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Abstract
Activity of cortical local neuronal populations fluctuates continuously, and a large proportion of
these fluctuations are shared across populations of neurons. Here we seek organizational rules that
link these two phenomena. Using neuronal activity, as identified by functional MRI (fMRI) and
for a given voxel or brain region, we derive a single measure of full bandwidth brain-oxygenation-
level-dependent (BOLD) fluctuations by calculating the slope, α, for the log-linear power
spectrum. For the same voxel or region, we also measure the temporal coherence of its
fluctuations to other voxels or regions, based on exceeding a given threshold, Θ, for zero lag
correlation, establishing functional connectivity between pairs of neuronal populations. From
resting state fMRI, we calculated whole-brain group-averaged maps for α and for functional
connectivity. Both maps showed similar spatial organization, with a correlation coefficient of 0.75
between the two parameters across all brain voxels, as well as variability with hodology. A
computational model replicated the main results, suggesting that synaptic low-pass filtering can
account for these interrelationships. We also investigated the relationship between α and structural
connectivity, as determined by diffusion tensor imaging-based tractography. We observe that the
correlation between α and connectivity depends on attentional state; specifically, α correlated
more highly to structural connectivity during rest than while attending to a task. Overall, these
results provide global rules for the dynamics between frequency characteristics of local brain
activity and the architecture of underlying brain networks.
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Introduction
Relating structure and function is fundamental to understanding the mechanisms of
information processing in the brain. Non-invasive functional brain imaging, specifically
MRI/fMRI, has played a pivotal role in demonstrating structure-function rules due to its
capability to localize activity and relate it to structural features across the whole brain, on
the scale of millimeters. Recent studies examining brain activity during rest demonstrate
large-scale functional organizational rules, thus revealing intrinsic dynamical properties of
the brain (1). Likewise, functional connectivity (FC) of the brain during rest shows
correspondences to structural connectivity (SC), although this relationship is intricate and
not reciprocal -- i.e., SC is highly indicative of FC, but not vice versa (2–5). Still, rules with
which structural and functional networks shape and constrain each other remain
fundamental, unanswered questions in the field.

The power spectrum of brain activity signals is related to various network properties. This
relationship has been captured across many studies using multiple methods such as fMRI (6,
7), EEG (8), cultured neuronal networks (9, 10), multi-unit activity (11), simultaneous
single-unit recording and optical imaging (12), and computational models (13). These results
have highlighted the central role of the spectral profile in understanding the structure-
function interactions in the brain. However, most fMRI research has utilized only the low
frequency component of the BOLD signal, assuming that frequencies above 0.1 Hz are
contaminated with noise. On the other hand, BOLD frequencies above 0.1 Hz exhibit
coherent patterns of activity (14) and show an anatomically constrained distribution of
power as a function of BOLD frequency (15). Therefore, it remains largely unknown how
the full bandwidth properties of the BOLD signal relate to brain network properties. Here we
aim to show that the architecture of synchronous brain networks and white matter networks
(structure) are tightly related to the fluctuations of local BOLD activity (function).

In the frequency domain, the full bandwidth power spectrum of fMRI BOLD signal
(approximately 0–0.24 Hz) roughly follows a straight line when viewed in log power versus
frequency: log (P) = -α(f). The value (α) offers a glimpse of the distribution of power across
frequencies, and in a sense it provides some information about the heterogeneity of the
informational content that is observed locally. The larger the absolute value of α, the higher
the relative power at lower frequencies in the signal, whereas smaller values suggest that the
fluctuations are more random, with less temporal redundancy, and are therefore more
efficient in online information processing (16, 17). Here we examine the relationship
between α and FC, i.e., the presence of temporal coherence of BOLD activity, as well as α
and SC, i.e., the presence of anatomical connectivity based on diffusion tensor imaging
probabilistic tractography, for fMRI activity during either resting state or during a visual-
motor attention task. We assess this relationship at different spatial resolutions and as a
function of its underlying regional synaptic wiring. First, we test the hypothesis that the
distribution of power in local fluctuations, at a per voxel basis, is related to the number of
functionally connected voxels across the whole brain. Second, we parcel the brain into 3
anatomical regions of differing hodology that correspond to synaptic wiring and functional
complexity (including unimodal, heteromodal, and limbic-paralimbic regions (18)), and we
examine differential relations between the power of local fluctuations and FC. Third, to our
knowledge, the MRI structure-function studies have solely relied on resting scan conditions,
perhaps due to the growing evidence that functional networks during rest and task are
spatially (19, 20) and dynamically(21) similar. Previous work from our lab, however,
counters this notion by demonstrating widespread shifts in BOLD frequency power between
rest and task conditions (15). Here we demonstrate that BOLD power is differentially related
to network architecture according to brain state, i.e., during rest versus attending to task. The
significance of such an investigation lies in its potential to provide global rules for the
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dynamics between the spectral characteristics of local brain activity in relation to the
architecture of underlying brain networks, as well as in relation to brain state.

Methods
Subjects

Thirty healthy participants (21 females, 40.2 ± 2.1 years old) were scanned for the high-
spatial resolution voxel-wise mapping of α. A different set of 21 healthy subjects (18
females, 39.4 ± 2.4 years old) participated in a separate experiment that included a resting
state scan, a task scan, and diffusion tensor imaging, for which analysis was performed at a
lower spatial resolution at the level of brain regions that approximately equaled Brodmann
areas (BAs). All subjects were right-handed and provided informed consent to procedures
that were approved by the Northwestern University Institutional Review Board.

fMRI Acquisition
Whole-brain functional MR data was acquired with a 3T Siemens TIM Trio whole-body
scanner with echo-planar imaging (EPI) capability. An 8-channel head coil optimized for
prefrontal cortical activity was used. Multi-slice T2*-weighted echo-planar images were
obtained with the following parameters: TR = 2.5 s, echo time TE = 30 ms, flip angle = 90°,
slice thickness = 3 mm, in-plane resolution = 3.475×3.475 mm2. The 36 slices covered the
whole brain from the cerebellum to the vertex. Scans for the voxel-wise analysis were 300
volumes and lasted 12 minutes. Scans for the BA analysis lasted 10 minutes with 244
volumes.

For resting scans, participants were asked only to stay alert with their eyes open. Task scans
required participants to rate the length of a bar fluctuating at ~0.01 to 0.05 Hz along an axis
numbered 0 to 100. The bar was projected onto the screen in the scanner, and subjects
continually rated its length as the bar moved by spacing their right thumb and forefinger, to
which a voltage potentiometer recording device was attached with tape (22). For example, if
the bar reached a height of 100, subjects had their thumb and forefinger tips as far apart as
possible. If the bar dipped to 0, their fingertips were touching. Prior to scanning, subjects
were trained on the task. All subjects performed the task such that their finger movements
were highly correlated with the visual bar movement (r > 0.7 for all subjects).

