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Abstract

The human brain undergoes rapid and dynamic development early in life. Assessment of brain
growth patterns relevant to neurological disorders and disease requires a normative population
model of growth and variability in order to evaluate deviation from typical development. In this
paper, we focus on maturation of brain white matter as shown in diffusion tensor MRI (DT-MRI),
measured by fractional anisotropy (FA), mean diffusivity (MD), as well as axial and radial
diffusivities (AD, RD). We present a novel methodology to model temporal changes of white
matter diffusion from longitudinal DT-MRI data taken at discrete time points. Our proposed
framework combines nonlinear modeling of trajectories of individual subjects, population
analysis, and testing for regional differences in growth pattern. We first perform deformable
mapping of longitudinal DT-MRI of healthy infants imaged at birth, 1 year, and 2 years of age,
into a common unbiased atlas. An existing template of labeled white matter regions is registered to
this atlas to define anatomical regions of interest. Diffusivity properties of these regions, presented
over time, serve as input to the longitudinal characterization of changes. We use non-linear mixed
effect (NLME) modeling where temporal change is described by the Gompertz function. The
Gompertz growth function uses intuitive parameters related to delay, rate of change, and expected
asymptotic value; all descriptive measures which can answer clinical questions related to
quantitative analysis of growth patterns. Results suggest that our proposed framework provides
descriptive and quantitative information on growth trajectories that can be interpreted by clinicians
using natural language terms that describe growth. Statistical analysis of regional differences
between anatomical regions which are known to mature differently demonstrates the potential of
the proposed method for quantitative assessment of brain growth and differences thereof. This will
eventually lead to a prediction of white matter diffusion properties and associated cognitive
development at later stages given imaging data at early stages.
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Introduction

Improved understanding of typical brain development during infancy, an interval
characterized by rapid sculpting, organization and vulnerability to exogenous influences, is
of a great importance both for clinical and scientific research. Many neurobehavioral
disorders have their origins during neurodevelopment (Gilmore et al., 2010; Huppi, 2008).
Establishing a normative model of early brain development is a critical step to understanding
the timing and potential mechanisms of atypical development and how intervention might
alter such trajectories and improve developmental outcomes (Als et al., 2004; Marsh et al.,
2008). Once normative models are available, they can inform research and practice
concerning children at risk for neurodevelopmental disorders and may eventually lead to
earlier and improved diagnosis and treatment. Longitudinal trajectory-based studies provide
a better understanding of human brain development compared to cross-sectional studies
(Karmiloff-Smith, 2010). In cross-sectional data, calculation of the average trajectory may
not be representative for the growth patterns of individual subjects as this approach is
inherently insensitive to individual developmental differences and cohort effects (Gogtay et
al., 2004). Cross-sectional analysis might falsely report magnitude of changes over time or
may fail to detect changes (Casey et al., 2005).

Growth modeling from longitudinal data, on the other hand, makes use of sets of individual
temporal trajectories which results in significantly improved models of growth and growth
variability, as longitudinal studies can differentiate between cohort and age effects (Diggle
etal., 2002).

Previous imaging studies of early brain development have substantially contributed to our
current understanding of brain development. Some of the studies considered size or shape
differences (Huppi, 2008; Knickmeyer et al., 2008; Xu et al., 2008; Xue et al., 2007), others
have looked at changes of contrast in MRI (Sadeghi et al., 2010) or diffusion parameters in
DTI (Gao et al., 2009; Geng et al., 2012; Hermoye et al., 2006; Huppi et al., 1998;
Mukherjee et al., 2002; Sadeghi et al., 2012). However, most of these studies are based on
cross-sectional data or children older than 2 years (Dubois et al., 2008; Faria et al., 2010;
Gao et al., 2009; Hermoye et al., 2006; Mukherjee et al., 2002). In this study we focus on
developing longitudinal models spanning birth to about two years of age. The models are
based on the parameters obtained from diffusion tensor imaging (DTI). DTI-derived
diffusivity parameters provide relevant information about the maturation of the underlying
tissue as they assess water content (Huppi, 2008). These measurements are a possible
reflection of axonal density and/or degree of myelination (Neil et al., 1998; Song et al.,
2002) which correlate with cognitive functions (Dubois et al., 2006) and early
developmental outcomes (Als et al., 2004; Ment et al., 2009; Wolff et al., 2012). In this
study we focus on fractional anisotropy (FA), mean diffusivity (MD), radial (RD) and axial
diffusivity (AD) to explain brain maturation and to gain a better understanding of white
matter development. Driven by earlier findings that myelination follows a nonlinear spatio-
temporal pattern (Dubois et al., 2008), our goal is to capture these changes in terms of the
parameters of the Gompertz function which provides an intuitive parameterization
representing delay, growth, and asymptotic values for each region.

