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Abstract
Noise in fMRI recordings creates uncertainty when mapping functional networks in the brain.
Non-neural physiological processes can introduce correlated noise across much of the brain,
altering the apparent strength and extent of intrinsic networks. In this work, a new data-driven
noise correction, termed “APPLECOR” (for Affine Parameterization of Physiological Large-scale
Error Correction), is introduced. APPLECOR models spatially-common physiological noise as the
linear combination of an additive term and a mean-dependent multiplicative term, and then
estimates and removes these components. APPLECOR is shown to achieve greater consistency of
the default mode network across time and across subjects than was achieved using global mean
regression, respiratory volume and heart rate correction (RVHRCOR (Chang et al. 2009)), or no
correction. Combining APPLECOR with RVHRCOR regressors attained greater consistency than
either correction alone. Use of the proposed noise-reduction approach may help to better identify
and delineate the structure of resting state networks.
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1. Introduction
Functional magnetic resonance imaging (fMRI) uses blood-oxygen level dependent (BOLD)
contrast as a proxy to measure brain activity. Neuronal metabolism changes the local
oxygenation state of blood and tissue, which in turn modulates the measured MR signal.
Resting-state fMRI analysis attempts to map out functional networks in the brain by
measuring correlations between regions of the brain at rest, i.e., in the absence of a task or
sensorimotor input beyond that which unavoidably occurs in the scanner environment. In
seed-based functional connectivity analysis (Biswal et al., 1995), a “seed” region of interest
is selected from the brain and the signal in that region is averaged across constituent voxels
at each time frame. The resulting time series is then cross-correlated with the time series of
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each other voxel in the brain to determine which other regions fluctuate in synchrony with
the seed region.

Unfortunately, other processes that modulate the MR signal or the local oxygenation state
are present, mixing with the neural component of the BOLD signal in the recorded fMRI
time series. Pulsation of the cerebrospinal fluid due to the cardiac cycle induces motion-
related artifacts. Respiration can induce modulation of the static magnetic field resulting
from motion of the thoracic cavity, and variations in both respiratory and cardiac rate can
modulate global oxygen or carbon dioxide levels and cerebral blood flow (Birn et al., 2006;
Shmueli et al., 2007; Chang et al., 2009).

Several noise sources, such as the aforementioned respiratory motion and the cerebral blood
flow effects, tend to be spatially global in nature, and multiple correction approaches have
been developed to reduce their effects. Model-based correction methods use physiological
recordings from a photoplethysmograph and pneumatic belt to predict and remove the time
course of physiological noise in the data. RETROICOR (Glover et al. 2000) and RVHRCOR
(Chang et al. 2009) are two such methods. RETROICOR fits low-order Fourier series to
match the phase progression of cardiac and respiratory measurements, and filters these
components out of the data. RVHRCOR (which is named for Respiratory Volume and Heart
Rate CORrections) uses a convolution model to predict the MR response from respiratory
volume and heart rate recordings, and then uses the predicted time signals as nuisance
regressors in a general linear model (GLM). Data-driven corrections have also been
developed for removing unwanted signal from data for which physiological recordings are
not available. Global mean regression (Desjardins et al., 2001; Macey et al., 2004; Fox et al.,
2005, Fox et al, 2009)uses the time series of variation in the global mean as a GLM nuisance
regressor. However, the validity of global mean regression is questionable, and it may
generate artificial anti-correlated networks when performing resting state analysis (Murphy
et al. 2009). Another data-driven approach to resting-state analysis is to decompose the
dataset using independent component analysis (ICA) and reconstruct the data after
discarding artifact-dominated components. However, the gold standard for identifying
artifact components is subjective visual inspection; furthermore, noise components will not
necessarily separate cleanly from neural components in the decomposition. ICA based
methods have also been used as alternative to physiological recordings, to estimate the
cardiac and respiratory phases for removal by RETROICOR (Beall and Lowe, 2007).

Non-neural signals in resting state fMRI data will corrupt analysis in multiple ways. If there
is a strong additive signal modulating a large portion of the brain, most of the brain will
appear correlated with any chosen seed region. Alternatively, interfering signals can
artificially change the strength of measured resting-state correlations. If the underlying
resting state network is truly stable for some period of time or across subjects, corrupting
signals will cause the network to appear to vary artificially.

This paper presents a new data-driven approach to fMRI correction, called APPLECOR for
Affine Parameterization of Physiological Large-scale Error CORrection. APPLECOR
models common physiological noise as the linear combination of an additive term and a
mean-dependent multiplicative term. It estimates these components and uses those estimates
as nuisance regressors in a GLM. The approach for estimating the physiological terms is
described in section 2.6. Validation of APPLECOR with resting-state analysis across
multiple subjects is presented, demonstrating that APPLECOR increases the temporal
stability and inter-subject consistency of the default-mode network (DMN), compared to
several alternative noise reduction techniques. Simulations demonstrate that APPLECOR
noise estimates may be less susceptible to bias from true network activity compared to
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GMR. It is also shown that combining the nuisance regressors from APPLECOR with
additional regressors obtained by RVHRCOR leads to further improvement.

2.Materials and Methods
2.1 Subjects

Participants included 15 healthy adults (7 female, aged 29 ± 11.5 years). All subjects
provided written, informed consent, and all protocols were approved by the Stanford
Institutional Review Board.