Anatomical Scans
In addition to the functional scans, a T1-weighted anatomical MRI image was also acquired
for each subject using the following parameters: TR = 2.1 s, TE = 4.38 ms, flip angle = 8°,
FOV = 220 mm, slice thickness = 1 mm, in-plane resolution = 0.86 × 0.86 mm2 and number
of sagittal slices = 160.

DTI
Images were acquired using spin-echo EPI in one acquisition of 72 slices, covering the
whole brain. DTI parameters were as follows: voxel size 2 × 2 × 2 mm; TR, 5000 ms; TE,
87 ms; flip angle = 90°; in-plane matrix resolution, 128 × 128; field of view, 256 × 256 mm;
b0, 1000 s/mm2. Diffusion was measured in 60 distinct, non-collinear directions, separated
in time, into seven groups by no-diffusion weighted volumes. A total of eight no-diffusion
weighted volumes were acquired for the purposes of registration and head motion
correction. Preprocessing of DTI images was performed using FDT version 2.0 (FMRIB
diffusion toolbox), part of FSL (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl), and
included eddy current correction, head motion correction using affine registration to the
reference volumes, and skull extraction.
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BEDPOST (Bayesian Estimation of Diffusion Parameters Obtained using Sampling
Techniques) was performed for each subject, which performs Markov-chain Monte Carlo
sampling to establish distributions on the diffusion parameters at each voxel in the
individual subject's space (23) . Probabilistic tractography was then performed for 6×6×6
mm centers of brain regions identified by the standard Automated Anatomical Labeling
(AAL) map (24) and transformed into subject space. AAL regions are roughly equivalent to
the classically defined BAs. We therefore refer to our brain regions as BAs. For each of the
21 subjects and from each BA, 5000 samples were drawn to build the a posteriori
distribution of the whole brain connectivity distribution.

fMRI Data Preprocessing
Functional MRI data was preprocessed using FEAT (FMRI Expert Analysis Tool) Version
5.98, part of FSL. Preprocessing steps included: skull extraction, slice-timing correction,
bulk head motion correction, spatial smoothing (Gaussian kernel of full-width-half-
maximum 5mm), and a high-pass (150 sec) temporal filter, which removes artifacts
associated with scanner drift at fluctuations less than 0.006 Hz. Peak to peak head motion
was maintained at < 3 mm for all subjects. Independent component analysis was performed
using MELODIC, and temporal and spatial components associated with motion,
cerebrospinal fluid, and white matter were identified and their time courses were regressed
out of the BOLD signal as covariates of no interest. Global mean BOLD signal and head
motion were also regressed from the BOLD signal, voxel-wise.

Connectivity analysis (voxel-wise)
Subject connectivity maps were created in subject space by calculating pairwise BOLD
time-series Pearson correlations for every gray matter voxel in the brain and counting the
number of correlations greater than or equal to a predefined correlation threshold, Θ. This
approach examines properties of local fluctuations in relation to the local, as well as long
distance, architecture of the brain. Most voxel-wise results are reported at Θ = 0.3, as this
threshold corresponds to a p-value <0.01 after correction for degrees of freedom using
Bartlett theory. Therefore each voxel in a connectivity map corresponds to the number of
voxels to which it has a time series correlation greater than 0.3. Results for Θ = 0.4 and 0.5
are reported in the supplementary materials. Mean group maps were generated by
transforming subject maps to standard space, z-scoring, and averaging across subjects.

Connectivity analysis (Brodmann areas)
In a separate data set, we calculated FC and SC at a lower spatial resolution using grossly
segregated brain regions, roughly equivalent to Brodmann areas (we refer to AAL regions as
Brodmann areas, BAs). At this spatial resolution, we explored the relationship between
BOLD fluctuations and the long-distance architecture of the brain. Functional images were
registered to 2×2×2 mm voxel standard space using FLIRT (25). The mean time series from
the 6×6×6 mm centers of each BA were extracted, and thus each time series consisted of the
average BOLD signal from 27 standard space voxels. Subcortical BAs were excluded from
the analysis, resulting in 82 BAs for each subject. A list of BAs with center coordinates is
provided in table S1. Previous studies used slightly different classifications of BAs (table
S2), particularly with unimodal BAs, but are overall consistent with the present study.
Connection matrices were generated for each hemisphere separately, and all subsequent
measures were averaged across hemispheres using custom Matlab routines (The Math
Works, 2009). Pearson correlations were calculated pair-wise for all time series and
transformed to Fisher’s z values, creating a 41×41 functional connection matrix for each
subject.
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Structural connection matrices were constructed based on probabilistic tractography. Similar
to the functional connection matrices, structural connection matrices were generated using
only the intrahemispheric connections, and all subsequent measures were averaged across
hemispheres. The number of tractography counts from the 6×6×6 mm center of each BA to
all other BAs was used to generate a 41×41 structural connection matrix for each subject.
Because the tractography between 2 BAs is not reciprocal, matrices were symmetrized by
averaging the number of counts between each pair of BAs. These matrices were then
logarithmically transformed (to normalize the distribution of counts) and then normalized by
dividing the number of counts at each element by the total number of counts to each BA
from all other BAs.

Functional and structural connection matrices were multiplied by a matrix of normalized
distances between pairs of nodes. Given the reduced degrees of freedom in the BA analysis,
we were able to report FC and SC across a range of connection strength thresholds, as
different network metrics can be threshold sensitive. We report these thresholds according to
matrix ‘link densities’, which reflect the total proportion of connections in a matrix that
exceed the given correlation threshold, Θ. Therefore, when the threshold for a connection is
high, there will be fewer total connections in a matrix, which will thus correspond to a lower
link density value. Accordingly, the connection matrices were thresholded and binarized
such that the number of links in each connection matrix corresponded to all link densities,
ranging from 0.4 to 0.2, as suggested by (26). All graph theory metrics were obtained in
Matlab using scripts from the Brain Connectivity Toolbox (27). BAs were categorized as
unimodal, heteromodal, or limbic-paralimbic, accordingly (18).