In contrast to previous studies, we use an explicit growth function (the Gompertz function)
and a nonlinear mixed effect modeling scheme (Pinheiro and Bates, 2000). In a nonlinear
mixed effects model, the diffusion parameters are modeled in a hierarchical fashion, with
fixed-effect representing the overall population trend, and random effect associated with
each individual. Nonlinear mixed effect models are suited for longitudinal data where each
subject has repeated scans with the possibility of missing data points and uneven spacing
between scans of all the individuals in the group. Unlike most previous studies of early brain
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development, we make use of longitudinal imaging where each subject is imaged repeatedly
over the first few years of life. This enables a more accurate characterization of
developmental pattern (Giedd et al., 1999). Nonlinear mixed effect model provides a direct
way of estimating individual trajectories along with longitudinally derived typical
developmental curves as illustrated in Fig. 2. This leads to the characterization of a
normative model for healthy developmental patterns and estimation of personalized,
individual trajectories of growth, which is a property that will be desirable for comparison
and diagnostic assessment of individual subjects.

We apply our analysis framework to a set of white mater regions that are known to have
different patterns of growth to establish normative developmental patterns for each region.
Quantitative analysis of diffusion changes in these regions provide further insight into brain
maturation process and will enable prediction of subject-specific growth trajectory with the
potential of detecting pathological deviation related to brain disorders.

Materials and methods

Subjects

This study was approved by the Institutional Review Board of the University of North
Carolina School of Medicine. Children analyzed in this study are controls in an ongoing
longitudinal study of early brain development in high risk children (Geng et al., 2012). A
total of 26 control subjects were selected for this study. Scans of these subjects were
obtained at around two weeks, 1 year and 2 years. Four of the subjects had sub-optimal
scans at 1 year that were removed, but their scans for other time points were kept. In total,
we used 59 datasets, the temporal distribution of scan data is shown in Table 1. To ensure
maximal success rate of scanning, all subjects were fed, swaddled and fitted with ear
protection. All subjects were scanned without sedation during their natural sleep.

Image acquisition and data processing

All images were acquired using a 3 T Allegra head-only MR system using a single shot
echo-planar spin echo diffusion tensor imaging sequence with the following parameters:
TR=5200 ms, TE=73 ms, slice thickness of 2 mm and in-plane resolution of 2x2 mm2. One
image without diffusion gradients (b=0) along with 6 gradient directions with a b-value of
1000 mm?3/s were acquired. The sequence was repeated 5 times for improved single-to-noise
ratio. All DWIs were checked and corrected for motion artifacts using the DTIChecker tool.
1 Tensor maps were calculated for each DTI scan using weighted least squares tensor
estimation on the images that have been averaged over sequence repeats (Salvador et al.,
2005). T2-weighted structural images were obtained using turbo spin echo sequence with
TR=7 s, TE=15 and 90 ms, slice thickness of 1.95 mm and in-plane resolution of 1.25x1.25
mm?2. T2W and baseline DWI of all the subjects' scans were skull stripped using Brain
Extraction Tool (BET) (Smith, 2002).

Due to significant contrast changes in early brain development, we utilized two registration
frameworks: one for intra-subject and inter-modality registration, and the other for inter-
subject registration. For inter-subject registration, we applied the unbiased atlas building
framework of Joshi et al. (2004) based on the Large Deformation Diffeomorphic Metric
Mapping (LDDMM) (Miller et al., 2002) to the set of T2W images of scans at year 1 to
obtain spatial mappings between all subjects through the estimated atlas coordinate system.
Intra-subject registration was performed by IRTK software, using affine and nonlinear
registration method of Rueckert et al. (1999) using normalized mutual information as the

