geodesics are also useful in the construction of manifold averages for
populations of shapes, an important requirement in statistical analysis of shapes.

Corpus callosum shape representation
We represented the two-dimensional boundary of the corpus callosum by a contour
corresponding to four mid-sagittal planar boundary in the brain MRI image. To reduce noise
we averaged the contour tracings of the para-sagittal boundaries and used the average
contour as the callosal boundary. Fig. 2(a) shows a mid-sagittal slice of an MRI image with
the corpus callosum shown as a green mask. The boundary of the callosal region is extracted
and shown as a curve (Fig. 2(b)). Mathematically the corpus callosum curve is
parameterized (Joshi et al., 2007a, 2007b; Srivastava et al., 2011) by a closed continuous

curve β, such that , and its shape is defined by the function  as

(1)

This vector valued function measures the tangent vector normalized by the square-root of
the instantaneous speed along the curve and is a local descriptor of the geometry of the
curve. The quantity s,s∈[0,2π] is the parameterization of the curve, and is a function itself.

The instantaneous velocity of the curve is given by the derivative . As an example, Fig.
2(c) shows the plot of the function q for the curve β in Fig. 2(b). The original curve β can be

reconstructed up to a translation using . Throughout this paper we
denote the callosal curve as a coordinate function given by the curve β, and the callosal
shape given by the vector valued function q. Since we are exclusively interested in modeling
the geometric shape of the corpus callosum, we factor out the size or scale from the
representation by normalizing the function q. The scale invariant shape representation is

given by normalizing the function q by its magnitude as . The norm in

the denominator is a Euclidean norm, and  is the standard Euclidean inner-product in
. Throughout this paper, the function q refers to this scale-invariant form unless indicated

otherwise. Due to this unit-scaling constraint, the space of all translation and scale-invariant
shapes becomes a Hilbert sphere denoted by . Formally, the space  is defined as
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(2)

To represent closed boundaries, we impose an additional closure constraint on the callosal

curves. This closure constraint is written as , in terms of the coordinate

function, and is speci fied as  in terms of the callosal shape function. We
then define the set of such translation, scale-invariant, and closed representations as the pre-
shape space of the corpus callosum shapes and denote it by

(3)

This pre-shape space  is actually a subset of an in finite-dimensional unit-sphere as a result
of the scale-invariant constraint and represents all closed elastic curves invariant to
translation and uniform scaling. Fig. 3 shows a schematic of the callosal boundary
representation on the pre-shape space. Each corpus callosum curve with varying size, but
having the same shape is projected as a single element of the pre-shape space . An
important geometrical construct for the statistical analysis of the callosal shapes is the
definition of a tangent space. The tangent space allows for local linearization of the shape
space and enables the use of Euclidean shape statistics for a population. The tangent space
of  is de fined by the collection of all tangent vectors perpendicular to the normal space of

. The span of the gradient vector field of the closure constraint of q defines the normal

space of all closed curves. The closure constraint on the curves is ,
where q1(s), and q2(s) are the two components of q. Then the normal space of all closed
curves at q given by the span of the directional derivative of the closure condition as

(4)

The tangent space of  at q, denoted by  is given by

(5)

As described in (Joshi et al., 2007a, 2007b), we equip the tangent space of  with a
smoothly varying metric that measures in finitesimal lengths on the pre-shape space. This
inner product is first defined generally on the space of all q functions and then induced on
the tangent space of . Given a pair of tangent vectors  the metric is defined as,

(6)

