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Abstract

A crucial question for the analysis of multi-subject and/or multi-session electroencephalographic

(EEG) data is how to combine information across multiple recordings from different subjects

and/or sessions, each associated with its own set of source processes and scalp projections. Here

we introduce a novel statistical method for characterizing the spatial consistency of EEG dynamics

across a set of data records. Measure Projection Analysis (MPA) first finds voxels in a common

template brain space at which a given dynamic measure is consistent across nearby source

locations, then computes local-mean EEG measure values for this voxel subspace using a

statistical model of source localization error and between-subject anatomical variation. Finally,

clustering the mean measure voxel values in this locally consistent brain subspace finds brain

spatial domains exhibiting distinguishable measure features and provides 3-D maps plus statistical

significance estimates for each EEG measure of interest. Applied to sufficient high-quality data,

the scalp projections of many maximally independent component (IC) processes contributing to

recorded high-density EEG data closely match the projection of a single equivalent dipole located

in or near brain cortex. We demonstrate the application of MPA to a multi-subject EEG study

decomposed using independent component analysis (ICA), compare the results to k-means IC

clustering in EEGLAB (sccn.ucsd.edu/eeglab), and use surrogate data to test MPA robustness. A

Measure Projection Toolbox (MPT) plug-in for EEGLAB is available for download

(sccn.ucsd.edu/wiki/MPT). Together, MPA and ICA allow use of EEG as a 3-D cortical imaging

modality with near-cm scale spatial resolution.
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1.1 Introduction

Because of the very broad biophysical point-spread function governing volume conduction

of areal potentials generated in the human brain to scalp electrodes measuring their summed

electroencephalographic (EEG) activity, proper analysis of event-related or ongoing EEG

dynamics should best focus on EEG source activities and corresponding (3-D) brain source

locations rather than on scalp channel activity records and (2-D) channel locations.

Comparing 3-D source locations and source dynamics across subjects and sessions of an

EEG study is, however, more difficult that simply equating scalp channel locations across

subject and sessions, as is typical in EEG studies that analyze the scalp channel signals

directly.

Here we introduce a probabilistic approach, Measure Projection Analysis (MPA), for

population-level inference from source-resolved EEG signals. This approach provides, for

each EEG measure of interest, 3-D maps of separable brain domains with separable source

measures plus statistical estimates of measure differences across group and/or conditions.

Although source-level locations and dynamics used in MPA might be derived from any EEG

source discovery method, e.g., beamforming or trial-averaged event-related potential (ERP)

source analysis, we here demonstrate its application to an example EEG study decomposed

using independent component analysis (ICA) and compare its results to those of the PCA-

based independent component (IC) clustering available in EEGLAB (Delorme & Makeig,

2004).

ICA (Bell and Sejnowski, 1995) has become a method of widespread interest for analysis of

EEG data (Makeig et al., 1996), (Makeig et al., 1997), (Lee et al., 1999), (Jung et al., 2001),

(Makeig et al., 2002). In this approach to EEG source analysis, unaveraged continuous or

epoched EEG data from multiple scalp channels are decomposed into independent

component (IC) processes by learning a set of spatial filters that have fixed relative

projections to the recording electrodes and produce maximally independent individual time

courses from the data. ICA thus learns what independent processes (information sources)

contribute to the data and also reveals their individual scalp projection patterns (scalp maps),

thereby simplifying the EEG inverse source localization problem to that of estimating where

each source is generated, a much simpler problem than estimating the source distributions of

their ever-varying linear mixtures as recorded by the scalp electrodes themselves.

The IC filters linearly transform the representational basis of EEG data from a channel

matrix (scalp channels by time points) to a sum of independent component processes with

maximally independent time courses and fixed scalp projections (scalp maps, with often

strongly overlapping topographies). Many ICs predominately account for the contributions

to the channel data from a non-brain (`artifactual') source process -- for example potentials

arising from eye movements, scalp muscle activity, the electrocardiogram, line noise, etc.,
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while many other ICs are compatible with a source within the brain itself, in particular

within its convoluted cortical shell in which most of the spatially organized potentials

reaching the scalp are generated (Nunez and Srinivasan, 2006).

Many of the brain-based (`non-artifactual') IC scalp topographies may be modeled as the

projection of a single equivalent dipole inside the brain volume (Makeig et al., 2002). ICA

algorithms return many such `dipolar' IC data sources (those for which most of the spatial

variance of the electric field pattern they produce on the scalp is accounted for by the

projection of a single `equivalent' dipole). On average, the more independent the resulting

ICs returned by an linear ICA decomposition method, the more near-dipolar ICs are returned

(Delorme et al., 2012). Such dipolar ICs are compatible with an origin in locally-

synchronous cortical field activity within a single cortical patch, which by biophysics must

be located near to and oriented predominantly perpendicular to the equivalent dipole

(Scherg, 1990) (A few clearly brain-based ICs may have scalp maps very closely resembling

the summed projection of two bilateral cortical patches that contribute synchronous activity

to the scalp signals).

Finding the actual cortical patch (or patches) generating a given dipolar IC may be difficult

(Acar et al., 2009), as it requires (at least) a good quality MR head image for the subject and

accurately recorded scalp electrode positions (Acar and Makeig, 2010). Given a good

estimate of where the scalp electrodes were placed on the head, and a near-dipolar IC scalp

map, the location of the equivalent dipole may be found reliably, in many cases with less

than a centimeter error when 3-D electrode positions are recorded (Akalin Acar, submitted)

and an accurate skull conductance value is used in the analysis. Biophysical simulations also

show that the equivalent dipole for a cm2-scale cortical patch source is, on average, less than

2 mm from the center of the generating patch (Akalin Acar, unpublished). Thus, a unique

advantage of ICA applied to EEG is that localizing sources from its single-source IC scalp

maps avoids uncertainties associated with multiple local minima that limit the accuracy of

estimates of the more complex source distributions computed from scalp maps that sum

projections of multiple sources -- for example nearly all raw EEG scalp maps or maps for

later peak latencies in ERP waveforms. Of course this level of spatial accuracy is only

possible using single-subject head models, which are possible only when an MRI head

image is available (as it was not for our subjects). Using individual head models for

localization will make it necessary to warp the cortical locations of the multiple subjects into

a common head model to allow group Measure Projection. Results calculated, as here, using

IC locations in a common head model may well have somewhat less spatial accuracy,

though their accuracy might be improved in subject-level analysis by translating them back

to associated locations in individual subject head models, including models constructed by

warping a common template model to the recorded 3-D positions of the scalp electrodes

(Acar and Makeig, 2010). However, unless subjects are highly ethnographically diverse

(infants and adults, for example) the choice of head model is unlikely to have much effect on

the topology of the MPA results -- more anterior source domains will remain more anterior,

etc.

Since ICA uses waveform differences to separate independent sources, which depend both

on the exact placements of the scalp electrodes and the individual subject cortical
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geography, optimal separation is achieved when it is applied to data channels recorded

simultaneously from a single subject with a single scalp montage. The length of the training

data must be sufficient for the number of recording channels. Since both EEG channel

locations and conductance values slightly differ across subjects and sessions, and positions

and orientations of corresponding cortical source areas differ across subjects, ICA

decompositions are best applied separately to each recorded session or smaller data set from

a single recording session.

A standard way to analyze EEG data is to first conduct an experiment in which a number of

(outwardly) similar events occur, typically stimulus (e.g., image) presentation and

behavioral events (e.g., impulsive button presses). Sets of EEG activity epochs recorded in

some latency window around these events (experimental trial epochs) are extracted,

averaged, and compared. A number of mean measures of event-related EEG trial data have

been developed in recent years and incorporated into freely available software toolboxes

including EEGLAB (Delorme and Makeig, 2004), Fieldtrip (Oostenveld et al., 2011), the

SPM toolkit (Friston, 2007), and ICALAB (Cichocki and Amari, 2002). These measures,

including average ERP time series and event-related spectral perturbation (ERSP) (Makeig,

1993) and inter-trial coherence (ITC) time/frequency transforms, may equally be computed

for single ICs as well as for single scalp channels. For each subject session and associated

ICA decomposition, each IC has a unique scalp map and EEG time course. To support

group-level inferences about EEG measure differences across task trial conditions, subject

groups, recording sessions, etc., IC location and EEG measure information must be

integrated across subjects and sessions

In contrast to the common approach to obtaining group inferences from channel data, i.e. by

assuming equivalence across subjects of electrode derivations from standardized scalp

locations (Picton et al., 2000) (Kiebel and Friston, 2004), combining results across different

ICA decompositions is non-trivial. Several methods have been proposed for this task. These

typically fit into two categories: IC clustering (Makeig et al., 2002), (Onton et al., 2006),

(Onton and Makeig, 2006), (Spadone et al., 2012) and joint decomposition methods such as

group-ICA (Eichele et al., 2009), (Kovacevic and McIntosh, 2007), (Calhoun et al., 2009),

(Congedo et al., 2010), multi-set canonical correlation analysis (Li et al., 2009) and J-BSS

(Li et al., 2011) (Via et al., 2011).