Determining fit of the BOLD power spectrum
Spectral analysis was carried out using custom Matlab routines. Frequency power of BOLD
time courses were determined using Welch’s method and normalized by dividing by total
power (total power/variance=1) (15). Least-squares fitting was then performed on the
normalized power spectrum from 0.01 to 0.2 Hz in 500 random voxels in each subject,
expressed on either linear, log-linear, or log-log axes:

linear: P(f) = −α(f)

log-linear: log(P(f)) = −α(f)

log-log: P(f) = 1/fα

where P is the power at frequency f. To test for goodness of fit, Kolmogorov-Smirnov
distance (D) was calculated between the power spectrum and the least-squares regression
(17). The average D was calculated across voxels and subjects, and the lowest value
determined the scale of the power spectrum on which α was defined (figure S1).

Spectral power distribution in the brain
Values of α were obtained for every voxel in the brain. For the voxel-wise experiment,
individual subject maps were transformed into standard space using FLIRT (25) and
multiplied by a standard gray matter mask. Subject maps were then z-scored by subtracting
the whole brain mean and dividing by the standard deviation. A group average α map was
then generated by averaging maps voxel-wise across subjects. The α value was also
calculated for each BA in the separate BA analysis. Negative α values were considered to
indicate artifacts and were removed from the analyses. As a result, less than 1% of the data
was removed.
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Correlation between connectivity and α
For the voxel-wise analysis, Pearson correlations were calculated between group mean α
and functional connectivity maps. To determine the significance of the correlation between
α and FC maps, surrogate data was generated by spatially shuffling the group mean FC map
with wavelet resampling (28) 5000 times. The Pearson correlation between the z-scored α
map and z-scored resampled map was calculated with each iteration, generating a null
distribution of α-FC correlations. Additionally, we tested the dependence of this relationship
on the temporal pattern of BOLD activity by randomly shuffling the phase of BOLD time
series in Fourier space. Connectivity maps were then generated from shuffled data (θ = 0.3),
transformed to standard space, and averaged across subjects. Pearson correlations were then
calculated between the group mean z-scored α and the group mean temporal surrogate z-
scored connectivity maps.

For the BA experiment, Pearson correlations were calculated between α and connection
metrics across all link density thresholds and transformed to Fisher’s z values. Therefore, all
correlations reported refer to Fisher’s z. Significance was determined by comparing α
correlation with experimental versus null connection matrices of equal link density and
degree distribution. However, in to the case where we compare node degree of experimental
networks to null networks, we generated null networks with a random degree distribution by
thresholding symmetrical matrices with a random distribution of connection strengths.

Throughout the article, we refer to the correspondence between α and connectivity as either
α-FC (α-functional connectivity) or α-SC (α-structural connectivity).

Linear discriminant analysis
To measure the accuracy of the characterizations of our 3 synaptic categories (unimodal,
heteromodal, or limbic-paralimbic) based on α, FC, and their correlation, we employed
linear discriminant analysis (LDA) using a k-nearest-neighbor classifier algorithm with a
city-block distance metric. This analysis was performed using a leave-one-out algorithm
such that classification for each subject (i.e., the sample set) was tested against our
designated categorization of BAs (i.e., the training set). In other words LDA was performed
for each subject, and the classification for each BA based on its α, FC, and their correlation
was tested against the designated BA classification and the corresponding-BA group average
of α, FC, and their correlation, of the remaining subjects. Confusion matrices were then
generated for each subject, which demonstrate the accuracy by which synaptic wiring
corresponds to α, FC, and their correlation.

To test whether the accuracy of classification was unique to our designated synaptic wiring
categories, we repeated the same analyses with BAs designated into different groups based
on either 1) their relative spatial distance from each other, or 2) random assignment. To
categorize BAs based on their relative spatial distance, k-means clustering was used to
identify 3 clusters in the BA distance matrix, defined by the pair-wise Euclidean distances
between all BAs. As k-means clustering was implemented with random initial centroids,
5000 iterations were performed, and the resulting confusion matrices were averaged across
all iterations for each subject. Null classification was performed in the same manner, except
the categorization of BAs was randomly shuffled. Confusion matrices were generated for
each subject using the same leave-one-out algorithm mentioned above. The reported values
in all confusion matrices are expressed in percentages that indicate the fraction of BAs for
each designated category that were classified as either unimodal, heteromodal, or limbic-
paralimbic. For example, the top row of our confusion matrices indicate what percentage of
unimodal BAs were classified as unimodal (column 1), heteromodal (column 2) or limbic-
paralimbic (column 3). Comparisons across the categorization schemes were performed
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using repeated measures ANOVA. BAs with a negative correlation between α and FC were
excluded from the analysis, as it was determined to be a fitting artifact (table S1).

Model for the correlation between connectivity and spectral content in fMRI
Basic model—It is possible to interpret the observation of a strong correlation between the
degree of functional and anatomical connectivity and the exponent of the power-law
behavior of the spectrum in qualitative terms: if we assume that the activity of a neural
ensemble represents effectively a low-pass filter of its inputs, then the relative spectral
content of its output will be highly colored towards lower frequencies as a function of their
connectivity. More formally, consider the activity of a neural ensemble as

(1)

where the components of x⃗ represent the activity of the ensembles, F is a low-pass linear
filter such that in Fourier space F̃(ωL) > F̃(ωH) if ωL < ωH,the components of V⃗ are the total
synaptic input:

(2)

with A representing the connectivity matrix, the components of g⃗ the intrinsic driving
activity, and μ the coupling parameter. Transforming the equation into Fourier space, we
obtain

(3)

where * indicates complex conjugation, and the low-pass filter operation becomes a simple
multiplication. Upon rearranging terms, Eq. 3 becomes

(4)

To derive a more intuitive understanding of this equation, we introduce a few
simplifications: assuming a constant phase response for the filter (i.e. its effect is only to
reduce the power of high frequencies, without phase distortions), a binary connectivity
matrix (i.e. A ={0,1}), a homogenous intrinsic activity spectrum g̃n(ω) = g̃(ω) ∀n (the
internal drivers have all the same power profile) and expanding in the coupling parameter μ,
we obtain

(5)

Where Dn = Σj Anj is the degree of node n. Eq. 5 immediately reflects the relationship
between connectivity and spectral content in the model: for a low-pass filter, lower
frequencies will contribute to the spectral distribution proportionally to the local
connectivity, whereas for higher frequencies the spectrum will be proportional to that of the
intrinsic activity, in accord to the observed relationship between connectivity and spectrum.
It is worth to mention that the expansion in Eq. 5 is valid if |F̃(ω)| ‖A‖ <1, where ‖A‖ denotes
the Frobenius norm. Assuming |F̃(ω)| ≤ 1 ∀ω, this imposes a constraint on the norm of A,
however, the norm of a Barabasi-Albert network is significantly smaller than the largest
degree (29), and therefore we expect the approximation to be generally applicable.