Invariance to nuisance variables
The main ingredients for matching the anatomy of the corpus callosum on the shape space
are i) identification of geometrical confounds or nuisance variables that do not affect the
shape, ii) modeling the nuisance variables using suitable mathematical structures, and finally
iii) constructing geodesics or shortest-distance paths on the shape space by factoring out the
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nuisance variables. Since the corpus callosum is a closed curve, the starting point or origin
on the curve is arbitrary. Thus irrespective of whether the boundary of the shape is manually
traced or automatically detected, the shapes for different subjects are not assumed to have
their arbitrary origins or starting points registered. Likewise the corpus callosum boundaries
may not always be consistently oriented across subjects. Lastly, callosal curves can be
parameterized by non-uniform speeds without changing their shape. This non-uniformity
usually arises from the tracing or the extraction protocol used. Moreover all of the above
nuisance variables are also affected by volumetric registrations that may be applied at
various preprocessing stages to normalize the original MRI images. An important point to
note here is that the geometric shape is not affected by the registration results so long as they
are rigid-body (6-parameter) registrations with or without the addition of uniform scaling.
Importantly, while performing the actual shape matching, rather than fixing the values of
these nuisance variables or obtaining a canonical representation for them in advance, we
treat the nuisance variables as elements of equivalence classes under the respective
transformations. This is achieved as follows. Translation and scaling are automatically
removed due to the shape representation by the q function. A rigid rotation of a curve is a
shape-preserving operation, also considered as a group action by a 2×2 rotation matrix
O∈SO(2) applied to q, and is defined as O·q(s)=Oq(s), ∀s∈[0,2π]. A change in the starting
point of the curve  is represented by the action of a unit circle S1 on q, according to
r·q(s)=q((s–r)mod 2π) for r∈[0,2π]. This action due to the placement of the origin simply
shifts the shape by the quantity r. Lastly, the reparameterization of a curve that traveled at
arbitrary speeds is represented by a non-linear differentiable map γ (with a differentiable

inverse) also referred to as a diffeomorphism. We define  as the space of all
orientation-preserving diffeomorphisms. Then the resulting variable speed parameterizations
of the curve can be thought of as diffeomorphic group actions of  on the curve and

given as . Table 1 lists the nuisance variables that affect the pose, translation,
orientation, and reparameterization of the callosal curve while leaving its shape unchanged.

Ultimately, we are interested in analyzing callosal shapes in the invariant space of shapes
given by the quotient space of  modulo shape preserving transformations including change
in origins, rigid rotations and reparameterizations. Consequently, the provision of the
reparameterization operation facilitates elastic shape analysis of callosal curves. Thus the
elastic shape space is defined as the quotient space

(7)

Corpus callosum shape matching
In this section, we describe the shape matching procedure between corpus callosum
boundaries. Specifically we outline a procedure for computing geodesics between a pair of
corpus callosum shapes under the Riemannian metric defined in the Corpus callosum shape
representation section. For a better understanding, we describe the procedure for computing
geodesics in the ambient space  and the pre-shape space  of all closed callosal curves
first.

Shape matching in the space of q functions of callosal boundaries
As noted earlier, the space of scale-invariant q functions of callosal boundaries is a Hilbert
sphere. Thus the translation and scale-invariant geodesic distance between a pair of callosal
shapes q1 and q2 in the space  is given by
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(8)

where the initial tangent vector  is given by f=q2–⟨q1,q2⟩ q1. Eq. 8 is the
analytical solution of a geodesic on the sphere. The tangent space projection of the vector f

at q1 is obtained as , where θ=arccos{⟨q1,q2⟩}. The successive shapes along the
geodesic are obtained by taking incremental steps in the direction of f for short time
intervals dt, while projecting the tangent vector f on the tangent space at the subsequent
shape. Then the geodesic distance between the two shapes q1 and q2 in  is given by

(9)

The quantity χt is also referred to as the velocity vector along the geodesic path χt. It is also
noted that χ0(q1)=q1, and χ1(q1)=q2.

Shape matching in the pre-shape space C of closed callosal boundaries
Since the pre-shape space  consists of shapes of closed callosal curves, the geodesics are
constructed by first initializing a path between q1 and q2 in the space of open curves , and
then successively modifying it to form a geodesic in .

We denote an arbitrary path between two shapes in  by ,
such that the velocity vector along the path is given by . Then α is a geodesic if

it minimizes the energy . We use a path-straightening flow that employs
gradient descent to iteratively minimize the energy E and find the geodesic in . Then the
geodesic distance between the shapes q1, and q2 in the pre-shape space  is given as

(10)

It is important to note that a geodesic in  may be longer than a geodesic in  since 
excludes those regions of  corresponding to non-closed curves.