2.2 Image acquisition
Magnetic resonance imaging was performed at 3.0 T using GE whole-body scanners (GE
Healthcare Systems, Milwaukee, WI). Seven of the 15 subjects were scanned on a GE Signa
HDX (rev. 12M5) using a custom quadrature birdcage head coil, and the remaining 8
subjects were scanned on a GE Signa 750 (rev. 20M3) using an 8-channel head coil. Head
movement was minimized with a bite bar. Thirty oblique axial slices were obtained parallel
to the AC-PC with 4-mm slice thickness, no skip. T2-weighted fast spin echo structural
images (TR = 3000 ms, TE = 68 ms, ETL = 12, FOV = 22 cm, matrix 192 × 256) were
acquired for anatomical reference. A T2*-sensitive gradient echo spiral-in/out pulse
sequence (Glover and Lai, 1998; Glover and Law, 2001) was used for functional imaging
(TR = 2000 ms, TE = 30 ms, flip angle = 77°, matrix 64 × 64, FOV = 22 cm, same slice
prescription as the anatomic images). A high-order shimming procedure was used to reduce
B0 heterogeneity prior to the functional scans (Kim et al., 2002). Importantly, a frequency
navigation correction was employed during reconstruction of each image to reduce blurring
from breathing-induced changes in magnetic field; no bulk mis-registration occurs from off-
resonance in spiral imaging (Pfeuffer et al., 2002).

All subjects underwent a resting state scan, for which they were instructed only to keep their
eyes closed and remain awake. For the 7 subjects scanned on the Signa HDX, the duration
of the scan was 8 min; for the 8 subjects scanned on the Signa 750, one was scanned for 12
min and the remaining 7 were scanned for 16 min. For purposes of a separate study, 5 of the
8 subjects scanned on the Signa 750 were instructed to perform a single 10-s breath hold at
the beginning of the scan.

2.3 Physiological monitoring
Cardiac and respiratory processes were monitored using the scanner’s built-in
photoplethysmograph placed on a finger of the left hand and a pneumatic belt strapped
around the upper abdomen, respectively. Cardiac and respiratory data were both sampled at
40 Hz on the Signa HDX, and at 100 Hz and 25 Hz, respectively, on the Signa 750. A file
containing cardiac trigger times and respiratory waveforms was generated for each scan by
the scanner's software.

2.4 Calibration Volume
APPLECOR attempts to correct for the corrupting effect of globally consistent, non-neural
signals in fMRI data. A calibration volume that will best facilitate estimation of these signals
is selected from each data set. We focus on correcting for global noise affecting brain areas
of neural activation, which will be the gray matter and possibly white matter. Signal
variation in gray matter is generally greater than signal variation in white matter, but
physiological effects may be present in both regions. Cerebrospinal fluid (CSF) does not
contain neurons and is not of interest when measuring activation or correlation. Edge voxels,
which partially contain brain matter and partially contain air or CSF, will see large signal
changes with small motion because of partial volume effects, which are not common to the
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rest of the brain. Therefore, for this study, calibration was limited to gray and white matter,
which were segmented from the images based on mean signal level. Intensity cutoffs were
determined based on the second derivative of sorted intensity values. Sorting the mean
signal intensity for all voxels revealed that gray matter and white matter were represented
within an affine region of the curve for all data sets. An example of this sorted curve and the
calculated thresholds is shown in the top of Fig. 1. Segmentation was verified by inspection
for each subject. Edge voxels were removed from the calibration volume based on total
signal variation. If the time course of a voxel’s signal varied by more than a specified
threshold, the voxel was classified as an edge voxel and removed from the calibration
volume. Variations greater than 0.1% of mean signal intensity were classified as an edge
voxel, as that was found to be an appropriate threshold for each of the data sets in this study.
An example showing the variation of each voxel in the white/gray matter intensity range, as
well as the edge detector threshold, is shown in the bottom of Fig. 1. Inspection confirmed
that the voxels removed by the edge voxel detector were nearly all at the periphery of the
brain or the ventricles for each data set.

2.5 Signal Model
APPLECOR assumes that a voxel’s signal is the sum of a constant offset (mean signal over
time), true neural BOLD modulation, additive physiological noise, multiplicative
physiological noise, and thermal noise. Physiological corruption that is not additive will
likely scale as a function of voxel mean intensity (Kruger & Glover, 2001) and of tissue
properties such as gray/white matter content or vascularity (Bandettini & Wong, 1997),
motivating the inclusion of the multiplicative term. The multiplicative term can capture
some of the effects that are tied to tissue properties and vascularity, since the magnitude of
such effects correlates with the mean signal intensity.

The APPLECOR signal model for voxel iis

(1)

where μi is the mean signal level for voxel i, Bi(t) is the neural-induced BOLD modulation
that we hope to uncover in the recorded fMRI data, Padd(t) is the global additive noise, and
Pmult(t) is the global multiplicative noise, representing factors discussed earlier. Pi(t)
represents the aggregate effect of any other corrupting signals on voxel i that are not global.
Ni(t) is zero-mean noise, which we assume to be Gaussian for high signal intensities. If the
additive and multiplicative physiological effects are perfectly consistent across the brain
volume and across tissue types, then the constants C1i= C2i = 1. However, if there are spatial
differences in susceptibility to physiological effects then these constants will allow for
amplitude scaling of the physiological confounds. The Padd and Pmult terms are what
APPLECOR attempts to estimate and remove from the fMRI data.