We present in figure S3A an instance of the model, showing the normalized spectral
distribution |x̃(ω)| for a low-pass filter defined by |F̃(ω)|=(1+ω2)−1/2 and an activity |g̃(ω)|
~ω−1. The blue trace represents a 'high degree' node μDn = 1, while the red trace is a 'low
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degree' one, μDn = 0.01. For the purpose of demonstrating the generality of our model, we
implemented a simulation with more realistic assumptions for the dynamics and the
connectivity. We computed 1,000 instantiations of a Barabasi-Albert scale-free network
with 100 nodes, with a mean connectivity of low (high) degree nodes ~ 5 (25). On top of the
basic architecture, we randomized the signs of the connections so that, p(Anm = ±1)=0.5. We
implemented a weakly non-linear low-pass dynamics for the units as follows:

(6)

The stochastic intrinsic activities are random mutually uncorrelated, 〈gn (t) gm (t)〉 = δnm,
δnm = {1 if n = m, 0 if n ≠ m}, with power-law spectral distribution |g̃(ω)| ~ ω−α, α > 0.
Figure S3B shows the results of averaging the spectral distribution for the 10 nodes with
highest degree (blue), and the 10 nodes with lowest degree (red). For the non-linear
integration function we chose σ = tanh() for its limiting effect; the parameters of the
simulation, however, tend to keep x⃗ within the linear regime. Finally, unstable connectivity
configurations were discarded.

The hypothesis of low-pass filtering of neural inputs is consistent with well-established
models of synaptic integration and synaptic plasticity (30). Note, however, that the low-pass
effect of the electrophysiology-to-fMRI transformation has no bearing on our theory. We
propose that the actual electrophysiological activity of a neuronal ensemble integrates
differentially the low frequency components of its input, as represented in Eqs. 1–2. The
fMRI signal, in this context, is just a low-pass version of x⃗, and as such cannot be affected
by the connectivity. If we call this signal z⃗, then its spectral content would be simply

, with H representing the electro-haemodynamic coupling function.

Orstein-Uhlenbeck process—We can gain further insight into the relationship between
connectivity and spectrum. Let us consider an Orstein-Uhlenbeck process, i.e. a stable multi-
linear system driven by Gaussian noise. We will represent this process as

(7)

where g is Gaussian noise, and Anm ≥ 0, ‖A‖ < 1 so that the positive feedback represented by
A is balanced by self-inhibition, represented by Inm = δnm, making the system stable. Such a
system can be described by the relationship between the lagged covariance matrix C(τ) = 〈x⃗
(t)x⃗T (t+τ)〉t and the full connectivity matrix Â = −I+A

(8)

(9)

(10)

where Q = 〈g⃗(t)g⃗T〉t is the covariance matrix of the input (31). If for simplicity we consider
A = AT (i.e. the connections are symmetric) and the noise proportional to the identity (Q=I,
that is all the units have the same noise variance), it follows that the solution for the

covariance at zero lag (Eq. 8) is . Similarly, the solution for C(t) derives from Eqs.
9–10. Given that the covariance in real time is a convolution of the signal with itself, it is
equivalent to the spectral power in Fourier space:

Baria et al. Page 8

Neuroimage. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(11)

where † indicates the conjugate transpose operation. Plugging in the solution for C(t), we
obtain

(12)

Expanding in A, we obtain

(13)

We assume that and Anm = 0 and Anm ≥ 0; given this, the second term in Eq. 13 drops out,

and  is proportional to the 'degree' of the node. It follows then that the spectral
power of node n is:

(14)

showing that the relative spectral content of higher frequencies is diminished proportionally
to the connectivity.

Results
Voxel-wise mapping of BOLD power to functional connectivity

In a recent resting state fMRI study, we demonstrated that the full bandwidth BOLD power
spectrum, when sub-divided into 4 bands, exhibits brain spatial specificity (15). Here we
replicate this result by demonstrating the spatial variability of BOLD power when studied by
the single parameter, α. Additionally, we demonstrate that this value is closely related to
whole-brain FC. Resting state BOLD time series were transformed voxel-wise into
frequency space, and the balance between the low and high frequency power was
determined by α (figure 1A, top panel). The Kolmogorov-Smirnov distance (D) between
the BOLD power spectrum and its least-squares fit was smallest on the log-linear scale (D =
0.16 ± 0.02), as opposed to the linear (D = 0.20 ± 0.02) and log-log (D = 0.23 ± 0.03) scales.
Therefore, α was best described by the BOLD power spectrum as expressed on log-linear
axes (figure S1). Connectivity was determined by calculating pairwise Pearson correlations
between BOLD time-series for every voxel in the brain, and counting the number of
correlations greater than or equal to a given threshold (Θ ≥ 0.3) (figure 1A, bottom panel).
The mean and standard deviation of the pairwise Pearson correlations between 500 random
voxels in each subject was 0.01 ± 0.16 (figure 1B, inset). Distribution of α revealed a
frequency-specific spatial segregation of structures, with high α scores in the frontal,
parietal, and occipital cortices, whereas lower scores were present in the temporal cortex, the
limbic and the subcortical areas, thereby replicating earlier results (15). Spatial distribution
of FC was generally similar to α (figure 1B), yet there were also obvious differences, such
as in the thalamus, parts of the temporal lobe, and cingulate gyrus. The voxel-wise
correlation between the connection density and α was highly significant (n=172,394 voxels,
r = 0.75, p<<0.01, figure 1C), demonstrating that the frequency content of local BOLD
frequency content is proportional to the number of functional connections that each voxel
possesses. Such correlations may be due to a variety of sources, including BOLD signal
artifacts, as well as MRI acquisition or data processing artifacts (32). We tested for spatial
specificity of the α–FC relationship by scrambling the group mean FC map with wavelet
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resampling (28). Five-thousand correlations were calculated between α and the resampled
FC maps, revealing a mean correlation (r = 0.56 ± 3.6×10−3, figure 1C, upper inset; note
that if we use random spatial shuffling instead of wavelet resampling, then r = 0.0, which
implyies that the residual correlation is due to intrinsic and preprocessing-imposed
autocorrelations). We further tested the dependence of this relationship on the temporal
pattern of BOLD activity by comparing it with a null model of FC by randomly shuffling the
phase of BOLD time series in Fourier space. Relative to the original data, the null α-FC
relationship was virtually flat (r = 0.11, figure 1C, lower inset). Surrogate group mean maps
were spatially dissimilar from experimental data (figure S2). The correlation of α-FC also
remained high at Θ = 0.4 and Θ = 0.5, and therefore the α-FC relationships are not specific
to the choice of threshold (figure S3). These results demonstrate that the pattern of FC
distributed throughout the brain is not random, as it depends on the spatial structure and the
temporal properties of the BOLD signal.