Although the IC clustering method uses a potentially larger subspace of the signal (involving

less dimensionality reduction than most joint decomposition methods) and poses fewer

restrictive assumptions regarding the relationship between signal sources at subject and

group level, it often involves tuning multiple parameters (relative measure weights, number

of cluster, etc..), potentially reducing the objectivity of the analysis and reproducibility of

the results; for a recent approach to tackling this problem see (Spadone et al., 2012). Also, it

is often impractical to calculate the significance of IC clusters themselves, whose averages

are often used in subsequent statistical tests for measure differences across conditions or

groups.

MPA aims to solve the problem of comparing EEG source locations and dynamics across

subjects and sessions in 3-D brain space using a probabilistic approach that treats the source-
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resolved data as samples drawn from the distribution of source locations and dynamics. By

performing statistical comparisons on a grid of brain locations instead of individual sources,

and focusing on a single dynamic measure of interest at a time, MPA reduces the number of

parameters assumed in the analysis, and delivers estimates of the statistical reliability of the

results. Here we demonstrate the application of MPA by applying MPT tools to an example

EEG study, comparing its results to standard PCA-based IC clustering, and studying the

robustness of the MPA results using surrogate data.

1.2 Methods

The Measure Projection Analysis (MPA) approach introduced here comprises four steps: 1)

After decomposition of the unaveraged EEG data by ICA into brain source processes (ICs),

the location of each source signal used in the analysis is computed within a common brain

template model, here in the form of a IC source equivalent dipole. 2) Spatial smoothing of a

given dynamic measure for the equivalent dipole-localized ICs is performed using a

truncated 3-D Gaussian spatial kernel; 3) A subspace of brain voxel locations with

significant local IC measure similarity are identified (see Appendix A for a detailed

description); 4) Spatial brain voxel domains within the measure similarity subspace that

exhibit sufficient measure differences are identified using affinity clustering (details in

Appendix B).

1.2.1 Experimental data

EEG data were collected from 128 scalp locations at a sampling rate of 256 Hz using a

Biosemi (Amsterdam) Active View 2 system and a whole-head elastic electrode cap (E-Cap,

Inc.) forming a custom, near-uniform montage across the scalp, neck, and bony parts of the

upper face.

1.2.2 Subject task

Our sample study consisted of data from 15 sessions recorded from 8 subjects performing a

Rapid Serial Visual Presentation (RSVP) task (Bigdely-Shamlo et al., 2008) (the raw data

are available at ftp://sccn.ucsd.edu/pub/headit/RSVP, the EEGLAB Study files at ftp://

sccn.ucsd.edu/pub/measure_projection/rsvp_study). Each session comprised 504 4.9-s

image bursts of 49 oval image clips from a large satellite image of London presented at a

rate of 12/s. Some (60%) of these bursts contained one image in which a target white

airplane shape was introduced at a random position and orientation. Following each burst,

subjects were asked to press one of two buttons to indicate whether or not they had detected

a target airplane in the burst. Fig 1 shows a time-line of each RSVP burst. For further details

see (Bigdely-Shamlo et al., 2008).

1.2.3 Data preprocessing

After preprocessing each subject data set using EEGLAB (sccn.ucsd.edu/eeglab) and custom

Matlab functions for re-referencing, from the active-reference Biosemi EEG data to an

electrode over the right mastoid, high-pass filtering above 2 Hz, and rejection of channels

and data containing non-stereotypical artifact, an ICA decomposition was performed for

each recording session. The subset of ICs that could be represented by an equivalent dipole
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model with low error (here defined as more than 85% of channel variance in the IC scalp

map being accounted for by a single equivalent dipole or in a few cases a bilaterally

symmetric equivalent dipole pair) were selected for analysis. ICs with equivalent dipoles

located outside the MNI brain volume (e.g., those with an minimum distance to the MNI

brain surface larger than 1 mm) were removed as artifactual, and mean event-related power

spectral perturbations (ERSPs) to target and Nontarget images were computed for the

remaining 260 ICs (per session mean 18, standard deviation ± 8).

1.2.4 ERSP measure projection

Fig. 2A represents the processing pipeline schematically. To apply MPA to the RSVP study

we used a Measure Projection Toolbox (MPT) for MATLAB (The Mathworks, Inc.)

implementing MPA and operating as an EEGLAB plug-in (freely available for download at

sccn.ucsd.edu/wiki/MPT). To compare MPA results to those of IC clustering as

implemented in EEGLAB, we set the standard deviation of the three-dimensional Gaussian

representing each equivalent dipole location probability density to 12 mm. This parameter

reflected a heuristic estimation of the combined ambiguity in equivalent dipole locations

arising from a) numerical inaccuracies in the IC component maps, b) errors in co-registering

the measured channel locations with the standard brain model, c) inaccuracies in the forward

head model, d) particularly in assumed conductances of skull and brain tissues, and e)

difference across subjects in brain locations of functionally equivalent brain areas. This

standard deviation value was also chosen in part to produce smoother spatial distributions

for this rather small EEG study: for larger studies it might be usefully reduced. We truncated

each Gaussian to a radius of 3 standard deviations (36 mm) to prevent spurious influences

from distant dipoles in sparsely filled source regions.

Brain model—A cubic dipole source space grid with 8-mm spacing (3,908 vertices) was

situated in the brain volume in MNI space. Voxels outside the MNI brain volume were

excluded. Local convergence values (see Appendix A for definition) were calculated using

Eq. (A.2), A pairwise IC similarity matrix was constructed by estimating the signed mutual

information between IC-pair ERSP measure vectors using a Gaussian distribution

assumption (Darbellay and Vajda, 1999):

(1)

The reason for using an estimate of signed mutual information instead of correlation itself

was because equal correlation intervals may reflect unequal information differences. For

example, the difference in mutual information values associated with IC measure correlation

values of 0.8 and 0.9 is far greater than mutual information difference associated with IC

correlations of 0.1 and 0.2. In addition, mutual information values (in bits/sample) may be

meaningfully averaged. In switching to use of signed estimated mutual information instead

of linear correlation, we also observed an improvement in the spatial smoothness of the

obtained MPA significance values.
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A significance threshold for convergence values at each brain grid location was obtained by

bootstrap statistics. We permuted the similarity matrix (with substitution), in effect

removing the correspondence between each IC and its associated ERSP, and calculated

2,000 surrogate convergence values at each voxel associated with the null hypothesis of no

stable association between brain region and ERSP. Probability values were calculated by

finding the percentage of bootstrap convergence values larger than the original convergence

value (right-tail comparison).

A group-wise p < 0.05 threshold, corrected for multiple comparisons using False Discovery

Rate (FDR) testing (Benjamini and Hochberg, 1995), gave a raw voxel significance

threshold of p < 0.0075. Voxels with convergence probabilities lower than this threshold

defined the ERSP `measure convergence subspace' of brain voxel locations at which the

local similarity of IC ERSPs was significantly higher than what could be expected by chance

in these data.

Condition difference tests—For each identified study domain d and subject session s,

statistical significance of differences between the Target and Non-Target condition ERSPs

was computed by first projecting the ERSP associated with each condition c to each voxel i

in the domain, producing projected measure M(c, i,d). We then calculated a weighted-mean

measure W(d, s,c) across all v domain voxels, each weighted by D(i, s), the dipole density of

voxel i in session s, and then normalized by total domain voxel density.

(2)

Where

(3)

Above, n is the number of component dipoles in the session and Pj(i) i is the model

probability that dipole j is actually at domain voxel i (see Appendix A).

Next, a two-tailed Student-T test was applied to the collection of session-mean projected

measures in the two conditions to test for reliable domain-ERSP condition differences. For

visualization, non-significant (p ≥ 0.05) values in each domain condition-ERSP difference

were masked by replacing them with 0s.