2.6 Estimation of Physiological Noise
The APPLECOR algorithm attempts to determine Padd(t) and Pmult(t) and subsequently
project them out of the data by using them as nuisance regressors in a GLM. As a first step,
mean signal values are removed from each calibration voxel’s time course. This leaves

(2)

as the residual signal of each voxel. Empirically, the distribution of Ri(t) values across space
(within the calibration volume) or across time gives approximately Gaussian distributions.
The time-averaged spatial distribution will be referred to as the “expected distribution” of
residual values. This distribution is a mixture of the N, B, and P distributions. Looking at an
individual time frame j, the distribution of residual values across voxels should look similar
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to the expected distribution. If Padd(j) = Pmult(j) = 0, and the average (across voxels) of Bi at
frame j is 0, then the distribution of Ri(j) will be centered on zero. If there is an additive
offset, Padd(j) • 0, the distribution of Ri(j) will be centered on Padd(j), (assuming that C1i = 1
for all i.)If Pmult(j) • 0, then the center of the distribution for a subset of voxels will depend
on their mean values. In order to determine the additive and multiplicative offsets together,
the calibration voxels are first binned according to mean signal intensity, μi. Using ten bins
was found to be a suitable tradeoff between robustness and precision. For each time frame,
the distribution of residuals for each bin is cross-correlated with the expected distribution to
find the offset that yields the maximum cross-correlation. (This offset is the best estimate of
the center of the distribution within that bin.) These offsets are then plotted against the mean
signal intensity of each bin and an affine fit is computed. The affine fit parameters are
APPLECOR’s initial estimate of Padd(j) and Pmult(j), with the slope being Pmult(j) and the y-
intercept being Padd(j).

The stages of correction thus far are referred to as APPLECOR0, as they are the foundation
of and the first pass for the APPLECOR algorithm. An example of distribution comparisons,
cross-correlations, and fit is shown in Figure 2. After execution of APPLECOR0, we have
an initial estimate of Padd(t) and Pmult(t). However, additional adjustments are necessary.
First, we note that small errors in the multiplicative estimate lead to substantial error in the
additive estimate. Since the y-intercept measures the offset for a zero mean signal, errors in
the 1st order term are magnified by the offset between the mean intensities and zero. In order
to make the additive offset more accurately reflect the additive bias in the brain, we adjust
the model such that the estimated additive signal is considered to be Aest(t) = [Padd(t) +
Pmult(t)*mean(μi)] instead of just Padd(t), where mean(μi) is the average mean signal
intensity throughout the calibration volume. We can also redefine our scaling constants to
absorb the modified designation. This gives a new formula for the residuals,

(3)

where C3i and C4ihave absorbed other constants and will not be equal to one. The newly
defined additive estimate, Aest(t), gives the expected global noise time course for a voxel of
average intensity. This term is also a more robust estimate of global additive offset than
simply taking the global mean, since outliers are given less weight in cross-correlation
instead of being given equal weight as in global mean calculation. Second, we want to
calibrate for estimates of the global noise parameters only in voxels in which global noise is
significant. If the neural signal Bi(t) dominates, or if C1i or C2i are significantly different
than 1, inclusion of the voxel i in calibration may bias our noise estimate. To increase the
likelihood that only voxels with significant, common physiological noise are included in
calibration, the calibration volume is restricted to voxels with a strong positive correlation
with the initial noise estimate Aest(t). A threshold of Pearson correlation r•0.15 was chosen,
as it empirically gave the most consistent DMN results across different testing parameters.
This threshold preserved 55% of the original calibration volume on average, with a standard
deviation of 12%, when processing the full duration of each of the fifteen data sets.

APPLECOR0 is run again with the reduced calibration volume to produce improved
estimates of Aest(t) and Pmult(t). Finally, a GLM is run with Aest(t), Pmult(t), and the 0th, 1st,
and 2nd powers of time as nuisance regressors to remove all estimated corruption from all
voxels. Ideally, this full implementation of APPLECOR will leave only Vi,APPLECOR = Bi(t)
+ Pi(t) + Ni(t) after correction. APPLECOR can also be combined with other GLM-based
corrections by using additional nuisance regressors. “PEARCOR”, or Parallel Execution of
APPLECOR and RVHRCOR, uses the estimated physiological regressors from APPLECOR
and from RVHRCOR together in a GLM to remove as much physiological corruption as
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possible. All processing and analysis in this study was performed using MATLAB (2010a,
The Mathworks, Natick, MA).

2.7 Temporal Consistency
The seven 16-minute resting state fMRI data sets were used to analyze the temporal stability
of the DMN after various corrections. Each data set was prepared by first applying
RETROICOR, then performing slice-timing correction (alignment of the 2D slices to make
temporally consistent volumes), and finally applying one of the following corrections: None,
RVHRCOR, global mean regression (hereafter referred to as “GMR”), APPLECOR,
PEARCOR. Each correction approach was also tested without application of RETROICOR.
After correction, the data sets were split into 2-minute time windows, with successive
windows slipped forward every 1 minute to create 15per scan. These windows included the
breath hold period for subjects that performed that task, as insensitivity to breathing is a
desirable trait for the corrections. A seed ROI from the posterior cingulate cortex (PCC),
which is a central node of the DMN (Greicius et al., 2003; Greicius and Menon, 2004;
Raichle et al., 2001) was defined for each subject by normalizing the MNI standard-space
ROI ((5mm-radius sphere, centered at (x = −6, y = −58, z = 28)) to that subject’s mean
functional image. Within each time window, the Pearson correlation between each voxel and
the average time signal in the PCC ROI was calculated. Correlation coefficients were
converted to Fisher Z values. Temporal consistency at each voxel was measured as the
standard deviation, across time bins, of Fisher Z values.

