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Abstract

Diffusion-weighted magnetic resonance (MR) signals reflect information about underlying tissue

microstructure and cytoarchitecture. We propose a quantitative, efficient, and robust mathematical

and physical framework for representing diffusion-weighted MR imaging (MRI) data obtained in

“q-space,” and the corresponding “mean apparent propagator (MAP)” describing molecular

displacements in “r-space.” We also define and map novel quantitative descriptors of diffusion

that can be computed robustly using this MAP-MRI framework.

We describe efficient analytical representation of the three-dimensional q-space MR signal in a

series expansion of basis functions that accurately describes diffusion in many complex

geometries. The lowest order term in this expansion contains a diffusion tensor that characterizes

the Gaussian displacement distribution, equivalent to diffusion tensor MRI (DTI). Inclusion of

higher order terms enables the reconstruction of the true average propagator whose projection onto

the unit “displacement” sphere provides an orientational distribution function (ODF) that contains

only the orientational dependence of the diffusion process. The representation characterizes novel

features of diffusion anisotropy and the non-Gaussian character of the three-dimensional diffusion

process. Other important measures this representation provides include the return-to-the-origin

probability (RTOP), and its variants for diffusion in one- and two-dimensions—the return-to-the-

plane probability (RTPP), and the return-to-the-axis probability (RTAP), respectively. These zero
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net displacement probabilities measure the mean compartment (pore) volume and cross-sectional

area in distributions of isolated pores irrespective of the pore shape.

MAP-MRI represents a new comprehensive framework to model the three-dimensional q-space

signal and transform it into diffusion propagators. Experiments on an excised marmoset brain

specimen demonstrate that MAP-MRI provides several novel, quantifiable parameters that capture

previously obscured intrinsic features of nervous tissue microstructure. This should prove helpful

for investigating the functional organization of normal and pathologic nervous tissue.
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diffusion; propagator; ODF; return-to-origin; non-Gaussianity; anisotropy; volume; Hermite;
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1. Introduction

Non-invasive magnetic resonance imaging (MRI) has become paramount to the diagnosis

and clinical management of many diseases of the central nervous system (CNS). MRI

characterization of tissue water behavior also has contributed significantly to our

fundamental understanding of CNS tissue microstructure. Diffusion-weighted MRI (DW-

MRI), which is sensitized to the random motion of endogenous water molecules within the

tissue environment, has proven particularly important to both clinical and basic science

applications.

Conventional DW-MR utilizes two magnetic field gradients (Stejskal and Tanner, 1965) of

equal magnitude and direction applied around the 180° radiofrequency (RF) pulse in a spin

echo MR sequence. The magnetic moment of a hydrogen nucleus suffers a net phase shift if

its locations during the application of the first and second gradients are different. A

population of randomly moving nuclei exhibits phase incoherence, which leads to an

attenuation in the overall signal. Mathematically, the signal is related to an important

quantity, referred to as the propagator, through a Fourier relationship whose inversion yields

the expression (Stejskal, 1965; Callaghan, 1991)

(1)

where P(r) denotes the propagator indicating the likelihood for particles to undergo a net

displacement r. The reciprocal space vector q = (2π)−1γδG is an experimentally controlled

parameter, where γ is the gyromagnetic ratio, and δ is the duration of the diffusion

sensitizing gradients whose magnitude and orientation are determined by G. The normalized

signal E(q) is just the ratio of the signal at q to its value at q = 0.

From a physical point of view, a propagator can be assigned to every location in space and

within each voxel. If Pl(R,R + r) denotes the local propagator for a spin whose initial and

final locations are R and R+r, respectively, the MR measurable propagator is given by

(Stejskal, 1965; Callaghan, 1991)
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(2)

where ρ(R) is the likelihood of finding a spin at location R. Due to the averaging process

inherent in the above equation and because the formulation assumes a simple pulse sequence

that features a pair of infinitesimally short gradient pulses—conditions often violated to

some extent in practice— while neglecting the influence of imaging gradients, we refer to

P(r) that is computed through Eq. 1 as the mean apparent propagator (MAP).