1.2.5 ERSP domain clustering

To simplify the analysis of projected source measure values in the measure convergence

subspace, we separated them into several distinguishable spatial domains by threshold-based

Affinity Propagation clustering (described in Appendix B) based on a similarity matrix of

pairwise correlations between the projected measure values at each voxel position. Affinity

propagation automatically finds an appropriate number of clusters (below referred to as
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spatial domains) based on the maximum allowed correlation between cluster exemplars,

automatically increasing the number of clusters until any other potential cluster exemplar

becomes too similar to one of the existing exemplars. Here, maximal exemplar-pair

similarity (forcing creation of additional clusters) was set to a correlation value of 0.8, and

the outlier detection similarity threshold to a correlation value of 0.7. The method did not

find any outlier voxels since all of the projected measures in each domain had a correlation

with their domain exemplar higher than 0.7. The minimum correlation value is in fact an

optional parameter: one could decide to not exclude any significant voxel from domain

analysis by setting the minimum correlation threshold to negative infinity. Note that the

voxel clustering procedure does not force the voxels within a single domain to be

contiguous; for example near-identical ERSPs may be produced in bilaterally symmetric

cortical regions, which may then be identified by affinity clustering as a single measure

domain. Fig. 2A summarizes the MPA steps used to create distinguishable spatial source

domains for each EEG measure.

1.2.6 PCA-based IC clustering

In the PCA-based IC clustering approach implemented in EEGLAB (Makeig et al., 2002;

Onton & Makeig, 2006), cross-session IC equivalence classes are typically defined by

applying a clustering algorithm such as k-means to an L2-weighted combination of EEG

measures of interest (e.g., IC equivalent dipole locations, scalp-map topographies, mean

power spectra, average ERPs, etc.) so as to produce a desired number of IC clusters (10–30).

Cluster-level mean EEG measure values may then be calculated by averaging across the

members of each IC cluster, and may then be used for group-level inference and event or

task condition comparison. The default IC clustering options create a pre-clustering array

that represents each IC as positioned in a joint-measure feature space by the following

operations:

• Mean EEG measure computation: For each IC, each set of experimental trials

(experimental `condition') and each EEG measure of interest (ERP, mean power

spectrum, ERSP, and/or Inter-Trial Coherence (ITC)), subject-mean IC measure

values are computed and then concatenated across conditions.

• Measure dimensionality reduction: Next, the dimensionality of the concatenated

condition measures for each IC is reduced by PCA to a principal subspace. The

subspace dimensionality is heuristically determined based on the amount of trial

data available. Measure values associated with each IC in the PCA-reduced

coordinates are normalized by dividing them by the standard deviation of the first

principal component.

• Equivalent dipole locations: Dipole (x,y,z) location values in the adult template

MNI brain space (Montreal Neurological Institute and Hospital, (Evans et al.,

1993)) are normalized and then multiplied by a user-specified scalar weight to

determine their relative influence in the subsequent clustering.

• Joint-measure IC-space representation: Dimensions associated with each EEG

measure (after preprocessing steps describe above) are concatenated to represent

each IC in a joint space. For example, ERSP information represented by 10 PCA
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dimensions may be concatenated with 5 PCA dimensions representing ERP

information and 3 (MNI x,y,z) location dimensions representing dipole position to

form a joint 10+5+3 = 18 dimensional space in which each IC is located.

• IC clustering: ICs in this joint-measure IC space are then clustered using k-means

or some other clustering method. The number of clusters is user supplied.

All ICs, represented by features in the resulting pre-clustering array, are then clustered using

the k-means method implemented in the Matlab Statistics Toolbox (The Mathworks, Inc.).

Fig. 2B shows a flowchart of this clustering method. For more details and a sample

application of this procedure, see (Onton and Makeig, 2006).

1.2.7 PCA-based ERSP measure clustering

EEGLAB default (PCA) clustering was used to create 15 clusters using ERSP and dipole

location measures. ERSP values for Target and Nontarget conditions were concatenated

across the time dimension for each IC and were reduced to 10 principal dimensions by PCA.

After default normalization, equivalent dipole location values were weighted by the default

factor 10. The MATLAB implementation of the k-means method was then used to form IC

clusters.

Clustering results for different numbers of clusters were first examined by eye and the

number of clusters was thereby adjusted such that (a) dipoles assigned to a given cluster

formed a single, relatively focal cluster, in anatomical (MNI) space (although it is possible

for multiple distal brain regions to display similar EEG dynamics, resulting in clusters with

dipoles localized to multiple brain regions, we have found that such clusters usually appear

as a consequence of cluster merging when the number of clusters is set too low); and (b)

clusters are maximally non-overlapping and contain a reasonable number of dipoles

(overlapping and/or small-size clusters may occur when the number of clusters is either too

low or too high). These criteria did not take into account the similarity structure of other

measures (e.g., ERPs) which would ideally further influence the choice of cluster number.

1.3 Results

1.3.1 ERSP measures for PCA-based IC clusters

Fig. 3 shows a scatter-plot of computed IC-pair ERP and ERSP similarities. Because of the

inherent ambiguity in the polarity of IC activations, absolute-value correlations of ERPs for

each IC pair was used as an upper bound on their ERP similarity. As can be seen in this

figure, as the correlation between these two sets of values is low (0.26), the similarity

structures of (absolute) ERP and ERSP measures are far from identical. This affirms our

decision here to not include ERP measure data in ERSP clustering.

Figures 4 and 5 show cluster dipole locations and Target ERSP values averaged over ICs

belonging to each cluster. Fig. 4 shows a subset of clusters with large (more than 1.7-dB)

mean Target ERSP values, while Fig. 5 shows clusters with mean Target ERSP values

below 1.3 dB. Although most eye movement-related components were rejected as they were

localized outside MNI brain volume, due to localization errors some of these IC were

assigned to locations inside brain; these were concentrated in Cluster 11.
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Nontarget ERSP values were lower (p < 0.05) or close to zero for all these clusters.

Statistical significance analysis of differences between Target and Nontarget ERSPs was

performed by bootstrap statistics permuting Target and Nontarget conditions across ICs

belonging to each cluster. This statistical test was performed for each cluster separately.

1.3.2 ERSP measure projection results

Fig. 6A shows the significant voxels (p<0.0075; group-wise p < 0.05 under FDR). The

voxels were colored by first applying non-metric multi-dimensional scaling (MDS, as

implemented in Matlab mdscale function with stress normalized by the sum of squares of

the interpoint distances and other parameters set to their default values) to the projected

(concatenated Target and Nontarget) ERSP measures, by this means mapping them to a

single dimension. These 1-D MDS values were then mapped to the [.00, .69] hue interval in

the MATLAB hue color scale (from red to blue) so as to display brain locations with similar

projected measures in similar colors. Fig. 6B shows four measure-consistent IC domains

obtained from the Affinity Propagation method implemented as threshold-based clustering

(Appendix B). These are colored by one-dimensional MDS of the projected measure

associated with their most representative member (the domain exemplar, using a similar

MDS procedure as in Fig. 6A). By comparing Figures 6A and 6B we can see how these four

domains summarize the projected measure values: Fig. 6A shows roughly four colored

regions that map into the four identified measure domains shown in Fig. 6B.

Fig. 7 shows an alternative visualization of ERSP Domains: exemplar MNI cortical surface

is colored by domain color, weighted by dipole density, from brain-grid positions radially

below each cortical location.

1.3.3 Comparison of MPA and PCA-based clustering methods

Next, we compared the results obtained from PCA-based IC clustering to those obtained

using measure projection analysis (MPA).

Table 1 gives the cluster number(s) located in or near each domain. Average ERSPs for

these clusters are highly similar to those of respective domain exemplars, indicating that

here measure projection analysis produced results in close agreement with IC clustering in

locations with statistically significant ERSP similarity across subjects.

Our PCA-based clustering, on the other hand, gave 15 clusters, many not associated with

any significantly convergent MPA region. For example, Clusters 2 and 3 in Fig. 5 are

relatively far from brain areas with significant ERSP convergence shown in Fig. 6A. Since

MPA showed that ICs associated with these PCA-based clusters have fairly dissimilar ERSP

measures, there is not much statistical evidence in the data for MPA spatial convergence in

these regions to support the validity of these clusters.

Table 1 also lists anatomical locations associated with each ERSP domain based on the

LONI project probabilistic atlas (Shattuck et al., 2008) and Brodmann areas (Brodmann,

1909) from (Lancaster et al., 2000). The listed functional associations of these areas are

based on Brodmann's Interactive Atlas (fmriconsulting.com/brodmann/Introduction.html).

On close inspection, because of errors in dipole localization related to insufficient electrical
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head modeling in the complex peri-orbital regions, many eye-artifact ICs (13 out of 16

highly contributing ICs) in this study were localized inside the brain volume and became the

main contributors to ERSP Domain 1 and PCA Cluster 11. In measure projection analysis,

brain and non-brain ICs should not be mixed. Performing an additional artifact IC rejection

step, using methods for identifying eye artifact ICs from their activity profiles as well as

their equivalent dipole locations such as CORRMAP (Viola et al., 2009) or ADJUST

(Mognon et al., 2011) should be done before MPA to give meaningful results in frontal

regions.