2.8 Inter-subject Consistency
All 15 fMRI data sets were used to analyze the consistency of DMN across subjects before
and after correction. To avoid inconsistency from the differing scan times and from the
initial breath holds, only the last 8 minutes of each subject’s data set were considered in this
analysis. Each of the following correction methods was then applied for comparison, both
with and without first performing RETROICOR: None, RVHRCOR, GMR, APPLECOR,
PEARCOR. After applying each correction, the correlation between each voxel and the
average time signal in the PCC ROI was calculated. Correlation coefficients were converted
into Fisher Z statistics, and the resulting maps were normalized into MNI space, and the
normalized correlations maps were submitted to a group-level one-sample t-test using SPM5
(http://www.fil.ion.ucl.ac.uk/spm). A nuisance factor of “scanner” was included to account
for subjects having been scanned on 1 of 2 different scanners. In addition, for each
correction approach, consistency across subjects was calculated for each standard-space
voxel by taking the standard deviation of normalized voxel correlation across subjects.

2.9 Network Stability Simulation
In order to analyze the effects of the corrections in a more controlled setting, simulations
were performed by injecting artificial resting state networks into recorded data. For each
iteration of the simulation, one of the seven 16 minute data sets was selected at random. A
sinusoid with random starting phase and a random period (uniform over [26, 34] seconds)
was created as a synthetic injection signal. Ten percent of the calibration voxels were chosen
at random as injection sites, and the sinusoid was added to their time courses. Amplitude of
the injection signal was set to 0.1% of the average calibration voxel intensity, which gave a
typical mean correlation in the injection volume with significance p•0.0015. Three hundred
iterations were performed. For each iteration, temporal consistency was analyzed as was
described earlier for the measured data. The mean correlation (with the sinusoid) across time
was calculated for each voxel, and the correlation coefficients were then averaged within the
injection and non-injection volumes. The standard deviation of correlation across time was
found to be consistent across the injection and non-injection sites, so the standard deviation
across time of all calibration voxels was averaged. The average across trials for each
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parameter was calculated, as well as the standard deviations, to determine statistical
significance of the results.

2.10 Comparison Between Regressed Signals
In order to quantify similarity or dis-similarity between the corrections, correlations between
the regressed signals were measured. RVHRCOR, GMR, APPLECOR, and PEARCOR
were run on the seven 16-minute data sets, extracting only the signals that were regressed
out by the various approaches (i.e., the first- and second-order trend terms were not included
in these extracted signals). The correlation between the extracted signals for every pair of
approaches was computed for every voxel in every subject. These correlations were
averaged across gray and white matter within each subject to yield a metric assessing the
similarity of regression between the correction approaches for each of the 7 subjects.

2.11 Correction Bias Simulation
There is a concern that if resting state networks are large, their true neural fluctuations will
influence the estimated noise regressors for the data-driven corrections (GMR, APPLECOR,
and PEARCOR). We therefore performed simulations to gauge the degree to which these
correction methods are susceptible to bias from neurally-based network activity. In our
simulated set of voxels, a fixed fraction of the voxels shared a common underlying signal
and thus formeda network (the “DMN”),and the remaining voxels contained only random
Gaussian noise. Time series were generated from Gaussian white noiseto serve as global
additive and multiplicative noise, and were added to all voxels. Thermal Gaussian noise of
fixed amplitude was generated and added to all voxels. A “true DMN” random Gaussian
signal was created that was orthogonal to the additive and multiplicative time series, and
variation across voxels within the DMN was created by multiplying the true DMN time
series by the absolute value of random Gaussian time series prior to being added to the noise
signals. In order to generate appropriate parameters for the simulation, data from subject 1
was used. The distribution of mean signal intensities were taken from the gray and white
matter in this data set, with the “DMN” voxels being selected uniformly across all
intensities. The variance of the additive and multiplicative signals were selected to match the
average estimated additive and multiplicative variances from the APPLECOR GLM of
subject 1. The true DMN signal was made orthogonal to the additive and multiplicative
signals so that any measured correlation between them after correction could be attributed to
bias from the correction. The variance of the true DMN signal was selected to match the
average estimated PCC signal in voxels that had r>0.20 correlation with the PCC after
APPLECOR correction. Prior to adding the additive and multiplicative noise, the mean
correlation between voxels in the simulated DMN was 0.27, which was the average
correlation with the PCC in subject 1 for significantly correlated voxels after APPLECOR.
The fractional volume of the DMN was varied from 5% to 30% in 5% steps, with 30
iterations of the simulation run at each fractional volume. To measure the amount of
correlation between the estimated regressors and the true DMN signal, the true DMN was
projected onto the GMR regressor or simultaneously onto the APPLECOR additive and
multiplicative regressors, and the correlation between the true DMN and the projected DMN
was calculated for each correction method.

3. Results
3.1 Consistency of Residuals

One of the assumptions implicit in APPLECOR is that the distribution of residual values
within a data set is stable across time after accounting for additive or multiplicative biases.
In order to test this assumption, histograms of the distribution of residual values for each
frame were computed before and after correction. An example of the distribution of residual
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values across time for a sample resting state data set before and after APPLECOR correction
is shown in Fig. 3. The amount of and type of variation in the distributions before correction
differ across data sets. The distribution time history after correction shown in Fig. 3 is
representative of six of the seven 16-min data sets after correction, while the other subject’s
distribution time history varied slightly more.

3.2 Temporal Consistency Results
Temporal consistency analysis on the seven 16-minute data sets produced 15 time bins of
correlation for each subject with each correction approach. Figure 4 shows, for one subject,
the first 6 non-overlapping time bins for a representative slice that includes the PCC, both
with and without APPLECOR. (For the data in this figure, RETROICOR has not been
applied.)Each frame is presented in the same color scale, with gray-scale representing the
underlying average signal. Color is overlaid to indicate correlation with the PCC,
thresholded at significance p<0.01 (not corrected for multiple comparisons).