Shape matching in the space  of invariant callosal shapes
To obtain fully invariant shape matching with regard to the nuisance variables listed in
Table 1, correspondence between a pair of shapes is calculated using a geodesic between the
respective equivalence classes on the shape space . This is achieved by first constructing a
geodesic in the pre-shape space , and then optimizing over the placement of origin, the
rotation, and the reparameterization of the shape. This is realized by first finding a geodesic

in the quotient space , and then optimizing over origin placement, rotation

and reparameterization group in the quotient space , described briefly as
follows. The optimal placement of origin is given by

(11)
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and in practice found by keeping q1 fixed, and exhaustively searching over all points of the

shape q2. The optimal rotation  is found by carrying out a singular value decomposition
(Rohlf and Slice, 1990)

(12)

where A and B are left and right unitary matrices, and D is a matrix given by

(13)

Lastly the optimal reparameterization  is found as the minimizer

(14)

where . Eq. 14 is solved using dynamic programming. After the optimal geodesic
is found by optimizing over the nuisance variables, the distance between two shapes is given
by

(15)

where dC is given by Eq. 10. The optimal geodesic path can also be denoted by a one-
parameter flow Ψ and the tangent vector , such that

(16)

Alternatively, the optimal tangent vector can be written from Eq. 16 as

(17)

We note that the procedure for finding geodesics between two corpus callosum shapes not
only provides the optimal elastic correspondence between them, but also provides an
intrinsic framework for statistical shape analysis by locally capturing the non-linearity of the
shape space. As an example, Fig. 4 shows geodesic paths (top to bottom) between two
shapes in different spaces. To illustrate the effect of different constraints on shapes, we
purposefully select two shapes that have a small opening at the genu where the operator
performing manual tracing chose end points for the closed curves that were somewhat
distant from the starting points. The first column of Fig. 4 shows the path in the space  of
all q functions. We observe that the intermediate shapes along the geodesic cause the gap to
widen reflecting the absence of a closed curve constraint in  and also result in an abnormal
reduction in the thickness of the corpus callosum. The second column shows the geodesic in

. Due to the closure constraint, the intermediate shapes are now closed, and there is no
compression of thickness. The third column shows a geodesic after optimizing over origin
placement and rotation, whereas the last column shows the fully invariant geodesic.
Comparing the last two columns, we note that the optimization over the reparameterization
makes a noticeable difference in the intermediate shapes along the path. Due to the elastic
matching, important features such as the shape of the genu (label a), the contraction in the
mid-posterior section (label b), and the bulbous region (label c) of the splenium are
preserved along the path. Fig. 5 shows selected correspondences between the top and bottom
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shapes in Fig. 4 with lines drawn between corresponding points of the two shapes matched
in spaces C/(S1×SO(2)) and S. We observe that the elastic matching in S yields a better
homological correspondence compared to the non-elastic matching. For example, neither the
tip of the genu, nor the posterior region is correctly matched in the non-elastic case, whereas
in the elastic case, salient features in both the shapes are in correspondence due to the
optimal non-linear matching. Fig. 5(C) shows the non-linear correspondence function 
between the two shapes compared with the linear case (γ=s).

Using this optimal matching, our primary objective is to model the underlying statistical
shape variability of the corpus callosum in a given population as detailed in the next section.

Statistical shape analysis
Since the shape space is non-linear and infinite dimensional, conventional multivariate
statistical methods cannot be applied in a straightforward manner. A computational
framework that adapts the statistical tools to our shape space is thus required. The statistical
shape average is computed as a first step towards this goal. The tangent vectors
corresponding to geodesics from the average shape to each individual shape encode the first
order linear variations of the shapes in the population about the mean shape. This means that
the original shape is recoverable by constructing a one-parameter flow along its tangent
vector from the mean. Therefore the collection of tangent vectors along the geodesics for the
entire population represent a locally linearized version of the shape space at the mean shape
and form a population-based linear basis of the shape observations in the dataset. The
tangent-space representation circumvents the need to explicitly model the non-linearity of
the shape space. Finally, to overcome the difficulty in modeling the conceptually infinite
dimensionality of the tangent vectors and hence of the tangent space, dimensional reduction
in the tangent space is performed using principal component analysis (PCA). This
computational technique, also known as tangent PCA (TPCA), has also been previously
used for dimension reduction on non-linear manifolds in different settings (Fletcher and
Joshi, 2004; Vaillant et al., 2004). In the following sections, we outline the framework for
performing statistical shape analysis for corpus callosum shapes.