Of similar concern are ICs accounting for scalp muscle activity that, for EEG montages with

sufficient scalp coverage, have scalp maps consistent with an equivalent dipole at the

insertion of the muscle into the skull (as seen in(Onton et al., 2006)). These may be

differentiated from brain ICs prior to measure projection by their dipole locations (outside

the skull) and by their characteristic electromyographic (EMG) spectra with a minimum

below 20 Hz and a high-level plateau at higher frequencies. Here we removed scalp/neck

muscle ICs based on their dipole locations before applying measure projection.

Domains 2 and 3 are both associated with Secondary (V2), Associative (V3) and Primary

(V1) visual cortex (BA 18,19 and 17) (Marcar et al., 2004) (Dougherty et al., 2003). Domain

3 is in or near BA 31 which has been reported to support high-demand visual processing and

discrimination (Deary et al., 2004). Domain 2 is in or near bilateral BA 37 and fusiform

gyrus (with a right bias), areas reported in a fMRI study of a visual perceptual decision-

making task (Philiastides and Sajda, 2007). Similar low-theta band activity occurring about

400 ms after visual target detection in these brain areas was reported in (Makeig et al.,

2004).

There is some evidence of mu rhythm desynchronization (suppression) in Domain 4, located

in or near right-hand Primary Somatomotor, Primary Motor, and Somatosensory Association

areas (BA 7,3,2,4), which may be related to mu rhythm activity that appears in hand

somatomotor cortex when subjects hold a button in their right hand (Makeig et al., 2004).

Subjects were asked to wait until the end of RSVP image burst before pressing a response

button. The mu rhythm activity in this area is thought to reflect cortical inhibitory (or

`idling') dynamics that may decrease the chance of prematurely pressing the button.

Activation in or near BA40 and BA7 is also consistent with a preliminary FMRI study

conducted by (Gerson et al., 2005) in which BOLD activation was observed during rapid

discrimination of visual objects accompanied by a motor response.

Since MPA represents each IC equivalent dipole location by a Gaussian density and

computes MPA domains in brain regions exhibiting significant local measure convergence,

we may expect that equivalent dipoles positioned in or near MPA domains will have EEG

measures similar to the domain exemplar measure. To verify this prediction, in Fig. 8A for

one ERSP domain we plotted some such dipoles (e.g., those with total probability density

within the domain above 0.05) and colored them by the correlation of their EEG measures

with the domain exemplar. As expected, the majority of these dipoles have an ERSP similar

to the domain exemplar. In Fig. 8B, domain exemplar ERSPs for Target and Nontarget

conditions and their statistically masked difference (p<0.05) are plotted.
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1.3.4 Simulation

To test and validate our MPA procedures, we conducted simulations to investigate the

performance of the method across different noise levels and parameter choices.

We started by selecting four anatomical domains (Fig. 9A: R Superior Parietal Gyrus, L

Inferior Occipital Gyrus, L Lateral Orbitofrontal Gyrus and R Superior Temporal Gyrus,

from LONI LPBA40 atlas (Shattuck et al., 2008)) in MNI space as ground truth and

assigned to each the ERSP pattern from one our RSVP-experiment domains. We then placed

31 dipoles by randomly selecting locations from the ground-truth domains and adding

Gaussian spatial noise to the dipole locations using 12-mm std. dev. Gaussian noise to

simulate localization error and subject variability in measured IC equivalent dipole

positions. The number of dipoles per ground-truth domain (31) was selected to be the

average number of dipoles for which more than 10% of their density, modeled by a

truncated 3-D Gaussian, was located in an ERSP-measure domain of our RSVP experiment.

We considered two simulation conditions: (1) assigning this ERSP patterns to simulated IC

dipoles associated with each ground-truth domain (zero noise) (2) adding 0.2 dB RMS

amplitude noise to the ERSP pattern associated with each IC dipole (simulating experiment

noise).

We then sequentially added 142 other dipoles to the model, each placed at the brain volume

location (in an 8-mm grid) farthest from all other existing dipoles. Pseudo-ERSP measures

composed of random 0.2-dB white noise samples were assigned to these dipoles. The

simulation thus contained the same number of brain dipoles as our RSVP experiment, with

spatially coherent measure values only in the four model domains.

MPA was then performed on this simulated collection of dipole locations and associated

ERSP measures. The resulting domains were then compared to ground-truth domains for the

two simulation noise conditions mentioned above (Fig. 9B). We used two scoring methods

to evaluate the performance of MPA method (a) Cohen's kappa (Cohen, 1960), a measure of

inter-rater agreement (b) the average percentage of ground-truth domain locations that were

associated with the correct domain in the results. In both scoring methods we accounted for

permutations in domain labels and included the locations which should not be associated

with any ground-truth domain as an extra category (they should not be assigned to any

domains in the results).

Table 2 shows MPA performance scores for simulation results with a voxel significance p-

value threshold of 0.05, maximum exemplar correlation threshold of 0.8, and varying noise

levels. To explore the sensitivity of MPA results to the choice of the location uncertainty

parameter (the standard deviation of the Gaussian representing each dipole), we also tested

different values of this parameter for two ERSP noise levels (noiseless and 0.2 dB). These

simulation results show that MPA can recover brain domain locations with high accuracy (>

%80) in the presence of noise, and that using inaccurate dipole density extent priors (e.g.,

using a 10-mm or a 14-mm instead of the ground-truth 12-mm std. dev. for the spatial-

perturbation Gaussian) has relatively little effect on their locations.
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1.4 Discussion

The localized EEG source estimates returned by ICA decomposition bring closer the

promise of performing near cm-scale functional cortical imaging using non-invasive EEG

while retaining its fine temporal resolution. However, applying ICA-based EEG imaging to

studies involving multiple subjects and/or sessions requires a method for combining IC

source location and activity measure information for ICs decomposed from multiple data

sets. Here we demonstrate a first application of measure projection analysis (MPA) to EEG

data sets collected in a visual RVSP task and decomposed separately using extended

infomax ICA. We compare the results of MPA to results of applying k-means clustering

jointly to the same IC source locations and EEG measures. Results of MPA were consistent

with IC clustering but depended on fewer parameters and provided statistical significance

values. MPA applied to surrogate data derived from the RVSP data demonstrated that MPA

results are not highly sensitive to prior parameter choices.

While here we feature application of MPA to group and condition statistics for standard

event-related mean measures (ERPs and ERSPs), MPA may equally well be applied to any

other continuous or event-related EEG measure, or indeed to any measure at all. For

example, MPA applied to recovered IC equivalent dipole locations from an EEG session and

a measure of the subject's memory ability might reveal differences in IC dipole density

associated with better or worse memory performance. Reliable differences in dipole density

might arise from difference either in brain structure or dynamics during the EEG data

collection. MPA has several other attractive features:

1.4.1 Relative Parsimony

Since across-subject and -session variability both in estimated and actual source locations

and in dynamic EEG measure estimates are expected in any study, any model of subject

group and/or session mean measures for a high-density EEG study must be probabilistic and

therefore controlled by model expectations and statistical thresholds used in the analysis (in

this, MPA applied to EEG data is similar to group-level analyses for fMRI data). Among

such methods, the principle of parsimony (Occam's Razor) prefers methods that characterize

the data variability (here, across data sets) using a minimal number of free parameters.

Applying MPA to a single- or multi-dimensional EEG measure computed for a number of

EEG sources, each tagged with an estimated source location in a standard anatomic head

model, requires 1) a width parameter for the Gaussian density representing each source

location, 2) a (p-value) significance threshold that can affect the size of the measure

convergence subspace, and 3) a maximum domain exemplar measure similarity threshold

used in domain clustering (the outlier detection threshold is an optional parameter). These

MPA parameters are neurophysiologically interpretable and may not require sensitive tuning

in applications to different studies.

In comparison, the PCA-based multi-measure source clustering approach introduced in

(Makeig et al., 2002) and now available in EEGLAB (Delorme and Makeig, 2004) requires

two parameters per dynamic EEG measure (the number of principal dimensions retained and

the relative measure weighting value), plus a relative weight for equivalent dipole location

and the number of clusters to create (e.g., four total independent parameters for one
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measure, six parameters for two measures, etc.). Since there is no statistically motivated

method for choosing these parameters, they may in practice be set by the experimenter to

produce most subjectively desirable results. Because of the relatively large number of such

variables, and the sensitivity of final clustering results to their values, experimenter

parameter settings may have profound effects on inferences at the group-level. This also

introduces a significant and undesirable lack of objectivity in interpreting EEG data and

hinders the calculating of significance statistics for group-level or session-level results. Even

if well-justified methods were introduced to set the source clustering parameters, it would be

still difficult to determine the statistical significance (including p-values) of cluster measure

means because these statistical methods are often based on bootstrap null-hypothesis testing

that is not easily and directly applicable to source clusters.