1http://wvvw.ia.unc.edu/dev/downIoad/dtichecker.
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image match metric (Studholme et al., 1999) that appears robust to changing contrast
properties in early brain development.2 All time points of each subject are registered to the
unbiased atlas via linear and non-linear transformations, first by mapping these images to
the year 1 scan and then cascading the two transformations for a mapping to the atlas.
Details on the registration methods and parameters are summarized in Appendix A. The
tensors are registered to the atlas using transformations obtained by registering the DTI
baseline (B0) images to T2W images. Tensors are resampled using finite strain reorientation
and Riemannian interpolation (Alexander et al., 2001; Fletcher and Joshi, 2007; Pennec et
al., 2006). After all the images are transformed into the atlas space, the tensors are averaged
using the log-Euclidean method to produce a tensor atlas (Arsigny et al., 2006). In this
study, we extract the mean, axial, radial diffusivity, and fractional anisotropy features from

. . A+ A2+ A3 A2+A43
the registered tensors, MD=T, AD=\,, RD= > and

PA- \E Vi = 1)+ = 23)°+(12 = A3)°

JAHB+ where A are the eigenvalues of the tensor
sorted from largest to smallest. Fig. 1 shows an overview of our method and analysis
workflow.

Nonlinear mixed effects model

In this subsection, we describe the nonlinear mixed effects model used to analyze the
longitudinal DTI data. Compared to a nonlinear least squares (NLS) method, a nonlinear
mixed effects (NLME) model does not assume that the sample data points are independent
and identically distributed, rather it assumes that there is correlation across repeated
measurements. Also, the average trend estimated based on the mixed effect model is an
average of individual trajectories rather than a least squares fit to the individual data points.
This results in better representation of trajectories in the population as illustrated in Fig. 2.

Model formulation

In the mixed effects model, the observed data is a combination of fixed effects which are
parameters associated with the entire population or a sub-population, and random effects
which are parameters associated to an individual. In the nonlinear mixed effect models,
some or all the parameters appear nonlinearly in the model. We use the NLME model
proposed by Lindstrom and Bates (1990) where each individual's observation is modeled as:

yijzf(¢i, l‘ij) +eij i=1,....M;j=1,...,n; (@)

where 7indexes the individual subjects and jindexes the time points, M is the number of
individuals, n;is the number of observations on the th individual, fis a nonlinear function
of the covariate vector (time) £;and parameter vector g;; and 6','/~;N(0,02) isani.i.d. error
term. The parameter vector can vary among individuals by writing ¢;as

¢,'=Aiﬁ+Bibi b,’ ~ N(O, l,l’) (2)

where Bis a p-vector of fixed effects, and b;is a g-vector of random effects associated with
individual 7with variance-covariance y. A;and B;are identity matrices for our study.

2http://www.doc.ic.ac.uk/~;dr/software.
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The function fcan be any nonlinear function. Since early brain development is characterized
by rapid initial development which slows down in later years, it is preferable to use growth
functions which reflect these properties. One such growth function is the Gompertz function
which can be written as:

y=asymptote exp (—delay exp (—speed 1)) (3)

The effects of varying the three parameters asymptote, delay and speed of the Gompertz
function are shown in Fig. 3, for a function that decreases as time progresses.

To use the Gompertz function in the nonlinear mixed effect model, we apply the following

formulation where the Gompertz function is parameterized as y=f (¢, #) =¢1exp {—¢2¢§},
where ¢; denotes asymptote, ¢, is delay, and g3 is exp(—speed). Combining the nonlinear
mixed effect model with the Gompertz function, each observation can be represented as
follows:

wi=f (¢,~, lij) +eij=¢1:exp {—¢zi¢§§} teij  (4)

where the mixed effects are p=[o1 g0 03] =5+ b;, the fixed effects are S=[B1553]7, and the
random effects for each subject 7are b;=[by6,;0]”. We set one of the random effects to
zero to reduce the number of random effects in the model. As we only have a maximum of
three time points per subject, including an additional random effect may cause the matrix
to be rank-deficient (singular) and thus create problems in the estimation of the parameters.

Model estimation

Different methods have been proposed to estimate the parameters as shown in Eq. (4). Since
random effects are unobserved quantities, we use the marginal density of responses yto
obtain the parameters of the nonlinear mixed effects model. The following maximum
likelihood estimation is performed to obtain the parameters of Eq. (4):

vip (vilB.w. %) = [p (vi. |8 bin v, 02) pbi)dbi. (5)

Due to nonlinearity presented in the random effects of function 7, there is generally no
closed form solution to the integral. Here, we use the estimation method proposed by
Lindstrom and Bates (1990) using the nlme package (Pinheiro et al., 2012) in R3 to obtain
the model parameters. This algorithm iterates between two steps: a penalized nonlinear least
square step and a linear mixed effects step until convergence.