Karcher mean
We use the notion of the intrinsic mean (Bhattacharya and Patrangenaru, 2002; Le, 2001;
Woods, 2003) for computing shape averages on the manifold. Numerous advantages of the
intrinsic approach over the more conventional extrinsic approach are detailed in the
literature (Fletcher and Joshi, 2004; Vaillant et al., 2004), and we only outline the main
differences briefly. The extrinsic approach relies on a Euclidean embedding of the shapes in
the ambient space and projects the Euclidean average on the shape space. It is very simple
and efficient to compute, but it does not account for the nonlinear nature of the shape space.
Specifically the extrinsic average ignores the underlying Riemannian metric and does not
achieve optimal matching between shapes. On the other hand, the intrinsic approach builds
upon the local metric and relies exclusively on the distances defined on the shape space.
This approach is invariant to rotations, translations, scaling, and reparameterizations and is
thus a preferred choice for computing statistical estimates on shapes. The intrinsic mean is
also known as the Karcher mean (Le, 1995; Srivastava et al., 2005) and is defined for a set
of shapes {qi},i=1,…,N as

(18)
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The Karcher mean is computed numerically by an optimization procedure that starts by
setting the initial estimate of the mean to the extrinsic average projected on the shape space.
The procedure then calculates geodesics between all the individual shapes in the population
to the current estimate of the mean and averages the tangent vectors corresponding to the
geodesics. A one-parameter flow given by Eq. 16 is then constructed at the current estimate
of the mean in the direction of the average tangent vector to obtain the refined estimate of
the mean shape. Repeated application of this procedure until the mean estimate converges,
minimizes the geodesic variance expressed as the sum of squared geodesic distances from
the individual shapes to the mean.

Tangent space PCA for shapes
The Karcher mean captures the characteristic corpus callosum shape for a given population.
It also serves as a common reference template for registering the individual shapes to
perform a group analysis. Instead of being a subject-specific template, it is a statistical
template that minimizes the shape variance during its reconstruction. The main advantage of
this approach is that it also allows us to explore the covariance structure of the corpus
callosum shapes in an intrinsic manner. Using the inverse exponential maps given by Eq. 17,

we can represent each individual shape qi in the shape space by its tangent vector  from
the mean shape μ. Thus for a collection of N shapes, we compute geodesics from the mean

shape to each individual and represent their tangent vectors as . Fig. 6 shows
a schematic of this process where the geodesics from the mean shape μ to an individual
shape qi are represented by tangent vectors in the Euclidean space . The tangent space

 can be represented using a Fourier basis. To derive a covariance structure for the
population, we first orthogonalize the tangent vectors using the Gram Schmidt (Golub and
Van Loan, 1996) process to obtain a set of orthogonalized tangent vectors denoted by
{Yi},i=1,…,N. The Gram Schmidt process uses the Riemannian metric on the tangent space
and is described in Algorithm 1 for completeness.

The orthogonalized tangent vectors form a tangent space basis at the mean shape for the
population. To reduce their dimensions for statistical analysis, we first project the tangent
vectors to the orthogonal basis and compute the covariance matrix of the projections. For a

tangent vector , its projection to the orthogonal basis is given by

(19)

We then compute the covariance matrix  as

(20)

and compute the singular value decomposition to obtain the principal eigen vectors and
eigen values as

(21)

The eigen vectors of the matrix  given by {Ui},i=…k,k⪡N form the basis of the reduced
dimensional subspace at the mean shape μ. Fig. 7 illustrates this procedure using a
schematic. It shows the mean shape μ and the tangent vectors to the individual shapes in the
top panel. The middle panel of Fig. 7 shows the orthogonalized tangent vectors, whereas the
bottom panel shows the eigen vectors after the TPCA decomposition. Algorithm 2 describes
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this procedure in detail. The set of k eigen vectors {Ui},i=1,…,k,k⪡N captures the callosal
shape variability in the population. The choice of k is determined empirically by observing
the decay in the variance captured by the eigen vectors. Finally for the purpose of statistical
analysis each shape covariate is represented by the projection of the tangent vectors on the
k-dimensional eigen basis in the tangent space. For a single eigen projection j, the scalar

value  represents the observation for shape i and is given by

(22)