Consistency across time was measured using the standard deviation of Fisher z scores for
correlation with the PCC across the 15 time bins. Figure 5 shows a map of temporal standard
deviation for a single slice in a single subject, using each of the correction approaches. Figs.
4 and 5 show the same slice from the same subject. Lower temporal standard deviation
indicates greater stability of the measured DMN over time. Lower spatial variation of
temporal consistency indicates more consistent remaining noise throughout the brain.

In an attempt to quantify the effects of the various corrections on temporal consistency, the
distribution of temporal standard deviations for all gray or white matter voxels was plotted
for each subject. For three of the subjects, small differences were found in consistency
between the corrections, while larger differences appeared between corrections for the other
four subjects. The top of Fig. 6 shows the distribution of temporal standard deviations across
the subjects showing large differences, and the bottom shows this data across only the three
subjects showing smaller differences. The relative ordering of the histograms (across
correction approaches) was consistent for the subjects showing larger differences, while the
ordering of the correction histograms for subjects showing small differences was somewhat
variable. Distributions closer to zero reflect greater consistency across time bins. Narrower
distributions indicate greater consistency across space and subjects. To give a numerical
representation, Table 1 shows the mean across subjects of the average temporal variation, as
well as the spatial deviation of temporal variation after each correction. (These statistics are
calculated across all voxels that have a signal intensity in the range spanned by gray and
white matter. Percentages of the values found for uncorrected data are included for ease of
interpretability.) In order to see subject-to-subject variation that may be disguised by
population level statistics, Table 2 shows the average temporal variation after each
correction, for each subject.

In order to visualize how the overall distribution of correlations changes with time, Figure 7
shows the distribution of correlations with the PCC in two of the subjects before correction
and after APPLECOR. Only the 8 non-overlapped time windows are displayed (each is a
different color), and single measurement p<0.001 thresholds are overlaid. The subject shown
on the left was one of the subjects showing a large difference after correction, while the
subject on the right showed smaller differences. (In Table 2, these are subjects 3 and 4
respectively.)

3.3 Group Level Consistency Results
Group-level analysis of functional connectivity with the DMN seed region was performed
across the 8-mindata sets of 15 subjects. Group-level t scores for 4representative slices are
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shown in Fig. 8.The slices shown are axial slices at MNI coordinates z=−21, 3, 27, 51. In
addition, consistency for each normalized voxel was measured using the standard deviation
of correlations across the subjects. This standard deviation across subjects is shown in Figs.
9 and 10 for the same slices as shown in Fig. 8. (The data in Figs. 9 and 10 is the same, but
Fig. 10 has been normalized per voxel to show greater contrast between corrections.) To
give a numerical metric, the mean across space of inter-subject variation (standard
deviation) was measured for each correction approach. As in the temporal comparisons, the
spatial standard deviation was calculated as well. These values are provided in Table 3.

3.4 Network Stability Simulation Results
The measured parameters from the injected network simulation are summarized in Table 4.
Lower temporal standard deviation of correlation with the injected signal indicates improved
consistency of the correlation results. As can be seen in the far right column, all of the
correction approaches improved consistency of the correlation values. Ideally, correlation
with the injected signal would be maintained or increased by a correction approach, while
correlation in the non-injection volume would be maintained or reduced (towards zero).
Each of the correction approaches decreased the average correlation in the injection volume.
GMR regression reduced it the most, by 5.2%, whereas RVHR only reduced it by 1.8%.
Correlation in the non-injection volume was perturbed the most by GMR (changing r by
approximately −0.015), followed by APPLECOR and then PEARCOR (each changing r by
approximately 0.009). Separation of true correlations from false positives is improved if
variation is reduced more than the mean is reduced. Only APPLECOR resulted in a greater
reduction in temporal variation over average correlation in the injection for this particular
strength of injected signal. Parameter differences between corrections were smaller than one
across-trial standard deviation. Paired t-tests were run for each correction pairing and each
parameter to measure statistical significance of differences. APPLECOR and PEARCOR
were found to be significantly (p<<0.05 for most pairings, p<0.06 in the least significant
case) different than no correction and RVHRCOR for each parameter. APPLECOR and
PEARCOR were not strongly significantly different than GMR for the parameters.

3.5 Comparison Between Regressed Signals Results
Correlations were calculated between the signals that were regressed out of the data for each
pair of correction approaches. These correlations were averaged across gray and white
matter within each subject, and the results are tabulated in Table 5.

3.6 Correction Bias Simulation Results
For each iteration of the simulation, the correlation between the true DMN signal and the
projected DMN signal was calculated for each of the corrections (GMR and APPLECOR).
At each fractional DMN volume size, 30 iterations of the simulation were run, and the mean
correlation and standard error of the mean correlation were calculated for each correction.
These results are shown in Figure 11. At each fractional volume, the average correlation for
each correction is shown, along with error bars indicating ±3 standard errors. Lower
correlations indicate less bias and lower likelihood of removing desired neural signal. Paired
t-tests were significant at each DMN extent, ranging from p<0.007 for 5% extent to p<4e-21
for 30% extent.

4. Discussion
We have introduced a method for estimating and removing non-neural noise from fMRI
recordings, and have examined its impact on temporal, spatial, and inter-subject consistency
of the DMN in resting-state connectivity analysis. Although the DMN is not expected to be
perfectly constant across time and across subjects (Chang and Glover, 2010), it is expected
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to be more stable than it appears in raw recordings. An ideal correction would remove as
much non-neural signal as possible, while preserving true temporal variations in neural
activity and connectivity. If a noise correction method increases the DMN stability, it is a
strong indication that the correction is correctly removing non-neural noise from the data.
Results show that the new corrections result in greater DMN stability than alternative
corrections (or no correction) consistently across subjects and measures of consistency.
PEARCOR, followed by APPLECOR, attained the greatest consistency of the DMN as
measured across time and across subjects, and the variation of these parameters across space
was also lowest for the new corrections. Results from simulation were ordered similarly to
results from measured data, but the measured differences were much smaller. The
simulation did not refute any of the observed consistency improvements, while it also did
not reveal any compelling insight.