We built a computational model to capture the fundamental relationship between local
activity fluctuations and functional connectivity, in which we treat voxel activity as a low-
pass filter of synaptic inputs. The slope of the average power spectrum of the 10 nodes with
the highest FC was steeper than that of the 10 nodes with the lowest FC, indicating a greater
distribution of power in the lower frequencies for nodes with more functional connections
(figure S4). Thus, we conclude that there is a general rule, at least for resting state fMRI,
between BOLD power spectra and FC, and that for any given voxel, the greater dominance
of low frequency power will correspond with a higher probability that the voxel has a large
number of functional connections. Moreover, this relationship may be due to low-pass
filtering by synaptic contacts.

BOLD power and functional connectivity vary according to regional synaptic wiring
It is suggested that the dynamics of the BOLD signal differentially represent neuronal
network activity according to regional variations in the structural network architecture found
throughout the brain (33). In agreement with this, we have previously shown that BOLD
power is distinct in synaptically distinct brain regions (15). We therefore tested, at the whole
brain level, that α and FC are differentially interrelated after dividing the brain according to
regional synaptic wiring (figure 2A) (18). Unimodal voxels in the brain exhibited both the
highest α and FC, whereas limbic-paralimbic voxels exhibited the lowest α and FC (figure
S5A-C), indicating that the variation in synaptic wiring corresponds to varying BOLD
dynamics. Some regions exhibited a negative α-FC relationship, and in general these were
the result of a bad linear fit to the data, given that multiple clusters are visible within some
of those regions (figure S5D). Overall, the unimodal areas exhibited the lowest α–FC
correlation (r = 0.54, p<<0.01) whereas the heteromodal and limbic-paralimbic regions
exhibit much higher correlations (r = 0.79 and r = 0.72, p<<0.01, respectively, figure S6).

Linear discriminant analysis was performed to determine the distinctiveness of the spectral
profile and connectivity amongst BAs based on different categorizations (figure 2B).
Confusion matrices were generated for each subject to determine the accuracy of
classifications for the groups of BAs based on their α, FC, and correlation values (table S1),
as tested against our designated synaptic wiring categorization. In general, the correct
classification was low, which was also reflected in the discrepancies of classifications across
studies, especially with unimodal regions (table S2). Limbic-paralimbic BAs were most
often correctly classified with a 65.5% accuracy rate, whereas 48.3% of heteromodal and
38.9% of unimodal BAs were correctly classified on average. The unimodal and limbic-
paralimbic regions were largely distinct from each other, with only 10.3 – 18.9%
misclassification between the two, whereas the heteromodal regions were misclassified at
21.9 – 42.1% (table S3).
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To test the significance of this classification accuracy, we performed the same analysis
designating BA groups based on 1) their relative spatial distance from each other, or 2) their
random placement (as opposed to their synaptic wiring). We then compared the diagonals of
the confusion matrices across the three categorization schemes using a repeated measures
ANOVA. There was a significantly different rate of accuracy, depending on classification
schemes, for both heteromodal (F(2,29) = 13.570, p < 0.001) and limbic-paralimbic (F(2,29)
= 86.514, p < 0.001) categories. No significant differences were detected for the unimodal
category. Post-hoc Holm-Sidak multiple comparisons testing indicated that the synaptic
wiring and spatial distance categorizations were significantly different (p < 0.05) from the
results of random shuffling, but not from each other. No significant differences were found
amongst the unimodal BAs (table S3, figure S7). Thus, whereas the BOLD spectral
properties and FC differentially reflect the regional synaptic wiring to a small extent, this
segregation of BAs is inextricably linked to their spatial locations in the brain.

DTI structural and functional network architecture vary according to regional synaptic
wiring

To demonstrate that distinct variations in synaptic wiring measured through tract tracing
methods can translate to specific macroscopic network properties measured with MRI, we
contrasted five graph theory network metrics across synaptic groups. Analysis was carried
out at the lower resolution BA level, given that measuring voxel-wise white matter
tractography is computationally expensive. Thus, the functional connections refer to the
strength of correlation between the mean time series from each BA, whereas the structural
connections refer to the number of DTI tractography counts that were extracted between
BAs. The results we present here appear to be independent of spatial resolution, as the
lower-resolution BA analysis parallels the higher-resolution voxel-wise analysis. Network
metrics were calculated over a range of connection strength thresholds corresponding to
connection matrix link densities between 0.4 and 0.2 (27) wherein lower link densities
indicate stronger BA-to-BA connection thresholds must be met in order to be included in the
network (figure 2C, inset). Network measurements included node degree (connectivity),
modular degree, centrality, clustering coefficient, and efficiency for resting functional and
structural data (figure 2C). A two-way ANOVA was used to determine differences in
network metrics across synaptic groups and thresholds (statistical details are shown in table
S4). Connectivity (node degree) was highest for the unimodal regions and lowest for the
limbic-paralimbic regions, which parallels our results from the voxel-wise analysis (figure
S3). Modular degree exhibited the greatest differences across synaptic groups, whereas
efficiency and clustering coefficient exhibited the lowest. Likewise, modular degree was the
only metric that was not significantly different across thresholds. Interaction effects between
synaptic group and threshold were significant only for functional centrality and task-based
functional efficiency (table S4). Therefore, we conclude that the variation in synaptic wiring
across the brain is also reflected in the differential functional and structural network
architecture.

The α-connectivity relationship shifts according to attentional state
We have previously shown that performing a visual rating task increases the high frequency
power of BOLD throughout the cortex in areas unrelated to the task (15). Given that BOLD
power reflects FC during rest, we tested how the α–connectivity relationship is influenced
by attentional state using a simple visual-motor attention task in which subjects continuously
rated the size of a moving bar with the spread of their fingers (22) as we recorded their brain
activity. Analysis was carried out at the lower resolution BA level in order to include SC,
which allowed us to determine how both functional and structural network architecture were
related to α during different attentional states.
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The α–FC and α–SC were calculated across all connection matrix link densities between 0.4
and 0.2. For corresponding matrix link densities, the mean α-FC connection strength across
subjects ranged from r = −0.05 ± 0.25 to r = 0.34 ± 0.3 for resting state scans, and r = 0.13 ±
0.23 to r = 0.36 ± 0.23 for attention task scans. Mean α-SC connection strength was
constant, ranging from 0.22 ± 0.19 to 0.23 ± 0.22 for the same link densities. Average
correlations between connectivity and α across subjects were compared against random
null-model networks. A two-way ANOVA was used to determine significant differences (p
< 0.01) in α-FC and α-SC correlations between real and null data, and across multiple link
density thresholds (detailed results shown in table S5). For both resting and attention task
scans, α-FC and α-SC were significantly correlated. Interaction effects with threshold were
significant for the functional networks, but not for the structural networks (figure 3A, table
S5). This indicates, in general, that local measures of BOLD spectral profiles reflect both
structural and functional network connectivity, and this rule is consistent across various
thresholds of connection strengths.