Recently an IC source clustering method called MAGMICK has been proposed by (Spadone

et al., 2012). MAGMICK optimizes the relative weighting of different IC source measures

so as to increase the mean silhouette value of IC clusters and selects the number of clusters

found using modified K-Means clustering based on the constraint that two IC sources from

the same session should not be clustered together. Their results show that MAGMICK

outperforms other direct IC source clustering methods applied to data from a sample MEG

study.

However, the fact that session ICs are obtained by minimizing time-course independence

over the whole experiment is not sufficient for the independence constraint conclusion made

in MAGMICK. This is because ICA achieves maximal independence only for the whole

time course of the experiment; ICs from the same decomposition may be transiently

dependent, most likely in time periods in which EEG dynamics are non-stationary such as

periods of significant ERP or ERSP activity. Lastly, MAGMICK does not provide statistical

significance values for its clustering solution.

Thus, a strength of MPA is that it provides a relatively parsimonious method for data driven

identification of brain regions exhibiting statistically consistent measure values.

1.4.2 Source Measure Consistency

MPA provides a statistical characterization of the subspace of brain source locations that

exhibit significant EEG measure homogeneity, and identifies, among such locations, spatial

domains with distinctive measure features. By contrast, neither PCA-based multiple-

measure clustering (as formulated in EEGLAB) nor Group ICA approaches (discussed

below) provide such statistics (i.e., tests to determine whether within each identified cluster

or factor the computed source measures are significantly consistent with each other). For

example, PCA-based clustering produced 15 clusters in our RSVP study, compared to only

four MPA domains, but 9 of these clusters lacked significant measure homogeneity

(measure convergence p-value, Eq. (A.3), at their centroid was higher than 0.05) and 8 of

them did not have mean measures that were sufficiently distinct (correlation < 0.8) from

other clusters.
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1.4.3 Source Clustering Coherency

The MPA domain clustering procedure (used here to identify the four ERSP domains) is

fundamentally different from the PCA-based clustering approach in that MPA, domain

clustering is only employed to summarize projected results at significant brain locations and

does not change the projected source measure values.

In contrast, cluster-mean values obtained by the PCA clustering method are highly

dependent on the number of clusters and the specified relative measure weight parameters.

Neither PCA-based source clustering nor Group ICA approaches use an explicit threshold

for separating source clusters or factors based on measure differences. PCA clustering

typically operates on a weighted combination of different measures, which prevents the use

of meaningful similarity thresholds in threshold-based clustering (see Appendix B). In

contrast, MPA uses meaningful similarity thresholds (for example, here a maximum

measure correlation of 0.8) to identify separate brain-voxel domains whose nearby source

measures have separable features.

Using different maximum correlation thresholds only changes the granularity of the

segmentation of brain regions exhibiting significant measure consistency into domains, and

does not fundamentally affect the values assigned to domains. For example, in the MP

analysis shown here, changing the maximum domain measure correlation to 0.9 might

identify more measure domains, though the exemplar measures of the added (sub)domains

would be quite similar. In general this value must be set based on the expected degree of

measure noise and variability in the data which influences how similar two domain exemplar

measures could be before they should be considered practically the same. Alternative

clustering methods developed for identifying regions of similarly activated voxels in fMRI

data, such as Cluster-Based Analysis (CBA) (Heller et al., 2006), might also be applied to

MPA. The Affinity clustering approach used in the MPA toolbox (Appendix B) has the

advantage of finding the appropriate number of clusters based on the given similarity

threshold without having to specify a final number of clusters beforehand,

1.4.4 Cluster membership

PCA-based IC source clustering limits the types of group-level analysis methods that may be

applied to EEG data. For example common clustering methods (e.g., k-means or linkage

clustering) output a set of binary (“hard decision”) cluster membership values: each source

either fully belongs to a certain cluster or not. As the formation of these clusters is often

highly dependent on the multitude of clustering parameters, it is difficult to separate the

effect on the clustering results due to choosing these parameters from the contributions of

group-level differences in source features.

As an example, a cluster of interest (e.g., having a particular target ERP feature) may mostly

contain sources associated with a certain participant subgroup. At the same time, sources

with similar features may exist in nearby clusters and may have been included if a lower

number of clusters or slightly different weight parameters were applied to source measures

during clustering. It then becomes unclear whether participants have meaningfully different

measures (either in terms of source locations or ERP measure features) from a parent or
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alternate population, or whether the aggregation of sources from this subject group into a

particular cluster is an artifact of selecting a particular set of clustering parameters. This

problem could be alleviated if sources were given fractional (fuzzy) memberships and if

noise were not introduced during the quantization of membership values by the clustering

procedure. MPA allows such improvements by adopting a probabilistic spatial

representation of source locations.

1.4.5 Cluster shape

MPA operates in brain source domain coordinates and thus gives source domains that are

not restricted in shape and may even be discontinuous. For example, a single domain

representing bilaterally symmetric source activations may account for synchronous activity

within two non-contiguous (but perhaps highly connected) cortical areas. PCA-based IC

clustering, on the other hand, does not explicitly specify brain areas whose EEG-source

signals are reactive within a class of experimental conditions. K-means clustering, in

particular, is biased towards creating spherical clusters. Further, when an IC cluster is

represented by the spatial centroid of its member IC equivalent dipole locations, the spatial

extent of each cluster is not investigated statistically. Here MPA provides a statistically

supported, data-driven model of cortical regions that exhibit consistent measure features,

and the regions so identified may be readily compared to results of other functional imaging

experiments, for example reported results of fMRI studies.

1.4.6 Cluster equivalence across measures

Here we propose that MPA should be applied to only one dynamic measure at a time.

Another problem associated with PCA-based IC clustering stems from the fundamental

assumption of IC cluster equivalence across all EEG measures. In this method it is assumed

that those ICs that are similar in one respect (for example, in ERP time courses) are also

similar in other aspects (say in their ERSPs or mean spectra), so that combining different

measures before clustering (e.g. by concatenating them to form the IC pre-clustering array,

Fig. 2B) should produce better results (cluster distinctiveness is increased by combining

measures). This rests on the assumption that the similarity structures of each measure of

interest are dominated by an identical or at least compatible IC cluster structure. If this

assumption is violated, as our results in Fig 3 indicate for the RSVP data, combining

different IC measures may actually degrade clustering results since they attempt to merge

conflicting IC similarity structures.

For example, imagine a situation in which certain brain areas produce an ERP response to a

stimulus event class (e.g., visual targets), but that significantly different, yet overlapping,

brain areas produce transient mean (ERSP) changes in the IC power spectrum following

events of this class. An IC clustering performed on a combination of these two measures

(plus equivalent dipole locations) will at best find the spatial overlap between the two areas

associated with ERP and ERSP measures, potentially a much smaller area than the areas

associated with each EEG measure separately. If the goal of the analysis is, for example, to

learn about ERP responses to visual targets, it would appear better to use only the ERP

measures and equivalent dipole locations instead of including both ERP and ERSP

measures, as we propose for MPA.
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It may also be possible to subdivide multi-dimensional measures into sub-regions (for

example, ERP latency ranges or time/frequency regions) and apply MPA to each measure

region, a possibility that may deserve further examination.

1.4.7 Subject comparisons

When IC process clustering gives disjoint IC clusters, it is not always easy to compare the

EEG dynamics of each subject to the group cluster solution. Some clusters may contain no

ICs belonging to some subjects. Since so many variable parameters enter into a particular

clustering solution, it may be difficult to argue that the absence of a cluster IC from a given

subject necessarily reflects the absence of equivalent EEG source activity for that subject.

This issue worsens as the number of clusters increases and fewer subjects contribute ICs to

each cluster. MPA overcomes this difficulty by probabilistic representation of dipole

locations and abandoning the notion of discrete, disjoint IC clusters.

1.4.8 Group-Level ICA decomposition

ICA was initially applied at the group level as spatial ICA decomposition of group fMRI

data (Calhoun et al., 2001), (Schmithorst and Holland, 2004), (Beckmann and Smith, 2005)

(Esposito et al., 2005). This method has also been applied to resting-state EEG (Congedo et

al., 2010) and to joint decomposition of concurrently recorded EEG-fMRI data (Moosmann

et al., 2008), (Eichele et al., 2009), (Kovacevic and McIntosh, 2007), (Calhoun et al., 2009).