4.1 Consistency of Residuals
The residual distributions are very consistent after APPLECOR, which supports the
algorithm’s underlying signal assumptions of consistent neural distributions with
inconsistent non-neural signals. Additionally, we posit that changes in the distribution of
residuals between time frames may indicate changes in data quality. For example, in Fig. 3,
there are clearly some frames interspersed through the data that have a wider distribution of
residuals. These frames may indicate subject motion or other irregular corruption of the
signal. While further investigation of this phenomenon is required, it is possible that using
the within-frame variance as a data quality metric may allow for better correction results by
introducing a confidence weighting when estimating or removing physiological signals or
calculating network connectivity correlations.

4.2 Calculation of Global Mean Offset
Comparison between the APPLECOR algorithm and GMR suggests that APPLECOR using
only a single intensity range bin per frame to estimate Aest(t) estimates global noise better
than GMR. If there is a global additive bias to the brain signal, the distribution of residual
values [Vi(t) – μi] will be centered around that additive offset. Using cross-correlation with
the expected distribution, APPLECOR will determine the additive offset with high accuracy.
Because global mean calculation weights all voxels equally, voxels that have true activation
or that happen to have outlying noise will contribute to calculation of the mean to the same
degree as other voxels. APPLECOR, by virtue of cross-correlation, gives outlying voxel
residuals less weight when estimating the underlying additive offset. Thus, APPLECOR is
expected to be more robust than the global mean in measuring additive offsets in the
presence of noise or true activations.

4.3 Temporal Consistency
APPLECOR increased the temporal consistency of resting-state correlations more than
RVHRCOR or GMR for most of the long (16-min) data sets, regardless of whether
RETROICOR was also applied. Compared to the raw data, temporal variation (as measured
by standard deviation) was reduced on average by 8.5% with APPLECOR, while
PEARCOR (coupled with RETROICOR) reduced it by 11.4%. RVHRCOR and GMR
reduced temporal variation by 1.9% and 5.7% respectively when paired with RETROICOR.
The margins by which APPLECOR or PEARCOR outperformed RVHRCOR or GMR were
several times larger than the margins by which APPLECOR or PEARCOR were
outperformed. These results indicate that APPLECOR and PEARCOR improve the temporal
consistency across most subjects, and that the group level results are not driven by outliers.
Spatial variation of the temporal consistency was also reduced when using APPLECOR, and
even more so when using PEARCOR. Spatial variation of temporal consistency was reduced
by 10.5% using APPLECOR alone and by 19.1% using PEARCOR with RETROICOR.
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RVHRCOR and GMR reduced spatial variation by 4.2% and 7.5% respectively when paired
with RETROICOR. In all cases, application of RETROICOR before other correction
approaches improved the temporal consistency of DMN correlations. These results further
suggest that some of the temporal variation generally seen in the DMN may be artifactual.

A particular feature of the temporal consistency is apparent when browsing through time
windows, but is not captured by the numeric metrics presented in the Results section. In
most of the subjects, there are time frames in which most of the brain becomes significantly
correlated with the PCC in the raw data. This large-scale correlation indicates large-scale
noise dominating the underlying neural activation. Subjectively, in frames where this is the
case, APPLECOR and PEARCOR suppress the large-scale correlation, but they also reduce
the volume of significant correlations in regions where correlation is expected. This effect is
somewhat visible in Fig. 4. It is not certain which of these outcomes is preferable, but it
appears that the use of APPLECOR or PEARCOR will significantly reduce the likelihood of
false positive correlations in resting state analysis, possibly at the expense of reduced
detectability (true positives).

Figure 7 shows a comparison of PCC correlations in 2-minute windows from two of the
subjects. An initial observation of this figure reveals that the APPLECOR distributions are
all centered near zero and appear somewhat Gaussian. If the majority of the brain voxels are
unconnected to the PCC, this would be expected. Many of the raw 2-minute distributions are
also centered around zero and appear somewhat Gaussian, but some of the distributions are
not. In particular, the subject that showed large increases in consistency after correction had
several time windows that showed a significant positive correlation bias and spread of
correlation values. These results are consistent with the theory that widespread physiological
noise introduces artificial positive correlations, and that APPLECOR attempts to reduce
them by regressing out estimated non-neural contributions. These plots also suggest that the
reason that some subjects show little change in consistency after correction is that they were
not very corrupted by non-neural noise to begin with. It is conceivable that future correction
approaches may want to compare measured correlation histograms with an expected
distribution to assess data quality.