Shape synthesis and reconstruction
To visually verify that the TPCA model does indeed capture the underlying shape
variability, we reconstruct eigen shapes from the model for prominent eigen directions, and
find the corresponding native corpus callosum shapes closest to the eigen projections.
Algorithm 3 presents the procedure for reconstructing eigen shapes as well as the closest
original shapes in the population from a TPCA model for a given eigen direction.

Results
In this section, we present results from the statistical analysis performed to assess the shape
variation of the corpus callosum in association with sex, age, schizophrenia and genetic
predisposition for schizophrenia.
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Data
The population data included structural MRI scans from 218 subjects enrolled in the UCLA
Family Study (Nuechterlein et al., 2002; Yang et al., 2010) (age: 39.16±16 years, sex: 116
males, 102 females) – obtained after approval by the UCLA Institutional Review Board
(IRB). Specifically, the subjects included 48 patients with a DSM-IV diagnosis of
schizophrenia (36 M/13 F; mean age: 31.8±8.9 SD), 66 unaffected first-degree relatives of
patients (29 M/41 F; 46.84±16.13), and 104 community comparison (C) subjects and their
first-degree relatives (50 M/55 F; 37.52±16.53) sampled from 96 separate families. Table 2
shows the demographic and clinical details of subjects. Groups defined by biological risk for
schizophrenia (schizophrenia patients, patient relatives and controls) differed in age (F(5,
215)=15.04, p<.001) and gender (χ2(5, 215)=11.56, p<.001), but not handedness or years of
education completed. These subjects underwent high-resolution T1-weighted structural MRI
scanning on a Siemens 1.5 T Sonata system using a 3D MPRAGE sequence (FOV= 256;
TR/TE=1900 ms/28 ms; voxel size=1 mm×1 mm×1 mm; TI=1100; matrix
size=256×256×160; flip angle: 15°, averages: 4). The corpus callosum was manually
contoured on the sagittal slices for each subject. Intra and inter-rater reliability for manual
tracing, determined by repeat contouring of the callosum in six randomly chosen brain
volumes, was r1>0.98. Additionally, using the parcellation scheme provided by Freesurfer,
the callosum was also separated into five subregions to determine the effects of sex, age and
schizophrenia for midsagittal callosal area.

Mean shapes for population
The procedures described in the Karcher mean section were applied to the corpus callosum
traces for healthy controls, schizophrenia patients, and all of the subjects together. The
resulting mean shapes are displayed in Fig. 8, where the top panels show the mean shapes
for each group separately and the bottom panel shows the three mean shapes overlaid for
better comparison. The callosal shapes for healthy controls appear flatter, whereas those for
the schizophrenia patients are more arched.

TPCA variation
Visualization of the group mean shapes of the different subsets is qualitative and not
instructive about the directions in the underlying shape variation in the population. To
analyze the covariance structure of shapes, we applied the tangent principal component
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analysis described in the Tangent space PCA for shapes section above. The first ten (k=10)
eigen-projections (accounting for around 70% of the variance) were included as shape
covariates for each subject for subsequent statistical analysis. The cut-off choice k=10 was
chosen to reduce the possibility of type II errors for the statistical analysis. The distribution
of the eigen values was heavy-tailed, suggesting that the shape analysis method was highly
sensitive to local changes in shape. Algorithm 3 above was used to visualize the eigen shape
variation from the TPCA model. Fig. 9 shows the eigen shape variation for ±3 standard
deviations about the mean shape, as well as the closest corresponding original shapes from
the population for the first five eigen directions. As illustrated in this figure, each direction
captures specific morphological characteristics of the underlying population shape variation.
For example, going from top to bottom, the first eigen mode reflects arching of the corpus
callosum and also the extent to which the splenium is bulbous in shape. The second eigen
mode reflects the shape of the genu becoming more bulbous, when going from bottom to
top. The closest original shapes corresponding to the eigen shapes exhibit similar
morphological variation thus confirming that the TPCA model captures salient shape
characteristics in the population. To visualize the effect of the extreme eigen shape variation,

Fig. 10 overlays the eigen shapes at the two extremities .