Upon visual inspection, it is clear that α-SC correlations are stronger than α-FC during
resting state. On the other hand, the opposite appears to be true for task scans. To determine
the differences in α-connectivity relationships between attention states, we averaged α-FC/
SC correlation values across multiple link density thresholds for each subject and performed
a paired t-test between scan conditions. The α-SC correlations were higher during resting
state (p < 0.001). In constrast, the task α-FC correlations were not significantly different
across conditions (p = 0.24, figure 3B). Collectively, we conclude from this result that the
fluctuations in the BOLD signal during rest are more indicative of the architecture of
structural networks. Interestingly, a change in α from rest to task (Δα) conditions was
negatively correlated to a change in FC from rest to task (ΔFC). As functional connections
across BAs can be considered to be distant connections, this finding would indicate a shift
from distant to more local contributions of α within a BA, when attending to a task.
Similarly, Δα was negatively correlated to SC. Therefore, the BAs with many structural
connections exhibited smaller increases (or greater decreases) in α when attending to the
task (figure 3C and figure S8). On the whole, therefore, the manner by which local BOLD
frequency properties shift between brain states is likely dependent on regional embedding of
the structural network, as well as on differences in the energy contribution from local and
distant sources.

Similarity of functional and structural networks
Because the α-FC correlations tended to increase as link density decreased (i.e. the strength
of connections comprising a network increased) and α-SC correlations did not (figure 3A),
we measured the spatial similarity of structural and functional connection matrices to
determine whether their organization converges to a similar architecture as the connection
strength increases . In other words, we tested whether structural and functional networks
became more similar as we whittled away the weaker network connections. The percentage
overlap of connection matrices decreased with the link density threshold, indicating that the
networks were actually less similar as their connection strength increased (figure S9A).
Given that α is constant for any given region, the increase in the α-FC correlation across
link density thresholds must then be due to a shift in the distribution of FC. Furthermore, as
the α-SC correlation remained constant across thresholds, the distribution of SC necessarily
remained relatively stable (demonstrated in figure S9B). Overall, these results imply that α
encodes the number of connections to a network node without providing specific
information about the locations of those connections. Additionally, although the properties
of functional networks are likely to change as weaker connections are removed, the
structural networks are less sensitive to this effect and therefore exhibit self-similar
architecture.

Baria et al. Page 12

Neuroimage. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discussion
We show that the distribution of power along the BOLD frequency spectrum, α, differs
across the brain, thereby reflecting characteristics of both SC and FC. The degree to which
connectivity correlates with the slope of the power spectrum is related to regional synaptic
wiring. In general, α more closely reflects SC during resting state than during attentional
states related to a task. Collectively, these results support the notion that spectral profiles in
the brain are not the exclusive products of local activity, but instead they are highly
influenced by the architecture of the networks within which they are embedded. Moreover,
the architectural influence on local activity fluctuations shows brain-state dependence.

Differential distribution of power
Given that the distribution of frequency-power for fMRI BOLD fluctuations, captured by α,
appears to reflect the information processing capabilities of local neuronal populations (16,
17, 34, 35), its spatial variability and its relationship to network connectivity reveal
underlying rules that guide the distribution and integration of information processing in the
human brain. Voxel-wise, α was greatest in the primary sensory cortices and the neocortical
regions overlapping with parts of the default mode network (3), whereas α was lowest in the
limbic-paralimbic regions, as well as in portions of the temporal lobe and the subcortex.
Similar results have been shown in studies examining the spatial distribution of frequency-
power with both the power law exponent (36), as well as with frequency bands within the
BOLD signal (15, 37–39). Greater α values, which signal greater shifts in power towards
lower frequencies, suggest that each time point in the BOLD signal is more heavily
influenced by past events (17). Therefore these results suggest that brain regions exhibiting
lower α are more efficient at online information processing; in a sense, these regions are
more easily influenced by incoming instantaneous signals. Thus, our results suggest that
more functionally complex regions of the brain are more efficient at responding to rapid
changes in information flow.

These findings contrast a recent studies suggesting that functional networks associated with
basic sensory perception possess higher frequency BOLD (6) and electrocortigraphic power
(40) fluctuations than those associated with more complex cognitive operations. We should
emphasize that the higher-order brain regions they define mostly fall within our heteromodal
classification, and we have shown these regions to have some frequency overlap with
unimodal regions Nonetheless, the frequency-based fractionation of functional regions
demonstrated in these studies illustrates the need for further investigations into the nature of
spectral activity and hierarchical information processing within the brain.

Hodology
Recent work from our lab has demonstrated a general principle by which high frequency
BOLD power coincided with brain regions regulating higher-order information processing
(15) based on the idea that the entire cortical surface can be divided into five functional
zones (primary sensory, upstream unimodal, downstream unimodal, heteromodal,
paralimbic and limbic). Collectively, these regions display a continuous spectrum of
cytoarchitectonic differentiation, from the most highly differentiated primary sensory-motor
areas to the least differentiated limbic structures (18). In other words, the intricacy of
synaptic wiring increases in proportion to the complexity of regional function. We note that
the synaptic grouping of BAs based on this criterion implies only that a cortical region is
wired mostly in a manner consistent with its hodological classification, and the spatial
resolution of this classification results in some overlap across groups. This overlap is evident
in our linear discriminant analysis, which demonstrates that the accuracy with which both
spectral activity and connectivity corresponds to synaptic wiring is relatively low. Unimodal
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regions, in particular, show the greatest deviation from our hypothesis, as they were
classified with the same accuracy as random classification.

This mixed classification is also evident when comparing studies that categorize BAs
according to their functional roles (15, 41, 42) – i.e., the regions we defined as unimodal are
classified under a different category across these studies. This may account for the
contrasting results regarding which BAs are characterized by having the greatest
connectivity – unimodal or heteromodal. For example, contrary to our results, (41) lists the
largest functional hubs in the brain, noting that most are “association” (heteromodal) cortex.
However, 10 of our 13 unimodal regions are included in this list, and 7 of those are
categorized as “association” cortex. Further, in another study ranking the connectivity of
BAs across the whole brain (43), 5 of top 10 regions with the highest degree are unimodal
BAs in our study. Thus, it seems that the incongruity of results across studies is likely due to
the inconsistency in how functional zones of the brain are defined, which may reflect
anatomically meaningful or purely statistical boundaries.