Inference and predictions

Under the linear mixed effects approximation, the distribution of maximum likelihood
estimators g of the fixed effect is:

-1
(6)

M 1
SFYR

i=1

E~N(ﬁ,a2

3http://r—project.org.
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~ = Ofi o~ = Of =~
I+ A ANTFT 3 Yipmp 7 _9)im g ) o
where ZFHZ’A ATZXi BT IB bi,Z abT [B b’, and A is the precision factor such

that w1 = 6=2A 7A (Pinheiro and Bates, 2000). Knowing fixed parameters  and its
sampling distribution, it is straightforward to conduct hypothesis testing among different
regions or between healthy and/or at-risk populations. We can also obtain individual growth
trajectories based on the estimated random effects for each individual. For example, the
individual response for subject 7is yi*= B+ b; t), and the population growth trajectory is
estimated when random effects are set to their mean value, 0, resulting in y=Ag, t).

Regional analysis of longitudinal data using NLME

Results

We use the nonlinear mixed effects to model the longitudinal DTI data within anatomical
regions and perform hypothesis testing between trajectories of these regions. Maps of these
anatomical regions were developed and disseminated by Mori et al. (2008), and mapped to
our unbiased atlas via linear followed by nonlinear B-spline registration (Rueckert et al.,
1999). We select 13 anatomical regions in the atlas space as shown in Fig. 4. In this study,
left and right regions of anatomical locations are combined, giving a total of eight regions.
Future studies on lateralization of growth differences will analyze left and right regions
separately. The labeling of regions in the atlas space allows automatic partitioning of each
subjects’ scans into the different anatomical regions. We then estimate growth trajectories
for these regions using the NLME model (Lindstrom and Bates, 1990) described previously.
The mixed parameters are the asymptote g1, delay ¢, and speed g3 of the Gompertz function
for each region, which requires a slight modification to Eq. (4) to account for regions:

yrij=f (¢ri’tij) +eij=¢1riexp{_¢2ri¢3ri’ij}+eij~ %)

We then conduct hypothesis testing between pairs of regions to determine modes of
longitudinal changes in terms of the Gompertz growth parameters. With A/number of

. NN-1) . . .
regions, we perform ———— pairwise fitting of nonlinear mixed effect modeling. The
significant parameters are determined through t-tests, corrected for multiple comparisons by
Bonferroni correction. The parameters that are found to be significant between two pairs of
regions can be interpreted as the distinguishing feature between the longitudinal trajectories
of these regions.

We applied our framework to longitudinal pediatric DTI data of 26 subjects. In total, we
selected 13 regions in the unbiased atlas as shown in Fig. 4. The regions are as follows:
anterior limb of internal capsule (right and left; ALIC), posterior limb of internal capsule
(right and left; PLIC), genu, body of corpus callosum (BCC), splenium (Sp), external
capsule (right and left; ExCap), retrolenticular part of internal capsule (right and left; RLIC),
and posterior thalamic radiation which includes optic radiation (right and left; PTR). The
right and left of each anatomical region were combined giving a total of eight regions. Fig. 5
plots the average FA, MD, RD, and AD of each region for each subject. In all the regions,
FA increases with age, whereas MD, RD and AD decrease with age. Interestingly, each
region develops in a distinctly different temporal pattern.

Paired t-tests of growth trajectories were performed for all combination of pairs of regions
for all the diffusion parameters. The results of all pairwise comparisons can be found in
Table 3 in Appendix B. Differences in parameters £; and B, were significant between most
pairwise comparisons among diffusion parameters, whereas B3 was only significant in a few
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regions: genu, splenium, and body of corpus callosum, and mostly when considering the RD
or MD measurements. Genu was the only structure that was significantly different than all
the other regions in the B3 parameter of RD and MD. This region decreased in MD and RD
at a slower rate compared to all the other regions. We didn't find any pattern that was
consistent among different parameters and different measurements since each parameter
measures a different aspect of growth. Interestingly, we noticed some pairwise comparisons
with significant differences in B, parameter between AD and RD trajectories, but no
differences in MD (ALIC vs. PLIC, Genu vs. ExCap). This happens when reverse temporal
patterns are seen for AD and RD, suggesting that analysis of AD and RD may reveal much
better insight into maturation than MD alone.