Group-ICA is implemented in the EEGIFT toolbox (http://icatb.sourceforge.net/) for EEG

analysis. In this approach, data sets from multiple subjects are either, (a) concatenated in

time, assuming common group IC scalp topographies, or (b) concatenated as separate

channels, after some preprocessing (e.g., PCA-based dimensionality reduction), assuming

shared event-locked group IC component measure features.

Each of these methods violates the physiological assumptions underlying ICA, arising from

differences in brain anatomy and volume conduction (Nunez and Srinivasan, 2006).

Concatenating EEG recordings from different subjects along the time/latency dimension,

and implicitly assuming that subject ICs share scalp maps, ignores significant differences

across subjects in cortical anatomy, in particular differences in scalp projection topography

arising from differences in cortical folding, and in functional specificity of corresponding

cortical areas (Onton and Makeig, 2006). Concatenating event-related response time series

data from different subjects in the spatial (channel or PCA-reduced channel) dimension, on

the other hand, assumes that ICs share strong feature similarities, in particular event-related

response time courses. Thus, for example, for all but the very earliest (brainstem and

primary cortical) ERP features a highly unrealistic degree of common event-related time-

locking is assumed. Also, this ERP-oriented procedure is intrinsically unable to capture

time-locked but not phase-locked dynamics, (as, e.g., captured by ERSPs).

In addition, during group-ICA preprocessing (as described in (Rachakonda et al., 2011)), the

channel data are usually strongly reduced in dimension using PCA (e.g., from 64 channels to

30 principal components) to keep the final number of dimensions after concatenation (across

subjects) manageable for application of ICA. As the number of participants increases, even

more aggressive PCA dimensionality reduction is necessary to keep the dimensionality of
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the concatenated data more or less constant (since the number of time points used in group-

ICA remains constant and the final ICA requires a certain number of time-points for

calculation of each weight in the unmixing matrix). But since PCA only takes into account

second-order (correlation) dependencies across channel data, it has lower performance in

terms of reducing mutual information compared to ICA, and therefore the remaining

dimensions after PCA preprocessing may potentially lack subspace information necessary

for proper ICA separation at either the single subject or group levels.

Another issue with applying group ICA decomposition to event-related EEG data

concatenated across channels is that it injects a bias towards finding patterns that are

common across subjects. PCA-reduced activities from each subject are (to some degree)

time-locked to the event, and subsequent group ICA processing tries to find components that

are common across subjects. ERPs for a subset of these group ICs may then just be an

artifact of the Group ICA decomposition process (since the common subspace across

subjects is amplified and concentrated into a few Group ICs). This bias in data preparation

makes calculating proper statistics difficult if not impossible. One would need to perform

some type of bootstrap permutation test to estimate the significance of the common activity

discovered by this approach, though performing a large number of Group-ICA

decompositions on surrogate trial collections may prove computationally impractical.

There are two newer methods that improve on group-ICA for performing group-level joint

decomposition: Multiset Canonical Correlation Analysis (M-CCA) (Li et al., 2009), which

uses an extension of Canonical Correlation analysis to maximize the correlation among the

extracted source activations, and blind source separation by joint diagonalization of

cumulant matrices (Li et al., 2011) (Via et al., 2011). These algorithms avoid the PCA

dimensionality reduction of group-ICA but they both also assume that significant linear

correlations are present across source activations. EEG source activities across a group of

subjects can only be hypothesized to be similar or linearly correlated if they are all time-

locked to a relevant event type (e.g., a rhythmic stimulus) and their duration are limited to

data intervals that contain significant ERP features, often less than a second after (or in some

cases before) the event. Outside of such time periods, no reliable correlation should exist

that can be exploited by group-level decomposition methods. This limits the applicability of

these methods for high-density EEG since the portion of data that can be assumed to contain

group-level correlations is much shorter than the whole recording so there will be less data

available to perform blind source separation (e.g., as compared to Infomax ICA

decomposition of data from the entire session). This is likely to adversely affect the

performance of the decomposition.

Also, many EEG phenomena occur in time-frequency domain in such a way as to contribute

few or no features to average ERPs. In particular event-related spectral perturbations

(ERSPs) such as those induced by changes in alertness level (Makeig and Jung, 1995)

measure event-related changes in spectral source power regardless of the level of event-

locked phase coherence that produces the event-locked ERP. Since all group-level

decomposition methods discussed above operate in the time domain, they are not amenable

to time-domain Group ICA approaches.
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Recently, (Hyvarinen, 2011) has suggested a method to test the inter-subject consistency of

ICA solutions statistically based on scalp-map similarities. Because of the differences in

dipole orientation arising from between-subject variations in cortical volumes and folding,

ICs represented by dipoles in the same functional brain area may have significantly different

scalp maps. Hence this method is more suitable for different sessions of the same subject

and should only provide a lower bound on inter-subject consistency (since similar scalp

maps are typically associated with similar ICs but not necessarily vice versa). The same

argument also applies to IC clusters obtained from this method, as they do not take into

account equivalent dipole locations associated with ICs.

1.5 Conclusion

Here we have introduced measure projection analysis (MPA), a statistical method for

combining source-localized EEG measure information across data sets. We also have

presented empirical and simulated results and have discussed the advantages of measure

projection relative to previously proposed independent component clustering methods.

Measure projection puts results of EEG research into the same brain imaging framework and

coordinate system as other brain imaging methods, thereby allowing EEG to be treated and

used as a three-dimensional functional imaging modality.
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Appendix A

Measure Projection Analysis (MPA) Method Description

Measure Projection Analysis (MPA)

Problem—A subset of EEG independent component (IC) processes obtained by applying

ICA decomposition to preprocessed channel activities from each recording session of a

study consisting of multiple sessions and/or subjects may be accurately modeled by single

(or in some cases bilaterally symmetrically located pairs of) equivalent dipoles located in the

co-registered standard MNI brain coordinate system (Delorme et al., 2012). In this analysis

we only consider equivalent dipoles within the MNI model brain volume (V), although the

proposed method should also be separately applicable to equivalent dipoles located outside

brain, such as in the eyes and at attachments of neck muscles to the scalp. Furthermore, we

do not consider ICs that cannot be modeled using a single (or in some cases as dual

symmetric) equivalent dipole model.

In practice, in any decomposition there may be an IC that can be accurately modeled by an

equivalent dipole D(x) located at any model brain location. x∈V ⊂R3 Consider a measure

vector M(x), obtained by vectorizing ERP time-course or ERSP time-frequency image,

associated with an IC with an equivalent dipole D(x). Measure vectors typically estimate
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mean event-related changes in IC source activity, which are often monotonically related to

the recorded scalp potential changes accounted for by the IC. Because of subject differences

in skull thickness and brain dynamics, these measure vectors may have dissimilar and

unknown differences in scale and/or offset across subjects. For example, two subjects may

show a similar (circa 10-Hz) central-lateral mu rhythm desynchronization pattern (reduction

in power) during hand-motor imagery, but the maximum dB change for each subject may be

quite different, as reflected in ERSP measures for one or more ICs from each subject's data.

During the set of experimental sessions in the study, up to n IC processes associated with n

distinct equivalent dipoles Di ≡ D(xi) (with indices xi,i = 1,..,n) may be active. We desire to

estimate an interpolated measure vector M (y), defined across possible brain locations y∈V,

and to estimate the statistical significance (p -value) of this assignment at each of these

locations. These p-values are associated with the (null) hypothesis that the measure vectors

have a random spatial distribution in the brain and there is no significant similarity between

them within neighborhoods centered at brain locations y∈V.

Approach—Let σ be the standard deviation of a spherical 3-D multivariate Gaussian with

covariance σ2·I centered at an estimated dipole location . We spherically truncate the

density at a radial distance (to center) of tσ. After normalization to insure that densities both

deep inside the brain volume and near the brain surface have unity mass within the brain

volume, this truncated Gaussian is used to represent the probability density of the true

equivalent dipole location given its estimated location. The parameter σ encapsulates errors

in dipole localization arising through errors in tissue conductivity estimates, head co-

registration, numerical data decomposition, data noise, and between-subject variability in the

locations (with respect to the head model) of equivalent functional cortical areas. We place a

renormalized truncated Gaussian at each estimated dipole location. According to this model,

the probability of estimated dipole Dj being truly located at position y∈Vis

, where  is the estimated location of Dj (and TN is a

normalized truncated Gaussian distribution). For an arbitrary location y∈V, the expected, or

projected, value for the measure vector is

(A.1)

If an equivalent dipole were truly located at y∈V, it would have the measure projection M (y)

provided by (A.1). We want an estimate of M (y) given by , where

 is the probability that Mi(y) = M(y). Since the probabilities have to sum to one

, it is natural to define . This gives (1) and shows that our

estimate is given by a convex combination (weighted average) of measure values Mi that

depends on equivalent dipole location y∈V.
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Now that we have an estimate of the measure vector at each brain voxel location, we need to

estimate the probability distribution of projected measures M (y) under the null hypothesis

that an estimated measure vector is actually produced by a random, set of measure vectors

Mi in the spatial neighborhood. This is necessary to be able to assign any statistical meaning

to the projected values. There are at least two ways to do so.