Mixed effects modeling
Linear regression and mixed model analyses were used to examine genetic-liability effects
by comparing schizophrenia patients, relatives of patients, and control subjects and their
relatives. To examine effects of schizophrenia, patients with schizophrenia were compared
to community comparison subjects and their relatives. Sex and age were included as
covariates in all statistical analyses. Since some subjects were biologically related, family
membership was included as a random factor for all analyses including related individuals.
Significant schizophrenia effects were followed-up by examining effects of disease-related
genetic liability (comparing patient relatives to controls) and disease-specific processes
(comparing patients and patient relatives) in pairwise contrasts. Examining the first five
PCA sources describing callosal shape variation, significant sex effects were observed for
the first (p=0.04), second (p=0.014), and the third (p=0.025) eigen projections. Significant
age effects were observed for the first and the fourth eigen projections (p<0.0001).
Significant schizophrenia effects (schizophrenia patients versus C subjects) were observed
for the first eigen projection (p=0.023). Additionally, the first eigen projection showed a
significant disease-specific effect (p=0.004) when schizophrenia probands were compared
with non-psychotic first-degree relatives of patients. The third eigen projection showed both
significant genetic liability effects (p=0.021) when non-psychotic patient siblings were
compared to healthy control probands and siblings, as well as disease-specific effects
(p=0.019). The statistical results highlighting main effects for age, sex, and schizophrenia
are summarized in Table 3.

To visualize the corpus callosum shape variation related to sex, age, and biological risk for
schizophrenia, we color-coded the original shapes closest to the first eigen projection
according to their gender, age, and diagnosis (Fig. 11). Subject age was divided into four
quartiles over the total age range of 12–80 years, while diagnosis was coded according to
whether a subject was a healthy control, a control relative, a schizophrenia patient, or a
patient relative. From Fig. 11, we observe that the tail end of the first eigen projection
indicated that older male subjects and predominantly patients were more likely to show an
arching of the callosum.

To determine the effect of sex, age and diagnosis on local shape changes in the corpus
callosum, we chose the first eigen projection and reconstructed the callosal shapes using
Algorithm 3 described above. Since the shape is reconstructed from the average, we
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computed the magnitude of the deformation field from the mean shape to the generated
shape. This deformation field is computed at each poin talong the shape and thus represents
a local measure of distortion of the shape about the mean. We then used the general linear
model at each point to test the main effects of sex, age, and biological risk for schizophrenia
on the local changes in shape, including each of the other remaining covariates in the model.
We found significant effects for both sex and age for the local shape changes reflected in the
deformation field due to the first eigen direction. Additionally, we analyzed the residual
contributions for eigen projections 2–10 using the same statistical model including false
discovery rate (FDR) correction. Significant age (pFDR=0.00018) and sex (pFDR=0.0043)
effects were found locally along the shape for the first eigen projection. We also found
significant age (pFDR=0.0052) and sex (pFDR=0.00625) effects for local shape when
analyzing the residual variation for the remaining (2–10) eigen projections. Though some
locations showed significant effects of diagnosis, the results did not survive the threshold for
multiple comparisons. Fig. 12 shows the significant p-values overlaid on the mean shape for
sex and age for the first eigen projection as well as the residual (2–10) projections. While we
observe significant effects due to sex almost all over the shape for the dominant eigen
projection, the effects are localized to the genu and partially to the splenium for age.

Comparison with callosal thickness
We computed the local thickness (see Luders et al., 2010; Narr et al., 2000; Nasrallah et al.,
1986 for the description of methods) of the callosal shape and projected it at each point
along the contour. We used the same models previously used for the analysis of local
deformation fields for analyzing thickness, but we failed to find any significant effects for
sex, age and biological risk for schizophrenia.