In this section, we focus on PLIC/ALIC, body of corpus callosum (BCC), and splenium
comparisons as examples of commissural and projection fibers. These regions are known to
have a distinctive maturation pattern and axonal density. The PLIC is one of the structures
that shows early myelination, while ALIC shows later maturation compared to PLIC as is
shown in higher FA, and lower RD and MD. Fig. 6 shows the population and individual
trajectories of FA, MD, RD and AD as modeled by Nonlinear Mixed Effect for ALIC/PLIC.
As expected, the PLIC shows a higher FA compared to ALIC at birth mainly explained by
lower RD. After about 800 days both regions have the same MD and similar FA and RD
values. However, the ALIC shows a higher AD compared to PLIC, possibly indicating a
different structuring of this tract region. The delay parameter of the Gompertz function 5,
was significantly different between ALIC and PLIC for FA, MD, and RD measurements, an
indication of later development of ALIC compared to PLIC. Also, the asymptote B; was
significantly different for FA, RD and AD.

The body of the corpus callosum (BCC) and splenium (Sp) are known to have very limited
myelination at birth but higher axonal density compared to ALIC and PLIC, and the
splenium shows earlier myelination compared to BCC (Rutherford, 2002). Fig. 7 shows
population and individual growth trajectories for the body of the corpus callosum and
splenium. The splenium shows higher FA at birth and also throughout the first two years,
while RD is about same at birth, but diverges at two years. Reverse patterns are seen for AD
and RD at about two years, which causes MD to be about the same. All three parameters of
the Gompertz function for RD were significantly different between BCC and Splenium,
suggesting that RD may capture early maturation patterns more sensitively than the other
measures. The asymptote parameter was significantly different among all the measurements
between these two regions.

Fig. 8 shows FA, RD and AD of PLIC (shown in blue) compared to the other three regions
ALIC, BCC, and Sp (shown in red). In this figure, solid lines are the average estimated
growth trajectories for each region, the shaded regions are the 95% confidence interval of
these average curves. Monte Carlo simulation was used to generate 1000 curves based on
the approximate distribution of the maximum likelihood estimates of fixed effects. The 95%
range of these curves are calculated pointwise to obtain the confidence interval. The dashed
lines show the 95% predicted interval which is also calculated based on the Monte Carlo
simulation of 1000 curves based on the approximate distribution of both fixed effects and
random effects.

The splenium shows a high RD at birth relative to PLIC, by about 800 days however, both
regions have approximately the same RD value as shown in Fig. 8. The splenium has very
limited myelination at birth, while the PLIC is known to have a higher level of myelination
at this time of development. These facts are evident in the difference in RD at birth between
splenium and PLIC. At age two, however, the splenium shows approximately the same RD
value, indicating that it catches up with PLIC.
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The values of Gompertz parameters for all the regions and all diffusivity measures are
shown in Fig. 9. Each region shows a distinct pattern of development as is depicted by the
B, B, and Bz parameters of Gompertz function. As indicated in the section ‘Model
formulation’ the parameters S, B>, and B3 represent asymptote, delay and speed,
respectively. When B1:R4 >Rp, the expected value of diffusion parameters for region A is
higher than region B at year 2. When S,:|R4>|Rgl, region Rgmatures earlier compared to
R4. The scenario B3:R4>Rpgindicates accelerated growth for Rgcompared to /4. Note that
the delay parameter is negative for RD, AD and MD measurements as these values decrease
during early brain development, where as the delay parameter is positive for FA as fractional
anisotropy increases during this time period.

Discussion

Assessment of brain growth patterns in these regions reveals a nonlinear pattern of
maturation with considerable regional variation as shown in previous studies (Hermoye et
al., 2006; Mukherjee et al., 2001; Schneider et al., 2004). In agreement with previous
studies, increased FA and decreased MD, AD, RD were observed within all the white matter
regions during this period (Forbes et al., 2002; Mukherjee et al., 2001; Schneider et al.,
2004; Zhang et al., 2005). This longitudinal pediatric study supports a rapid change during
the first 12 month followed by slower maturation during the second year similar to previous
studies (Geng et al., 2012; Hermoye et al., 2006). Our study, in addition to supporting earlier
cross-sectional reports on negative correlation between age and diffusion parameters,
provides greater statistical power to examine nonlinear pattern of maturation in various
white matter regions.

Beyond the analysis of FA and MD measurements, in this study we included RD and AD
analysis of these white matter regions. The regional comparisons of white matter regions
indicates that individual AD and RD carry important information which may not be found in
the MD diffusivity measures. The relationship of AD/RD and FA is complex and nonlinear,
but our data suggest that modeling FA, AD, RD as time trajectories provides more
information than only FA as illustrated in Figs. 6 and 7.