From a practical point of view, Eq. 1 suggests that by collecting data at different q-vectors,

e.g., by sampling a large Cartesian grid, one can reconstruct the MAP through Eq. 1 using

the discrete Fourier transform. This scheme is referred to as q-space imaging (QSI)

(Callaghan et al., 1990). The same analysis can be employed for spectroscopy or imaging

data, where in the latter case, the transformation is repeated for every voxel of the image,

and the results reveal an image of displacement profiles (Callaghan et al., 1988; Wedeen et

al., 2005).

Eq. 1 establishes the fundamental relationship between the MR signal and the propagator.

Both these functions are strongly influenced by the microscopic environment, which is

impossible to resolve through direct MRI due to its limitations in sensitivity. However, if

reliable models that link the diffusion process to either of these functions is available, voxel-

averaged microscopic descriptors of the medium can be inferred from a collection of MR

signals. Such an endeavor typically demands an accurate representation of the signal and/or

propagator. For example, parameterizing the small |q| behavior of the signal profile through

an oriented (multivariate) Gaussian function has lead to the introduction of diffusion tensor

imaging (DTI) (Basser et al., 1994a). Since then numerous methods have been developed to

unravel the complex tissue architecture within each voxel (Frank, 2002; Alexander et al.,

2002; Özarslan and Mareci, 2003; Liu et al., 2003; Tuch, 2004; Tournier et al., 2004;

Özarslan et al., 2006b; Jian et al., 2007; Kaden et al., 2007; Aganj et al., 2010; Dell’Acqua

et al., 2010). Those methods that involve analytical representations of the signal were found

to be most convenient as they provide compact representations of the signal as well as the

estimated quantities and are inherently less susceptible to the effects of noise; for example,

the advantage of an analytical representation was recognized (Anderson, 2005; Hess et al.,

2006; Descoteaux et al., 2007) in q-ball imaging whose original realization (Tuch, 2004)

lacked such a representation.

The above-mentioned techniques have focused almost exclusively on delineating the

orientational features of the diffusion process even when there is more than one major fiber

orientation within the voxel—a scenario, which DTI does not account for. However,

orientational features, like the orientation distribution function (ODF), constitute only a part

of the information that could be obtained from diffusion-attenuated signals. Of particular

interest are the features that follow from the restricted character of the diffusion process,

which are contained in the full displacement distribution and its dependence on the diffusion

time. Such features contain information about cell size, shape, and transmembrane

exchange, which are extremely important in biomedical applications of MR, and are
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obtainable from data acquired at large q-values. To infer such microstructural information

and reconstruct the full MAP rather than its orientational features available in the ODF,

acquisition of data with three-dimensional q-space coverage is beneficial (Callaghan et al.,

1988; Wedeen et al., 2005; Wu and Alexander, 2007). Therefore, the development of a

robust analytical model of the signal that could be used to describe data acquired over the

entire three-dimensional q-space would be highly useful. To this end, several models have

been introduced in recent years to represent the three-dimensional q-space signal (Özarslan

et al., 2006b, 2009c; Assemlal et al., 2009; Ozcan, 2010; Cheng et al., 2010; Descoteaux et

al., 2011; Hosseinbor et al., 2011; Assemlal et al., 2011; Yeh et al., 2011; Ye et al., 2012).

In this article, we introduce a new method, referred to as MAP-MRI that subsumes DTI and

extends it to generate a true and proper propagator or MAP in each voxel. By quantifying

the non-Gaussian character of the diffusion process, this method more accurately

characterizes diffusion anisotropy. This technique provides several new quantitative

parameters, or MRI “stains,” derived from the entire displacement MAP that capture distinct

novel features about nervous tissue microstructure. The technique is based on the idea of

expressing the three-dimensional q-space MR signal in terms of the eigenfunctions of the

quantum-mechanical simple harmonic oscillator (SHO) Hamiltonian, sometimes called the

Hermite functions, which have also appeared in the reconstruction of the propagator from its

cumulants (Liu et al., 2003, 2004). Estimation of probability distributions in a series of