Defining these boundaries continues to be a challenge. Our results show that when
heteromodal and limbic-paralimbic BAs were classified according to synaptic wiring, it was
no more accurate than when BAs were categorized based on their relative spatial distances.
These findings indicate that 1) regions of similar spectral activity and connectivity are
spatially proximal to each other, and 2) regional synaptic wiring is spatially continuous.
Thus, while our hypothesis that the spectral profile of local neural activity is influenced by
regional hodological features is supported, it is difficult to disentangle this relationship from
the spatial coherence that is inherent in the architecture of the brain. Moreover, the overall
poor classification accuracy of our linear discriminant analysis suggests there are other
factors, in addition to synaptic wiring and spatial location, that influence local spectral
activity and functional connectivity.

The BOLD power spectrum
The link between connectivity and intrinsic brain activity fluctuations has been extensively
investigated. A number of studies have noted frequency-power differentiation among resting
state functional brain networks (6, 39, 44–46). Similarly multiple findings, including the
fractal scaling of functional connectivity across low frequency wavelet scales in MEG (47),
the distinct 1/f power distribution across different brain regions (36), and the scale-free
temporal recurrence of EEG microstates and fMRI intrinsic connectivity networks (48),
suggest that the intricate relationship between brain activity fluctuations and functional
networks is governed by laws that are characteristic of complex systems. Given that our
power spectrum metric, α, is calculated on a log-normal scale, it is not scale-free. Yet, we
do not take this as evidence that brain networks are random. Our own and extensive other
data provide ample evidence that the network properties of the brain (based on multiple
other measures) show robust power-law behavior (35, 49). Importantly, whether we fit the
spectra with exponential or power relationships the results are >0.9 correlated with each
other (data not shown); as a result these measures provide very similar information. On the
other hand, often power law dependence is simply “assumed” rather than tested. Given that
the power spectrum for BOLD is highly compressed, there is not enough dynamic range for
a proper power law fit, and this limited spectrum as well as temporal whitening applied at
preprocessing may be the reason why the long tail of the power spectra are not visible in
BOLD spectra. Therefore, we maintain that the best fit remains the exponential function, yet
we also assume that the slope of this fit is informative in terms of regional information
processing.
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Frequency power and connectivity
The direct proportionality between the frequency-power distribution and the number of
connections, observed in both functional and structural brain networks, demonstrates a
general rule of brain organization. The precision of the α-FC relationship was demonstrated
by showing that it critically depends on spatial and temporal (e.g., phase) alignment. The
overall significance of this finding is underlined by the idea that local brain activity is
subject to network-wide influences. In fMRI, with our capability to localize brain activity to
fractions of the global scale, this is a concept that can be easily overlooked. Much of the
neuroimaging community remains focused on pinpointing brain function, with the
assumption that BOLD activity at a single voxel is influenced primarily by the local activity
contained therein. Contrary to this supposition we show, by taking advantage of the whole-
brain recording capabilities of fMRI, that local BOLD activity is modulated by the concerted
action of many distant brain regions. This conclusion is in agreement with recent works
suggesting that functional networks emerge as a property of the connection-architecture of
white matter tracts (2, 5, 33, 50, 51) and band-specific global-field synchronization (52, 53).
Furthermore, our model that demonstrates α as product of synaptic low-pass filtering is
consistent with previous work showing that BOLD amplitude is intricately related to
synaptic input (54). As a result, brain regions with the highest α and largest FC/SC
connections likely have more synaptic connections. We note that other factors not included
in our model can influence the spectrum of neural dynamics, such as dendritic geometry,
receptor type, and neurotransmitter-type. Thus, our model is primarily intended to describe a
neural mechanism for the α-connectivity relationship that parallels the simple network
characteristics that can be measured with fMRI. Correlating more intricate macroscopic
network properties to local activity fluctuations might allow one to draw parallels to these
other factors, such as dendritic geometry, yet our data shows no significant correlations with
other network measures. However, it has recently been shown that local glucose metabolism
and the fractality of the BOLD signal are highly correlated (17), and thus many
physiological factors are likely to contribute to local dynamics. In fact, since the submission
of this paper, regional cerebral blood flow has also been shown to be highly correlated to
voxel-wise functional connectivity strength across the whole brain, indicating local
metabolism is higher in brain regions that have overall stronger functional connections (55).
Moreover, the same study demonstrated this metabolism-connectivity correlation was
greater in brain regions associated with higher-order information processing, which directly
parallels our results showing stronger α-FC correlations in more functionally-complex
regions. Based on this finding, it makes sense to suggest that BOLD spectral activity might
also be a marker of regional metabolic energy consumption. In any case, our results are an
extension of the well-supported idea that local brain activity is influenced by network
properties, and in particular by the number of connections to a region.

Frequency power and brain state
Most studies examining the correspondence between structure and function in the brain have
been performed in the context of a task-free “resting state” environment. Therefore, it has
remained unknown whether a task has any influence on this relationship. Recent studies
show that the spatial and temporal properties of brain functional networks change only
minimally between rest and task (3, 20, 21), thereby prompting the idea that resting scans
may be sufficient to study brain function in various clinical populations without the need to
design specific task paradigms (20). The significance of resting state fMRI studies cannot be
overstated; however, here we show that the importance of task-based brain activity cannot
be ignored. Specifically, a change in α from rest to task was accompanied by a shift in the
structure-function relationship in two ways: first, α more closely reflected the architecture of
structural networks during rest than while attending to the task. Second, greater decreases in
α from rest to task were indicative of greater increases in functional connections and greater

Baria et al. Page 15

Neuroimage. Author manuscript; available in PMC 2014 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



structural connectivity overall. As our analysis could be considered as measuring only
distant connectivity from region to region, these results suggest a shift in the energy
contribution from distant to local sources while performing a task, thus reflecting the
modular properties of the brain (56–58). A high resolution analysis accounting for distance
and modularity would provide a clearer picture of the α-connectivity relationship and its
dependence on brain state. Such investigations would expand on the previous studies that
have shown widespread shifts in power (15, 17, 59, 60) and fractality of brain activity (17,
61) in relation to state of attention. Similarly, functional network activity is modulated by
alpha-band oscillatory power (52, 53), which is the EEG frequency range classically
associated with alertness. Thus, it is not unfounded that attention plays an important role in
influencing brain activity fluctuations and connectivity. Here we demonstrate for the first
time, however, that attention modulates their interaction, suggesting that structure-function
relationships are indeed dependent on brain state.