4.4 Group Level Consistency
Group-level results show greater consistency across subjects after application of
APPLECOR or PEARCOR. Some of the brain regions that are negatively correlated with
the DMN after application of GMR also appear negatively correlated after application of
APPLECOR or PEARCOR, suggesting that some of these regions are truly negatively
correlated and not simply an artifact introduced by GMR. In particular, the task-positive
network appears to be anti-correlated after any of these corrections. Variability across
subjects was highest at the boundaries of the PCC, but close examination of the individual
DMN results in native subject (acquisition) space suggests that much of this variability is
due to mis-registration errors in the coordinate transformation to MNI space. The
comparative ranking of the various inter-subject metrics is the same as was found in the
temporal case. PEARCOR yields the most consistency across subjects, followed by
APPLECOR, GMR, RVHRCOR, and no correction. In some cases, RETROICOR slightly
improves consistency and in others it slightly decreases consistency. Similar to the temporal
consistency results, the inter-subject consistency results suggest strongly that APPLECOR
alone will produce more consistent (and potentially more accurate) correlations than will
previously developed correction approaches, and that PEARCOR outperforms APPLECOR
if physiological recordings exist to permit its use.
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4.5 Network Stability Simulation
When injecting a known signal into a volume of resting state data, small but statistically
significant differences in network strength and consistency were obtained across the various
correction approaches. Interestingly, each of the corrections reduced the strength of
correlation with the sinusoid in the injection volume, which is undesired. GMR created the
greatest negative bias in correlations throughout the brain, which is expected since GMR
assumes a zero sum model and must decrease all correlations if positive correlation are
introduced (Murphy et. al, 2009). APPLECOR and PEARCOR also added negative bias to
all correlations, but to a lesser extent than GMR. The amount to which the bias occurs will
depend on the time history of the activation signal and its spatial extent, as the APPLECOR0
noise estimation gives less weight to stronger activation. The relative results of the various
corrections were very dependent on simulation parameters, and it is not clear how
representative the simulations are of actual recordings. In particular, the histograms of
residuals in a time frame for the simulated data do not look similar to the histograms in
actual measured data, so the additive sinusoid model may be deficient. Also, the differences
between the consistencies after various corrections are much smaller with the simulated data
than with the measured data, further suggesting that the simulation is not capturing the true
effects of the corrections.

4.6 Similarity Between Regressors and Bias from Large Networks
It is well known that GMR can distort true correlation patterns, since the global mean signal
contains an unknown mixture of neurally-based BOLD fluctuations along with noise
(Murphy et al. 2009, Saad et al. 2012). Unfortunately, since it is impossible to truly
disentangle meaningful signal from noise in resting state scans, all data-driven noise
estimates obtained from gray-matter voxels may be biased to some degree by the presence
of real correlations amongst brain regions (i.e. networks). We performed simulations in
order to examine the relative degree to which the APPLECOR and GMR noise estimates are
biased by the presence of large-scale networks. It was found that APPLECOR appears to
suffer from significantly less bias compared to GMR across a range of simulated network
volumes (5% – 30%), and therefore represents an improvement. We furthermore examined
the degree to which the APPLE/PEARCOR noise estimates resembled the global signal
within the actual fMRI data, and observed that the amount of shared variance ranged
between 29.8% – 44.6% for APPLECOR (24.3% – 37.7% for PEARCOR); this, taken
together with the significantly improved temporal consistency achieved by APPLE/
PEARCOR compared to GMR, suggests that the proposed method is distinct from GMR and
may contribute more than simply an incremental improvement.

4.7 Caveats, Limitations, and Future Work
True large-scale activations in the brain can bias APPLECOR’s noise estimates. To apply
APPLECOR to task-based or sensorimotor fMRI data, it may be sufficient to exclude
potential regions of activation from the calibration volume to avoid this bias. Further work
will be necessary to determine the suitability and proper application of APPLECOR-like
methods to non-resting-state data. Further investigation into the amount of bias introduced to
resting-state data sets by APPLECOR is also warranted. Here, we address this issue by
simulating the presence of a large-scale network and examining the degree to which the
APPLECOR and GMR noise estimates are biased by the common temporal activity within
the network. While we believe our simulation incorporated reasonable assumptions, as well
as parameters derived empirically from an fMRI dataset, the simulated conditions are likely
an oversimplification of realistic resting-state data.

Although the proposed corrections outperformed all of the alternatives at the group level,
individual subjects sometimes showed slightly worse performance metrics after the
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proposed corrections as compared to the raw data or to other corrections. The difference
between the performance metrics before and after corrections also varied greatly across the
data sets. Figure 6 shows this effect very clearly. One situation that can lead to small
differences between pre- and post- correction results would be if there were very little
physiological corruption in the original data set, a scenario that is suggested for some data
sets by Figure 7. Alternatively, if physiological noise manifested as a spatially
heterogeneous factor rather than as a global component, the assumptions of our model
would be violated. For one of the seven long data subjects (subject 5 in Table 2), variation
remained high after correction suggesting that none of the corrections adequately removed
non-neural corruption and that a more sophisticated approach may be necessary.

Another approach to removing the estimated physiological noise is to subtract [Padd(t) + μi *
Pmult(t)] from each voxel’s signal rather than regressing it out in a GLM. The advantage to
this approach would be that correlation between a true Bi(t) and the physiological signal
would not result in removal of true neural signal during correction, beyond what was
included in the estimate of Aest(t).The disadvantage would be that C1i and C2i would either
need to be assumed constant (equal to 1.0) or estimated by some other means. Also, if the
calibration volume included both white matter and gray matter, it would be likely that the
strength of the estimated physiological noise would fall in between the true physiological
noise for the two types of tissue. Therefore, it may be necessary to restrict the calibration
volume to only the tissue type of interest. The subtraction (instead of regression) approach
was evaluated using the full white and gray matter volume and found to be inferior to
regression when analyzing resting state networks by all of the methods presented here.