For example, FA of splenium and PLIC are approximately the same values at birth, yet we
know that the splenium is not myelinated at birth, and we see the significant differences of
RD between these regions. The high FA value of the splenium at birth may be due to its high
density of axons. This discussion of FA for PLIC and splenium clearly reflects that FA is not
necessarily a good indicator for the degree of myelination and may be greatly influenced by
axonal density particular to this developmental interval (LaMantia and Rakic, 1990). In
contrast, the similarity of FA trajectories for PLIC and splenium, for which we see very
different AD and RD patterns and thus different tensor shapes, illustrates that interpretation
of FA with respect to myelination and structural integrity is difficult, and that the additional
AD and RD measures provide richer information.

Modeling the nonlinear growth changes of white matter by the Gompertz function and
inclusion of AD and RD to the analysis provides a more detailed and comprehensive picture
of the changes within these white matter regions. Compared to previous studies of linear
fitting with logarithm of age (Chen et al., 2011; Faria et al., 2010; Lobel et al., 2009) we fit
the nonlinear growth curves (Gompertz function) to the diffusion data and actual age, this
enables the parameterization of the trajectories in terms of asymptote, delay and speed and
models nonlinear temporal changes with improved accuracy. Based on our finding, the delay
parameter of the Gompertz function, S of RD seems to be closest related to myelination
process if we compare results to what is known from the literature. Looking at RD and 5,
delay parameter of the Gompertz function as is shown in Fig. 9, we see a good
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correspondence with previous radiology findings, suchas in Rutherford (2002). In fact, RD
has been considered to be in correspondence with histological changes in demyelination
(Song et al., 2002). Table 2 compares our findings versus existing knowledge from
radiology literature, which indicates development of PLIC prior to ALIC, and splenium
prior to genu which is also consistent with previous histological findings (Brody et al., 1987;
Kinney et al., 1988).

Our framework is designed not only to provide qualitative comparisons, but to give
researchers and clinicians quantitative parameters and a statistical testing scheme. Moreover,
the method includes modeling of growth trajectories of individuals, resulting in personalized
profiles. This property will be crucial for efforts to improve prediction and diagnosis for
individuals, as well as partitioning groups of subjects according to subtypes and subtle
variations in early developmental trajectories. Models which assume invariance or linearity
between neurobehavioral markers are apt to miss crucial shifts in development (Shaw et al.,
2006; Thomas et al., 2009). The ability of the present framework to capture the dynamic
properties of inter- and intra-individual development has the potential to substantially
improve clinical applications of developmental neuroimaging.

There are some limitations to our proposed framework. Our analysis depends on accurate
image registration among all the subjects and time points. Early brain development is
characterized by a rapid change of contrast and size of the brain, which makes registration a
challenging task. However, in this study we decided to use ROI defined regions which we
expect to be more robust to misregistration compared to voxel-based analysis, and these
regions are located more interiorly where we expect less registration problems. Nonetheless,
improved spatial registration will potentially improve the accuracy of the model. Another
limitation is that the statistical analysis is based on the log-likelihood of nonlinear mixed
effects modeling, which does not have a closed form solution. We have used a linear mixed
effect approximation, so greater care should be taken when doing hypothesis testing with the
estimated parameters.

In the future, we plan to extend our method to tract-based regions with modeling along the
tract changes. We also plan to extend the model to multivariate growth function similar to
(Xu et al., 2008) and include a much larger set of regions for analysis.

Conclusions

We have presented a framework for the processing of longitudinal images in order to
characterize longitudinal development of white matter regions at both the individual and
group level. By utilizing nonlinear mixed effects modeling, we jointly estimate the
population trajectory along with each individual trajectories. Gompertz parameterization of
diffusion changes provides an intuitive parameterization of growth trajectory in terms of
asymptote, delay and speed. This provides a description of longitudinal changes with
potential for detecting deviations from a typical growth trajectory sensitive to multiple
neurodevelopmental phenomena. We have also presented a method for making inference
about regional differences in diffusion properties known to vary by microstructural
properties and developmental course (Dubois et al., 2008; Kinney et al., 1988; LaMantia and
Rakic, 1990; Lebel and Beaulieu, 2011). This is in contrast to standard modeling and
analysis of testing for group or regional differences as it reveals the type, timing, and nature
of differences. The proposed analysis can be extended to an arbitrary number of regions, and
applied to other measurement such as structural MRI.