Hermite functions is well-studied in the statistics literature (Schwartz, 1967) and such

expansions were shown to possess powerful properties, such as rapid convergence in both

real and Fourier spaces (Walter, 1977) that make them ideally suited to problems of q-space

signal analysis and mean propagator estimation. This representation is an extension of its

onedimensional (1D) counterpart (Özarslan et al., 2008a), which was shown to accurately

represent the signal decay originating from very different environments (from free to

restricted). In fact, the 1D version of the method was shown to estimate important

microstructural properties such as the moments of the underlying compartment size

distribution in a medium composed of isolated pores (Özarslan et al., 2011), and generating

temporal scaling contrast (Özarslan et al., 2012) by employing a disordered media model for

DW-MR (Özarslan et al., 2006a). We introduced an earlier version of the three-dimensional

(3D) formulation in Özarslan et al. (2009c), which was instrumental in evaluating the

robustness of sparse and optimal strategies for multiple-shell q-space MRI acquisitions

(Koay et al., 2012). Here, we introduce a more refined, general, and comprehensive

approach by incorporating an anisotropic scale parameter into the representation, which

increases its adaptability to different diffusion profiles. The resulting representation

reproduces DTI in its first term, and generalizes it to account for non-Gaussianity in the

measured diffusion process.

2. One-Dimensional SHO based Reconstruction and Estimation (1D-

SHORE)

Before we introduce the formulation for representing three-dimensional q-space

acquisitions, we examine a considerably simpler problem that involves q-space data

obtained with different q-values while the gradient orientation, which defines the x-axis, is
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fixed. Such acquisitions have been utilized to address a number of important questions in

biomedical research (Cory and Garroway, 1990; Cohen and Assaf, 2002). Although the

focus of the paper is the modeling framework for three-dimensional acquisitions that will be

presented in the following sections, the formulation for the 1D q-space acquisitions has been

found to be very useful in several applications (Özarslan et al., 2011, 2012), and here can

serve as a pedagogical step before we introduce the more complicated 3D problem.

The q-space signal, obtained from a 1D acquisition as described above, can be written as a

function of one variable—the q-value. The central idea of the 1D-SHORE technique is to

express such a diffusion-weighted MR signal profile in a series of basis functions (Özarslan

et al., 2008a),

(3)

with

(4)

where Hn(x) is the nth order Hermite polynomial and u is a characteristic length that

determines the scaling of the functions. In Eq. 3 and throughout the article, the “ ~” sign is

used to denote coefficients representing the signal prior to normalization. The normalized

MR signal attenuation, E(q) = S(q)/S00280), can also be expressed in this basis as

(5)

where

(6)

and S0 = S(0) is the non-diffusion-weighted signal, which can be estimated from the

coefficients ãn:

(7)

where n!! = n × (n − 2) × (n − 4) × … 2. It is well-known that the functions φn form a

complete orthogonal basis for the space of square-integrable functions (Ohanian, 1990).

A 1D analog of Eq. 1, given by

(8)
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is frequently employed to transform the 1D q-space signal into a 1D propagator. An

important and useful property of the employed basis functions is that their Fourier

transforms are also Hermite functions, enabling direct estimation of the 1D propagator

through the expression

(9)

where

(10)

The basis functions ψn(u, x) are real-valued, which assures that the probabilities will be real-

valued when the an are real. This is a consequence of the phase convention we have

employed in Eq. 4, which ensures that the real and imaginary parts of the signal are even and

odd, respectively. Moreover, Eq. 6 guarantees that the total probability, i.e., the integral of

the function P(x) will be unity as expected for a proper probability density function.

Note that the functions ψn(u, x), defined in Eq. 10, are the solutions to the eigenvalue

equation

(11)

with eigenvalues λn = (2n+1). The SHO analogy emerges because of this equation. The

second term is a parabolic potential consistent with Hooke’s law. In this context, the

parameter u determines the “stiffness” of the spring, and as such, inversely related to the

spring constant in the displacement domain. From a practical point of view, the choice of u

should be consistent with the signal decay rate for the rapid convergence of the series.