5.Conclusions
A new data-driven correction method, APPLECOR, was developed for reducing non-neural
signals in resting-state fMRI. In our data, APPLECOR reduced the amount of temporal and
inter-subject variation in seed-based DMN correlations by more than alternative correction
approaches (such as global mean regression). Assuming that non-neural components of the
fMRI time series introduce artificial variation in DMN correlations, the observed
improvement in consistency provides an indication that APPLECOR may effectively reduce
non-neural signals in resting-state data. Since APPLECOR requires only the fMRI data as an
input, it can be applied to scans for which no physiological monitoring was recorded. The
combination of APPLECOR and RVHRCOR regressors (“PEARCOR”), which can be used
when concurrent respiratory and cardiac measurements are available, was found to produce
even greater consistency. We also observed that regions of the task-positive network were
negatively correlated with the DMN after our proposed corrections, suggesting that these
negative correlations are neural in origin if, as believed, the new corrections are properly
regressing out non-neural signal.
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Figure 1.
Representative distributions used in white/gray matter segmentation. Top plot shows the
sorted intensity values for all voxels in the data set. Solid red lines show the maximum and
minimum intensity thresholds for gray/white matter. Bottom plot shows the sorted variation
values for the gray/white matter voxels, with a red line showing the cutoff used in
identifying edge voxels.
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Figure 2.
Illustration of histograms and APPLECOR0 fits for a single frame of fMRI data. Top left
shows the distribution of residual in calibration voxels (blue) and the average distribution
across time (green). The cross-correlation of these distributions is shown top right, with a
red star marking the maximum. Bottom left shows the cross-correlations and maximums for
the same frame, separated into 10 bins according to magnitude. Bottom right shows the
maximums plotted against bin intensity, with the APPLECOR0 Aest(green) and
multiplicative (blue triangle) fits.
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Figure 3.
Distributions of residual values (as a percentage of mean intensity) across time before (top)
and after (bottom) application of APPLECOR. First and second order trends have been
removed in each case.
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Figure 4.
Correlation with the PCC across time bins for subject 1 within a slice that includes the PCC:
without (top) and with (bottom) APPLECOR.
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Figure 5.
Temporal standard deviation of correlation with PCC after various corrections, shown for a
single representative subject. Top row shows the temporal variation for each voxel. Bottom
row shows the percentage of the raw variation by voxel, normalized to that of the raw data.
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Figure 6.
Histograms of temporal standard deviations after various corrections for subjects showing
larger changes (top) and smaller changes (bottom). Solid lines used RETROICOR, dashed
lines did not.
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Figure 7.
Distributions of correlation values, across 2-minute time windows. The first row shows
distributions after only 1st and 2nd order trend regression, while the bottom row used
APPLECOR. The subject in the left column showed larger differences in consistency after
correction, the subject on the right showed smaller differences. Vertical dashed lines
indicate p<0.001 (uncorrected for multiple comparisons).
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Figure 8.
Group level t-scores of functional connectivity with the PCC across 15 subjects, shown after
performing the indicated corrections.
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Figure 9.
Variation (standard deviation) of DMN correlation across subjects after various corrections.
Single-subject maps were normalized to MNI space prior to computing the across-subject
variation.
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Figure 10.
Normalized variation of DMN correlation in MNI space across subjects after various
corrections. (Normalization is such that average value across corrections is 100.)
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Figure 11.
Mean correlation between true DMN signal and the DMN signal projected on estimated
regressors from GMR and APPLECOR. Lower values are better, as they indicate a
decreased likelihood of removal of neural signal. Error bars indicate ±3 standard errors.
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Table 1

Average statistics across seven subjects for temporal consistency. Third column shows the mean across
subjects of the mean temporal standard deviation. The fourth column shows the average across subjects of the
standard deviation across space of temporal standard deviations. Smaller values indicate improved
consistency. Percentages shown are relative to the data on which no corrections were applied (first row).

Correction Applied RETROICOR? Average Temporal
Standard Deviation

Spatial Standard
Deviation of Temporal
Standard Deviations

None No 0.1853 (100%) 0.0580 (100%)

None Yes 0.1852 (99.9%) 0.0575 (99.12%)

RVHRCOR No 0.1822 (98.34%) 0.0556 (95.84%)

RVHRCOR Yes 0.1818 (98.10%) 0.0549 (94.55%)

GMR No 0.1757 (94.82%) 0.0540 (93.01%)

GMR Yes 0.1748 (94.32%) 0.0537 (92.55%)

APPLECOR No 0.1695 (91.44%) 0.0519 (89.48%)

APPLECOR Yes 0.1690 (91.21%) 0.0510 (87.91%)

PEARCOR No 0.1661 (89.64%) 0.0479 (82.51%)

PEARCOR Yes 0.1642 (88.61%) 0.0470 (81.05%)
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Table 3

Variation statistics across fifteen subjects in standardized coordinate system. Third column shows the mean
across-subjects standard deviation. The fourth column shows the standard deviation across space of across-
subject standard deviation. Smaller values indicate improved consistency. Percentages shown are percent of
no-correction value.

Correctionm
Applied

RETROICOR? Average Across-
Subject Standard
Deviation

Spatial Standard Deviation
of Across-Subject Standard
Deviations

None No .1212 (100.0%) .0399 (100.0%)

None Yes .1211 (99.93%) .0402 (100.8%)

RVHRCOR No .1137 (93.87%) .0386 (96.92%)

RVHRCOR Yes .1139 (94.03%) .0391 (98.19%)

GMR No .1033 (85.24%) .0380 (95.32%)

GMR Yes .1027 (84.73%) .0385 (96.64%)

APPLECOR No .1021 (84.27%) .0384 (96.42%)

APPLECOR Yes .1014 (83.66%) .0389 (97.62%)

PEARCOR No .1005 (82.97%) .0378 (94.78%)

PEARCOR Yes .0999 (82.46%) .0382 (95.92%)
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