Whereas white matter networks have been reported to be stable on the order of weeks (62,
63), BOLD functional networks can change over a period of seconds (64). In the light of the
findings that high α indicates a more stable signal (17), it makes sense that it is more
reflective of a stable structural network. All subjects performed equally well on our simple
task, but it remains to be seen whether different tasks or levels of difficulty might yield
different results. For example, our task required subjects to continually rate the size of a bar
that fluctuated in length well within the fMRI bandwidth (~0.05 Hz). It is unknown how α
may have changed had we increased the difficulty of the task by increasing the rate of
fluctuations, or whether the rate of the fluctuating bar has any effect on the distribution of α
itself. Recent work that has shown functional connections in the brain change minimally
between tasks with differential cognitive mechanisms, specifically in areas of the brain
where low frequency power is greatest (65). This lack of variability suggests that
modifications of the difficulty or temporal parameters of a task would have little effect on
connectivity, and thus on the α distribution. Therefore, it may be the case that shifting brain
state and attention from inward-reflection (resting state scans) to outward-reflection (task-
based scans) may have the greatest effect on α. Regardless, our results prompt the need for
further research into the emergent nature of functional connections, and question the notion
that structure-function connectivity can be adequately explained with resting state scans.

Limitations
To our knowledge this is the first comprehensive fMRI study examining the influence of
whole-brain connectivity on the spectral profile of the local BOLD signal. We use the term
‘whole-brain’ with some reservation as the low-resolution analyses were performed on each
hemisphere separately and averaged; these steps were implemented to guard against
potential contamination in tractography analyses that can arise from tracking crossing fibers
in the corpus callosum (66). The properties of functional networks may also be different
when viewed within versus across hemispheres, specifically in the case of heteromodal
regions, as shown in a recent study (67). However, our high-resolution analysis was
performed across both hemispheres, and is in general agreement with our low-resolution
within-hemisphere analysis, suggesting that our results are applicable across both
hemispheres. Both sets of analyses may also be influenced by preprocessing methods;
specifically, the voxel-wise global regression of the BOLD signal may introduce negative
correlations between brain regions (68). As our analysis examined only positive correlations,
we do not suspect that exclusion of this preprocessing step would have changed our results.

Additionally, we did not address effective connectivity, which has been shown to influence
the probability of functional connections in the monkey brain (2). Assessing the direction of
information flow in fMRI data remains a challenge, although promising methodologies may
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soon allow for more accurate measurements (69). More studies are needed to determine
what role directed signal transfer plays in the α-connectivity relationship.

Conclusion
In summary, we demonstrate that the local fluctuations of BOLD in the brain are modulated
by network-specific properties of connectivity. We show, in agreement with previous studies
(15, 36–38), that BOLD frequency power is spatially segregated throughout the brain, and
this segregation coincides to some extent with regional network architecture and
connectivity. Finally, contrary to recent suggestions that resting and task-based functional
network properties are minimally different, we demonstrate that BOLD fluctuations
differentially reflect structural connectivity during different states of attention.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

- Local brain fluctuations are correlated to network-specific architecture.

- The slope of the BOLD power spectrum is dependent on regional wiring
architecture.

- BOLD reflects structural/functional networks differently between resting and
task.
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Figure 1. Spatial distribution of BOLD power and degree of FC are highly correlated
A) Methodology for voxel-wise analysis. To generate power distribution maps the resting
state fMRI BOLD signal at each voxel was extracted and transformed to frequency space,
using Welch’s method. The log-linear slope of the power spectrum was used to calculate α.
Steeper slopes translate to higher α, or a greater distribution of power to the lower
frequencies. Network degree, or connectivity, maps were generated by calculating the
Pearson correlation at each voxel against all other voxels in the brain. The number of voxels
exceeding threshold (r≥0.3) represent the number of functional links at each voxel. B)
Group-averaged (N=21 subjects) distribution for α, and for connectivity (number of
functional links). Individual α and connectivity maps were z-scored and averaged across
subjects. Blue represents negative and yellow represents positive z-values. The spatial
distributions of power and connectivity are generally similar. The inset histogram shows the
distribution of pairwise correlations between 500 random voxels in each subject. The dotted
line indicates the connection threshold at a Pearson correlation of 0.3. C) Voxel-wise spatial
correlation (r = 0.75) of group average maps reveals high similarity between power and
number of functional links (left). Spatially shuffling connectivity maps with wavelet re-
sampling 5000 times reduces the average correlation to r = 0.56, which is significantly lower
than the correlation with experimental data, referenced with the dotted line (upper inset).
Similarly, after shuffling the phases of BOLD timeseries in Fourier space, and recalculating
whole brain connectivity, correlation between α and connectivity was reduced to r = 0.11
(lower inset).
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Figure 2. Frequency and network architecture properties vary with synaptic wiring
A) Subdivisions of the brain based on synaptic hodology. B) Group mean Z scored
connectivity and α, and their correlation is plotted for each BA (left). Linear discriminant
analysis was then performed on this data to test for misclassification of BAs (table S3).
Classification space is plotted demonstrating a general segregation of unimodal and limbic-
paralimbic regions, with some overlap from heteromodal regions (right). C) Network
metrics differed across synaptically-grouped BAs. Data points represent the mean of each
synaptic group, averaged across all subjects (N=21). Error bars are standard error. All
metrics were significantly different (p < 0.01), except cluster coefficient for task functional
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networks (table S4). Modular degree exhibited the greatest differences, while efficiency and
clustering coefficient were the least different. Inset displays an example connection matrix at
the highest and lowest link density thresholds for a single subject.
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Figure 3. Local BOLD fluctuations reflect connectivity depending on brain state
A) Structural and functional connectivity correlated differently with α according to scan
condition. Each data point is the mean correlation for each synaptic group, averaged across
subjects. Error bars indicate standard error. Two-way ANOVA revealed FC- α correlations
were significantly greater than random networks for both scan conditions, but SC-α
correlations were significant only during resting state. See table S5 for details. B)
Differences between rest and task α-FC/SC correlations were averaged across link density
thresholds for each subject. Bars represent the mean values across subjects, error bars
represent standard error, and significance between task type is indicated with asterisks
(p<0.001). In general, α-SC correlations were higher during rest while α-FC remained
unchanged between scan conditions. C) The correlation between group mean change in α
(Δα = task α – rest α) and SC, as well as between group mean Δα and ΔFC (task FC – rest
FC) was calculated across BAs for all link densities (figure S8). Only the correlations at link
density = 0.2 is shown here. SC and ΔFC were both negatively correlated to Δα, suggesting
that BAs may be drawing energy from more local sources while attending to a task.
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