The first is to calculate p-values for each dimension of projected measure vector M (y).

There are, however, two drawbacks to this approach. Firstly, unknown scale and constant

offset differences associated with measure values for different subjects may act as additional

sources of variability (unless an effective measure normalization method is applied)

reducing the power of statistical testing. Second, if measure vector M (y) is high-

dimensional, the issue of robustly correcting for multiple comparisons becomes critical,

especially when a high-resolution spatial grid is placed in the brain volume. For example, an

ERSP measure may typically consist of a matrix of 200 latencies by 100 frequencies giving

20,000 dimensions -- if brain voxels with 8-mm spacing are investigated, there will be about

4,000 locations examined, each associated with a 20,000-dimension vector. This would

result in performing about 8×107 t-tests or some other type of null-hypothesis tests, which is

undesirable: although methods for robust correction for multiple comparisons, including

cluster-based techniques (Maris and Oostenveld, 2007) and Gaussian random field theory

(Worsley et al., 2004) have been developed for high-dimensional data such as time-

frequency images and fMRI voxel maps, use of these methods require assumptions such as

joint Gaussianity or smoothness. Thus, further investigation is needed to determine the

applicability of these methods to MPA.

Measure convergence—An alternative method for obtaining significance values is to

identify brain areas or neighborhoods that exhibit statistically significant similarities in one

or more measures between IC equivalent dipoles within the neighborhood. To do so, we

define the quantity C (y) (measure convergence) at each brain location y∈V

(A.2)

In this equation, Pi(y) is the probability of dipol i being at location y∈V and Si,j is the degree

of similarity between measure vectors associated with dipoles i and j. Convergence C(y) is

the expected value of measure similarity at location y∈V assuming that the joint probability

of each dipole pair i and j being located at y∈V can be factorized as Pi (y)Pj (y) (based on the

independence assumption). Problems caused by unknown scaling and offsets may be

avoided by choosing a similarity matrix impervious to these distortions, such as normalized

mutual information or linear correlation.

Calculated convergence C(y) is a scalar and is larger for areas in which the measures

associated with local ICs are homogeneous (similar). The probability of making an error of

Type I may be obtained for each brain location by comparing C(y) to a distribution of

surrogate convergence values C'(y),i = 1,…,k constructed from k randomized surrogates.
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Each surrogate convergence value is obtained by destroying the association between dipoles

and their measure vectors by randomly selecting, with substitution, n surrogate measure

vectors ,i = 1,…,n and associating them with dipoles Di,i = 1,…,n. The

surrogate similarity matrix  is obtained by calculating similarities between these

surrogate measure vectors.

By repeating the process above k times, a distribution of surrogate convergence values Ci ′

(y),i = 1,…,k at each brain location y∈V is obtained and the significance of convergence

C(y) is obtained by comparing it to the right tail of this null distribution. This p-value is

equal to the proportion of surrogate C(y) values higher than the actual convergence value

C(y)

(A.3)

After p-values are calculated for each brain voxel, they may be corrected for multiple

comparisons across MNI brain grid locations and only those voxels with significant measure

convergence (e.g., p < 0.05 after correction for multiple comparisons) selected for further

analysis. Since C(y) is a scalar value and often has a much lower dimension than measure

value M (y), the multiple comparison problem is more manageable when dealing with

convergence values.

Spatial domain clustering—Projected measure vectors associated with these locations

may then be clustered to identify spatial domains exhibiting similar measure vectors in the

data. Note that spatial domain clustering in MPA is different from IC clustering: in MPA,

clustering is performed on the projected measure vectors M (y), y ∈V at each brain space

voxel, so changes in domain clustering parameters do not change the voxel measures

themselves. MPA operations such as subject or condition comparisons can act directly on

these voxel measures and do not solely depend on domain exemplars. Mean measures of IC

clusters, on the other hand, may take different values depending on the IC clustering

parameters used, and only these mean measures are used in subject or group comparisons.

MPA toolbox—We have implemented the MPA method under MATLAB (The

Mathworks, Inc.) as a plug-in for EEGLAB (Delorme and Makeig, 2004). The Measure

Projection Toolbox (MPT), freely available for download at http://sccn.ucsd.edu/wiki/MPT,

includes high-level MATLAB software objects and methods that simplify the application of

MPA to EEG studies. The toolbox also utilizes the probabilistic atlas of human cortical

structures LPBA40, provided by the LONI project2 (Shattuck et al., 2008), to define

anatomical regions of interest (ROIs) and find ratios of domain dipole masses for cortical

structures of interest.

2Available for download at http://www.loni.ucla.edu/Atlases/Atlas_Detail.jsp?atlas_id=12
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Appendix B

Threshold-based Clustering and Outlier Rejection using Affinity

Propagation

Estimating the optimum number of clusters is an outstanding problem in the field of data

clustering (Milligan & Cooper 1985, Gordon 1996). There have been several solutions

proposed for this problem, each based on certain assumptions regarding noise and

underlying cluster structure (Hardy 1996, Kryszczuk & Hurley 2010). On the other hand, in

practice often the goodness of a clustering solution is evaluated by comparing a subset of its

properties (e.g., the dissimilarity between cluster centers) with common domain or expert

knowledge. For example, suppose that linear correlation is used as a similarity measure to

obtain clusters using agglomerative hierarchical clustering (Hastie et al. 2009) and the

clustering solution contains twenty clusters, two of which have exemplars (data points

comprising cluster centers) more similar to each other than 0.95. Then additional domain

knowledge such as assumed or expected noise level may allow us to infer that a better

solution could be obtained with fewer clusters.

Another issue that arises in many practical clustering applications is the existence of outliers

and their effect on the clustering solution. Outliers are defined as data points that are far

from all cluster exemplars (centers) and should therefore not be assigned to any of them (in

which case they can be grouped into a special `outlier cluster'). A common way to deal with

this issue is to obtain a clustering solution while treating outliers as any other data point, and

then removing them post hoc in some principled manner. For example, a simple way to do

this would be to remove all points that are further than a given distance threshold to any

cluster center (such a method would be especially applicable if a distance or similarity

threshold could be established based on domain or expert knowledge). A problem with this

approach is that the clustering solution is affected by all data points, in particular the outliers

which are removed in the second step. In cases in which the outliers in the total data set are

significant in number, or are much more distant than regular points from cluster centers, the

clustering solution may be visibly deteriorated by their presence.

Here we propose the use of Affinity Propagation clustering (Frey & Dueck, 2007) to address

the abovementioned difficulties by incorporating two threshold values based on domain

knowledge. Affinity propagation method finds exemplars by passing real-values messages

between pairs of data points. The magnitude of these messages is based on the affinity of

each point for choosing the other as its exemplar. This algorithm is shown to be equal or

better than K-means in minimizing clustering error on large datasets. It also only requires a

pair-wise similarity matrix as input, a property exploited by our proposed method to find an

appropriate number of clusters while ignoring outliers during the clustering process.

Although our method is based on the use of Affinity Propagation clustering, it may, in

principle, be combined with any clustering method that accepts a pairwise similarity matrix.

Let Sn×n be a pairwise similarity matrix for n input points Pi, i =1,⋯,n to be clustered. Our

objective is to find a clustering solution in which:
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(a) Outliers, defined by points that are less similar than To ∈ R to any cluster

exemplar (centroid) Ek, are assigned to a special outlier cluster.

(b) The data are clustered into the maximum number of clusters such that no cluster

exemplar Ek is more similar to another than a given similarity threshold Te ∈ R.

To achieve objective (a), we augment the original pairwise similarity matrix Sn×n to include

a new virtual point Pn+1 that has a constant similarity To to all original data points Pi :

(B.1)

The augmented similarity matrix  is then used for clustering.