Comparison with regional callosal areas
We compared our results with previously established regional measures of callosal anatomy
by partitioning the corpus callosum into the posterior, mid-posterior, central, mid-anterior,
and the anterior regions using Freesurfer (Dale et al., 1999). The regional areas as well as
the total callosal area that have been used in prior studies in schizophrenia (Downhill et al.,
2000) were measured for each subject. We used the same statistical models to examine sex,
age, and schizophrenia effects and biological risk for the total and partitioned callosal areas.
Whole brain and tissue volume measurements were also compared for descriptive purposes.
Only significant age effects for the mid-anterior (p<0.0001), central (p<0.0001), the mid-
posterior (p=0.001), and the total area (p=0.012) were observed. Without correction for
brain volume, males had larger callosal areas than females (p<0.0001).
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Shape correlation with sub-regional callosal areas
We also assessed the relationship of the intrinsic statistical shape covariates with the callosal
area measures across the population. Significant associations were observed between the
posterior region and the scores from the first (r=0.191, p=0.005), sixth (r=0.196, p=0.004),
seventh (r=0.319, p<1e–5), and the eighth (r=−0.159, p=0.0019) eigen projections. In
particular, eigen projection four was significantly correlated with the mid-posterior (r=
−0.420, p<1e–5), central (r=−0.289, p<1e–5), mid-anterior (r=−0.3, p<1e–5), and anterior
(r=−0.338, p<1e–5) regions as well as the total area (r=−0.354, p<1e–5). Similarly we
observed significant correlations for the remaining regions with scores from multiple eigen
shape projections as shown in Table 4. Importantly we also observed significant correlations
of total white matter volume with the first (r=0.168, p=0.013), fourth (r=−0.201, p=0.003),
and the tenth (r=0.138, p=0.042) eigen projections, as well as significant correlations of the
cerebrospinal fluid (CSF) volume with the second (r=−0.249, p<1e–5), third (r=−0.221,
p=0.001), fourth (r=0.179, p=0.008), and the ninth (r=−0.196, p=0.004) eigen shape
projections.

Discussion and conclusion
We have presented a computational approach for the shape analysis of corpus callosum
curves. The shape analysis framework uses the square-root velocity (Joshi et al., 2007a,
2007b) parameterization for continuous closed callosal curves and constructs a shape space
of such representations. The shape analysis is invariant to common confounds such as rigid
motions, scale and reparameterizations due to placement of the starting point, and changes in
speed. This differential geometric framework for corpus callosum shape representation and
matching naturally provides the means to perform intrinsic statistical analysis on the shape
space. A Riemannian metric is induced on the shape space via its tangent space, and callosal
geodesics are computed under this metric. Our work therefore provides, i) an invariant
representation of the callosal shape boundary, ii) an intrinsic framework for statistical shape
analysis, and iii) an intrinsic framework for population dimension reduction using PCA on
the tangent space of shapes. While the choice of PCA including the Fourier basis for
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representing the tangent space was made for computational convenience, it is important to
note that PCA yields a basis that maximizes the feature variance in the population along
each projection. The maximization of shape variance does not explicitly encode
discriminatory rules that classify the data. Additionally, even if the shape analysis is
performed locally on the boundary, the principal component projections capture global
shape properties in the data, and hence need to be interpreted appropriately. However it
should be noted that the method is not restricted to the choice of PCA as the reduced
dimensional basis for shapes. In the future, one could use a wavelet basis with a nonuniform
energy compaction in conjunction with independent component analysis (ICA) for
dimension reduction that can result in even more efficient representation.