As discussed in the previous section, the present study clearly illustrate that studying FA
alone as an indicator of white matter maturation or integrity insufficiently characterizes
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structural properties of white matter and may produce misleading results as regions with
very different axonal density and differing degrees of myelination may show similar FA
values. We suggest that in addition to FA, studies should include statistical analysis of AD
and RD, which provide important additional information to better explain FA measures. In
regard to early maturation, we demonstrate that the radial diffusivity (RD) measure and the
delay parameter B, of the Gompertz function seem to be the best combination to describe
early brain maturation. We will further explore this in applying our framework to DTI of
infants with developmental delay and myelination storage disorders such as Krabbe's
disease.
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Appendix A:

Summary of registration parameters

Intra-subject and inter-modality registration

We use the IRTK software (Rueckert et al., 1999) to perform intra-subject and inter-
modality registration. The registration method is a multi-scale approach using B-spline
transformation, where we use the normalized mutual information image match metric. We
use three different scales and discretize the image intensity histograms into 64 bins. In this
study, the B-spline transforms are parametrized using 14x14x14 control points.

Inter-subject registration

We construct an unbiased atlas (Joshi et al., 2004) and the associated inter-subject
registration using the Large Deformation Diffeomorphic Metric Mapping (LDDMM) (Miller
et al., 2002) that minimizes the following objective function:

1

— 2 T 2

. -1

argmin— > [T=Log; '+ > [_,IVill

Vid=vi(¢) O-ZZ ! . Z =0 ! (8)
L

where T is the image atlas, /;is the image of subject / ¢;is the mapping relating subject /to
the atlas that is parametrized using the velocity v; Regularity of the mapping ¢ is enforced
by minimizing

[vel2=(Lv, vy, L=aV*+B8V+yl  (9)

where L is the Navier-Stokes operator. In this study, we use a.=.01, f=.01, y=.001, and
o=1.
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Appendix B:

Summary of p-values of pairwise comparisons

Page 11

Table 3 provides the result of pairwise testing of all white matter regions and all the
diffusivity measurements.

Results of pairwise testing of all white matter regions and all diffusivity measures.

Table 3

Gompertz parameters with significant differences are denoted by * for p<.05 and ** for p<.
01. Non significant parameters are indicated by “ns”.

Alic Plic Genu BCC Sp ExCap Rlic PTR
Alic FA ’ ns «
BBy B B B By B>
MD NA « « * * *
By By B; By BBy By BB, i
BB BB By B B> BB By BB
AD ; ns ns . R e -
By By BBy B85 By
Plic FA . N " ns
BBy B85 BBy By B BBy
MD NA ; ¢ " * . 5
By By PBs By"\B, BBy BBy BBy Bi
RD ke sk £ sk sk £ £ £ ek EEd ok
Bi B, BBy . B3 Bi B B B.5; B
AD ; § ns ; s § ns
By B85 B, B, BBy BBy
Genu FA . " N " " *
B BB By, BB BBy BBy By
By By By By BB By By B5 Bs B!
BB By BBy B BBy By By BBy By BB B!
AD ns ns ) ns
BBy B BB B B
BCC FA ) . * * %
Bl BBy B By BBy By B
MD " s ; ] NA ; " " ns «
Bi BBy By B BB, By B,
BT BJ];* BT*7B;*7B_’*’,* ﬁT*’B; »ﬁ’jf ﬁT* BT*»B;*aﬁg* BT »ﬁ
AD ns ns ns ) ns ns
IBT* Bl*,ﬁz*
Sp FA " " ¢ % %
B By BB By BBy B B!
MD . o " . ; o NA s - o
BBy BBy Bs" B".B; BBy B B,
RD kk k% k% k% kk %k ok k% kK k% kK (
ﬁz BZ ﬂ} ﬂ] 7B2 9B3 ﬁ] ,ﬁz B] »BZ ﬁ] nl
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Population growth models, represented as black curves, obtained using nonlinear least
squares (NLS) in a cross-sectional fashion (left) and nonlinear mixed effect modeling
(NLME) via longitudinal analysis (right). Colored points represent data observations, and
colored curves represent the individual growth trajectories. Note that given the same data
points, cross-sectional analysis provides a very different result than longitudinal analysis.
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f(B.t)
f(B.t)

Fig. 3.