During the clustering process, points compete for becoming exemplars of others. These

dynamically formed exemplars compete for assignment to data points and since the virtual

point Pn+1. has a constant similarity To to all other points, any point which is less similar

than To to all exemplars will be assigned to the cluster which contains the virtual point as its

exemplar. This point hence becomes an exemplar for all outlier points in the data.

After the clustering process is finished, one of the following conditions will be met:

1. There are one or more outliers in the data, in which case they will be assigned to a

cluster that includes the virtual point (see Fig. B.1C).

2. There are no outliers in the data and the virtual point is assigned as the exemplar of

a cluster with only one member (itself).

3. There are no outliers in the data, but the virtual point is assigned to a cluster that is

not an outlier cluster.

To distinguish between conditions 1 and 3 above, we can calculate the similarity between all

exemplars and members of the cluster that includes the virtual point. If any similarity value

is greater than To then condition 3 must be the case. Our use of an augmented similarity

matrix thus achieves the first goal of separating outlier points during the clustering process.

To achieve objective (b) we begin by clustering  into a minimum number of

clusters (1 or 2) and iteratively increase the number of clusters (if using Affinity

Propagation, this is achieved by increasing the similarity value assigned between each data

point and itself in the similarity matrix, which indirectly controls the number of clusters). In

each iteration we calculate the minimum similarity Tmin between cluster exemplars and

compare it with Te. If Tmin > Te then the procedure terminates and returns the clustering

solution obtained in the previous iteration, satisfying objective (b).

Bigdely-Shamlo et al. Page 24

Neuroimage. Author manuscript; available in PMC 2014 July 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. B.1A shows a simulated 2-D point cloud generated by adding to a low uniform point

distribution two rectangular areas of increased probability density. Fig. B.1B shows Affinity

Propagation clustering results using maximum exemplar similarity Te = 0.2 and no outlier

detection. Of the four clusters produced by this solution, two consist mostly of outlier points.

Fig. B.1C shows the clustering solution obtained using outlier detection with To = 0.2 and Te

= 0.2. Here, the two high-density areas are separated into distinct clusters and other points

are assigned to a third `background' cluster.

Fig. B.1.
(A) Simulated sample points to illustrate Threshold-based clustering. (B) Points colored by

cluster using Te = 0.2 without outlier detection. (C) Points colored by cluster using Te = 0.2

with outlier detection (To =0.2).
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Highlights

We introduce a novel statistical method for multi-subject EEG source analysis.

This method characterizes the spatial consistency of group EEG source dynamics.

Our method is an alternative to ICA clustering and has fewer parameters.

3-D maps with statistical significance estimates for EEG measures are produced.

The new method is validated on real and simulated EEG data.
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Fig. 1.
Timeline of each RSVP burst. Participant response feedback (`Correct' or `Incorrect') was

delivered only during Training sessions (rightmost panel).
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Fig. 2.
Finding equivalent IC processes across subjects and/or sessions: (A) Steps performed during

measure projection analysis (MPA) to identify brain voxel domains associated with

significantly different measures of independent component (IC) processes whose brain

source locations are each tagged by the location of the IC equivalent dipole. (B) Steps

performed during PCA-based clustering to find IC process clusters each composed of ICs

with nearby equivalent dipole locations and similar measures. Whereas PCA-based

clustering solutions may simultaneously consider multiple non-dipole EEG measures (for

example, condition-mean ERPs and ERSPs), in MPA finding spatial domains supporting

each condition-mean measure is performed separately.
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Fig. 3.
IC-pair ERP and ERSP similarities. Absolute-value ERP similarities are used to overcome

the inherent ambiguity of the polarity of IC activations. Dashed line displays the best least-

squares linear fit (Pearson correlation coefficient = 0.26).

Bigdely-Shamlo et al. Page 32

Neuroimage. Author manuscript; available in PMC 2014 July 06.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 4.
Dipole locations and cluster-mean ERSPs for 6 of 15 IC clusters obtained from PCA-based

clustering (see Fig. 2B) having relatively large Target event-related ERSP values, most in

the low theta frequency band (each ERSP maxima equal or exceeding 1.7 dB). Cluster 11 is

dominated by components accounting for eye movement artifacts.
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Fig. 5.
Dipole locations and mean Target ERSPs for a subset of clusters with weak ERSP values

(each with absolute maxima lower than 1.3 dB; compare Fig. 4).
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Fig. 6. Measure Projection Analysis (MPA) of ERSP (see Fig. 2A):
(A) Voxels representing locations with significant convergence (p < 0.075) colored by

multi-dimensional scaling (MDS) mapping of projected Target ERSP measures to hue

(MATLAB `hue' colormap values in the 0–0.69 interval, from red to blue). (B) Four

domains identified in the projected measure values, colored by 1-D MDS of the projected

measure at their exemplar voxel. (C) 2-D MDS image of exemplar similarities of the four

domains. Note that Domain 1 (red, eye activities) is relatively distant from the other three

Domains (blue, posterior cortex).
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Fig. 7.
Alternative visualization of ERSP domains projected onto the template MNI cortical

surface. Each cortical surface voxel is illuminated based on the domain color and total

dipole density from brain-grid voxels located radially below the surface polygon.
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Fig. 8.
(A) ERSP Domain 2 dipoles with probability of membership in the domain above 0.05 are

colored by the correlation of the dipole-associated measure with the domain exemplar. (B)
(left and center) Projected Target and Non-Target condition ERSPs for ERSP Domain 2, and

(right) their statistically masked difference (p<0.05).
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Fig. 9.
(A) Simulated ground-truth domain set consisting of four anatomical regions (B) MPA

results based on using 12-mm Gaussian spatial noise blurring and an 0.88 ERSP Signal-to-

Noise Ratio (SNR). (C) Simulated dipoles including subsets associated with each ground-

truth ERSP domain plus randomly located outliers given random ERSP measures.
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Table 1

ERSP Domain Nearby Clusters Anatomical Area(s) Brodmann Area(s)

1 11, 14 (Dominated by eye-artifact ICs) N/A

2 12, 15 R Middle Occipital Gyrus (0.36) BA 18 (0.34) Secondary visual (V2)

L Middle Occipital Gyrus (0.26) BA 19 (0.34) Associative visual (V3)

R Inferior Occipital Gyrus (0.09) BA 37 (0.11)

L Inferior Occipital Gyrus (0.08) BA 39 (0.06)

R Superior Occipital Gyrus (0.05) BA 17 (0.06), Primary visual (V1)

R Lingual Gyrus (0.04)

R Inferior Temporal Gyrus (0.03)

R Angular Gyrus (0.02)

R Middle Temporal Gyrus (0.02)

3 1 L Superior Occipital Gyrus (0.19) BA 18 (0.33) Secondary visual (V2)

L Cuneus (0.16) BA 19 (0.15) Associative visual (V3)

L Middle Occipital Gyrus (0.15) BA 31 (0.13)

R Cuneus (0.12) BA 17 (0.12) Primary visual (V1)

R Superior Occipital Gyrus (0.10) BA 7 (0.06) Somatosensory Association

L Superior Parietal Gyrus (0.06)

L Lingual Gyrus (0.04)

L Precuneus (0.03)

L Superior Temporal Gyrus (0.02)

R Middle Occipital Gyrus (0.02)

R Superior Temporal Gyrus (0.02)

R Lingual Gyrus (0.02)

4 4 L Superior Parietal Gyrus (0.27) BA 40 (0.37) Spatial / Semantic Processing

L Postcentral Gyrus (0.27)

L Supramarginal Gyrus (0.22) BA 7 (0.12) Somatosensory Association

L Angular Gyrus (0.12) BA 3 (0.11) Primary Somatosensory

L Precentral Gyrus (0.10) BA 2 (0.10) Primary Somatosensory

BA 4 (0.09) Primary Motor

BA 39 (0.06)
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Table 2

Mean MPA
Performance Score
(std)

Cohen's kappa Ratio
(kappa, max possible)

Domain Dipole
Noise Amplitude

Mean Domain
Dipole SNR (std)

Extra Dipole
Noise Amplitude

Projected
Gaussian std.
deviation (mm)

0.82 (0.21) 0.82 (0.63, 0.78) 0 1 0.2 12

0.85 (0.20) 0.84 (0.62, 0.73) 0 1 0.2 14

0.81 (0.19) 0.78 (0.63, 0.8) 0 1 0.2 10

0.93 (0.11) 0.9 (0.5, 0.56) 0.2 0.88 (0.09) 0.2 12

0.93 (0.10) 0.93 (0.47, 0.51) 0.2 0.88 (0.09) 0.2 14

0.89 (0.16) 0.84 (0.51, 0.61) 0.2 0.88 (0.09) 0.2 10
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