The application of our analysis to a sizable population of shapes demonstrates both global
and local effects of age, sex and biological risk status for schizophrenia on corpus callosum
shape variation. Specifically, we show that callosal shape profiles predict individual
differences in age, and sex and disease status that are independent of callosal size. Though to
a lesser extent, variations in callosal shape were also shown to be associated with
schizophrenia and genetic liability for schizophrenia. Age-related variations in callosal
shape reflect a pronounced narrowing and arching of the corpus callosum with increasing
age (Fig. 11), in addition to changes in other local shape characteristics. These observations
may correspond to widely reported reductions in the callosal area and changes in white
matter integrity measured with diffusion tensor imaging (DTI), which occur during mid and
late adulthood (e.g. Hasan et al., 2008). Our findings also show differences in callosal shape
in males and females. These observations are compatible with early reports suggesting that
females exhibit a more bulbous splenium (DeLacoste-Utamsing and Holloway, 1982),
though our results also indicate more rounded anterior aspects of the corpus callosum in
females (Fig. 11). Statistical shape analysis also showed significant effects of schizophrenia
and schizophrenia-related genetic vulnerability. However, age (see Figs. 11 and 12) appears
to exhibit larger and more distributed effects on callosal shape than on biological risk for
schizophrenia. These findings are in line with previous reports using linear and curvature
measurements to show more bowing of the corpus callosum particularly in male patients as
well as provide additional support to the idea that callosal shape may indicate genetic risk
for schizophrenia (Narr et al., 2000, 2002). In this study, we compared our results with
established corpus callosum morphometry measures such as local thickness and regional
areas. The analysis of thickness failed to find significant differences in the population for
sex, age, or biological risk for schizophrenia after controlling for brain size; only age effects
were observed for callosal areas. These findings agree with prior studies of healthy adults
(Luders et al., 2006), though findings in schizophrenia remain mixed (e.g., Narr et al., 2000;
Nasrallah et al., 1986; Woodruff et al., 1995). While our shape measures showed significant
correlations with the regional callosal areas, observations of shape variations reflecting a
more bowed corpus callosum in male patients with schizophrenia as well as more subtle
schizophrenia genetic liability effects are in line with previous reports using linear and
curvature measurements (Narr et al., 2000, 2002). Cumulatively these results suggest that
our method, which allows for a detailed morphological characterization of callosal shape,
provides a more sensitive approach for dissociating individual differences in age, sex and
clinical status.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Different approaches for boundary analysis of the corpus callosum.
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Fig. 2.
a) Mid-sagittal slice of a T1 MRI image with the corpus callosum region highlighted in
green, (b) a two-dimensional manual tracing of the boundary of the corpus callosum, and (c)
two components of the vector valued function q over the boundary.
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Fig. 3.
Schematic of the pre shape space of scale and translation invariant curves.
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Fig. 4.
Geodesic paths (top to bottom) between two shapes in different pre-shape spaces, and the
shape space S. The labeled arrows point to regions where noticeable changes in the shape

along the path in S compared to the path in  are observed. In the column ,
start, and send are the end-points of the shape respectively.

Joshi et al. Page 23

Neuroimage. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Correspondence between shapes using non-elastic matching (A), and elastic matching (B).
The optimal elastic ( ) correspondence function is overlaid on the linear (γ=s) matching
function (C).
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Fig. 6.
Projection of geodesics from the shape space S to the tangent space Tμ(S) at the mean shape
μ.
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Fig. 7.
Illustration of the TPCA procedure. Top: original tangent vectors from the mean shape to
individuals on the tangent space. Middle: orthogonalized tangent vectors on the tangent
space. Bottom: principal eigen vectors after TPCA decomposition.
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Fig. 8.
Top panel: mean shapes for all subjects, controls, and schizophrenia patients. Bottom panel:
mean shapes overlaid on each other.
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Fig. 9.
Eigen shape variation and the corresponding variation of the original shapes in the
population for ±3 standard deviations about the mean shape for eigen directions 1–5.
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Fig. 10.

Eigen shapes at the two extremities  overlaid on top of each other.
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Fig. 11.
Original shape variation in the population along eigen direction 1, color coded according to
age, sex, and diagnosis. The eigen shape variation is displayed in the first column for
comparison.
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Fig. 12.
Significant local shape changes in the corpus callosum for sex (top panel), and age (bottom
panel). Results are corrected for multiple comparisons by thresholding with FDR.
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Table 1

Geometrical confounds for corpus callosum shape analysis

Shape confound Source Symbol Space

Translation Head position/scanner T R3

Scaling Head volume/scanner a R+

Rotation Head position/scanner O ∈ R2×2 SO(2)

Starting point/origin Tracing/extraction r∈[0,2π) S1

Reparameterization Representation/tracing/extraction γ∈[0,2π) D
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