Effect of varying the three parameters of the Gompertz function. The red curve shows the
reference curve where parameters are held fixed. Left to right: the dashed blue curves show
the effect of increasing values of 81, £, and B3 associated with asymptote, delay and speed,
respectively.
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White matter anatomical labels that are used for regional analysis. Labels are overlaid on the

FA (Fractional Anisotropy) map of the reference space that is the population atlas.
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Plots of diffusivity measures (FA, MD, AD and RD) versus age, shown for 26 control
subjects and eight regions. Colors indicate different regions (purple: ALIC, light green:
ExCap, brown: Genu, blue: PLIC, dark green: PTR, red: RLIC, yellow: Sp, orange: BCC),
solid lines connect the mean of each region. In all the regions, FA increases with age,
whereas MD, RD and AD decrease with age. Interestingly, each region develops in a

distinctly different temporal pattern.
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Fig. 6.

Population and individual growth trajectories for PLIC and ALIC regions. Thicker curves
illustrate the average growth trajectories, and individual trajectories are shown via the red
and blue functions of individual subjects for ALIC and PLIC, respectively. Gompertz
parameters with statistically significant differences are:

FA:BY, 8y, MD:B5", RD:BY", B5", AD:3}, where * denotes p<0.05, ** denotes p<0.01 and
where 81, B, and B3 represent asymptote, delay and speed.
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Fig. 7.

Population and individual growth trajectories for the body of the corpus callosum (BCC,
blue) and the splenium (Sp, red). Thick curves are the average growth trajectories. Gompertz
parameters with significant differences are: FA:57", 85", MD:g5", RD:57", 85°, AD g}, where *
denotes p<0.05, ** denotes p<0.01, and S, B> and B; represent asymptote, delay and speed,
respectively.

Neuroimage. Author manuscript; available in PMC 2014 March 01.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Sadeghi et al.

Page 23

PLIC (blue) vs. ALIC (red) PLIC (blue) vs. Sp (red) PLIC (blue) vs. BCC (red)
@ | @ | @
S S S
© | © | ©
< © < © < ©
W wo wog
=N =R =
o o o
o o (=]
200 400 600 800 200 400 600 800 200 400 600 800
Age (days) Age (days) Age (days)
22 22 2
I S I S B
£ S £ 2 €
E”° E®° E
g s g g
8 s
<3 S
e T T T T ° T T T
200 400 600 800 200 400 600 800
Age (days) Age (days)
232 @
B B
£ 2 £
E®° E
Q )
< § <
° T T T T T T T T T T
200 400 600 800 200 400 600 800 200 400 600 800
Age (days) Age (days) Age (days)
Fig. 8.

PLIC (blue) compared to three other regions. Left column: ALIC (red), middle column
splenium (red) and right column BCC (red). Solid curves are the estimated growth
trajectories, the 95% confidence interval of the curves are shown as shaded regions. The
dashed lines show the 95% predicted intervals for each region. Gompertz parameters with
statistically significant differences are the following: ALIC vs. PLIC:

FABY, B RD:B, 35, AD:B.PLIC vs. Sp: FA:85", RD:85, AD:87", 85.. PLIC vs. BCC:
FA:BT*, 85", RD B}, where * denotes p<0.05, ** denotes p<0.01 and where 8, £, and 53

represent asymptote, delay and speed, respectively.
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RD - B3 parameter
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Gompertz parameters RD, AD, MD and FA, from top to bottom. Left to right: 8, is the
asymptote parameter of the Gompertz function (blue), B is the delay parameter (green), and
B3 is related to the speed (purple). The delay parameter is negative for RD, AD, and RD as
the estimated model represents a decreasing Gompertz function, whereas the FA delay
parameters are positive since FA values increase during development. When g1: R 4>Rp, the
expected value of diffusion parameters for region A is higher than region B at year 2. When
Bo:|Ral>|Rg, region Rgmatures earlier compared to R4. B3: R4> R indicates accelerated

growth for Rgcompared to Ra.
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Distribution of scans across different time points. AVindicates the number of subjects with the associated

temporal pattern.

Table 1

Available scans

Neonate scan only

1 year scan only

2 year scan only
Neonate+1 year scan
Neonate+2 year scan
1 year+2 year scan

Neonate+1 year+2 year scan
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Table 2

Relative order of appearance of myelin from term to 2 years.

Distribution of myelin asseen in TIW and T2W by Rutherforld  Estimated based on RD delay parameter B,

PLIC and optic radiation
ALIC

Not available

Splenium

Genu

PLIC, PTR and ExCap
ALIC and BCC

RLIC

Splenium

Genu
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