Therefore, a reasonable choice of u is the root mean squared displacements of the molecules,

i.e.,

(12)

where D is the diffusion coefficient and td is the diffusion time. With this choice, the first

term of Eq. 5 becomes the Stejskal-Tanner formula, where all higher order terms quantify

the deviation from a monoexponential decay. Similarly, the first term is a Gaussian in the

displacement domain. The crucial point is that all higher order correction terms are

orthogonal to this Gaussian term and because the basis is complete, it can successfully

approximate any kind of signal decay.

Having an analytical representation of the full q-space data enables one to quantify various

features of the reconstructed propagator directly from the an coefficients through analytical

expressions. Such expressions for the moments of the propagator as well as for the zero net

displacement probability are provided in (Özarslan et al., 2011, 2012) and will not be

reproduced here for brevity. For applications such as image registration and segmentation,
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one needs a (dis)similarity measure between different signal or displacement profiles; such a

measure will be crucial in the development of scalar indices in the next section. Since the

SHORE framework represents the displacement profile as a series of orthogonal functions,

the coefficients can be envisioned as components of a vector in a Hilbert space. Therefore, it

is meaningful to consider the inner product of two displacement profiles P(x) and Q(x), as

(13)

It should be noted that the above quantity can be evaluated in q-space as well. If E(q) and

F(q) are, respectively, the signal attenuation profiles corresponding to P(x) and Q(x), then

〈P(x),Q(x)〉 is just twice the integral of the real part of the quantity E*(q) F(q) over the

positive q-axis.

If the 1D-SHORE coefficients of P(x) and Q(x), obtained with the scale parameters u and υ,

are denoted by an and bn, respectively, this inner product is given by

(14)

(15)

(16)

and Km+n is unity when m + n is even and vanishes otherwise.

Based on the definition of the inner product in Eq. 13, we propose an angular metric

(covariance) between two propagators:

(17)

which represents the similarity of the two propagators. As a special case, if the 1D-SHORE

coefficients of P(x) and Q(x) are obtained with the same scale parameter, i.e., u = υ, the

angular similarity is given simply by the expression

(18)

By continuing the geometric analogy, this measure can be converted readily to a

dissimilarity index . Note that this dissimilarity is already scaled

between 0 and 1. However, depending on the quantity, one may be interested in rescaling
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the dissimilarity values so that variations within a certain range can be emphasized to

improve the contrast in resulting images. To this end, the family of functions defined by

(19)

can be employed, where t is the quantity being scaled (e.g., sin θPQ), and ε is a positive-

valued shape parameter that determines the range of values to be emphasized by the

transformation.

3. MAP-MRI for the 3D Problem: A New Generalization of DTI

Our formulation for 3D data follows very closely from the above treatment. There are two

versions of the three-dimensional formulation. In the first approach, referred to as 3D-

SHORE, the same scale parameter is used in all directions, intrinsically assuming that the

spring constant is isotropic. This version can be formulated in Cartesian or spherical

coordinates. The formulation with isotropic stiffness was introduced by Özarslan et al.

(2009c), while an updated presentation with several corrections and extensions is given in

Appendix A. The second version, however, features a more general description involving a

tensorial scale parameter, which represents the diffusion process better. We refer to this

latter approach as MAP-MRI, which is the subject of this section.

We start by generalizing the differential equation whose solutions form the functional basis,

Ψn1n2n3. Eq. 11 becomes

(20)

Here, and throughout the article, the ′ symbols indicate that the vectors and matrices are in

the image reference frame, which does not vary from voxel to voxel. A′ is a symmetric,

positive-definite, second-order (rank-2) tensor that accounts for the spring’s stiffness and

coupling, as well as its anisotropy. It proves useful to choose our reference frame such that

the tensor A′ is diagonal. Let R be the orthonormal matrix that diagonalizes A′ such that

(21)

Thus, q′and r′ vectors in the image frame can be transformed into this “anatomical”

reference frame through the expressions q = Rq′and r = Rr′, respectively. Note that this

reference frame is useful because Eq. 20 becomes separable, and the eigenfunctions are

given as the product of three one-dimensional eigenfunctions, i.e.,

(22)

The eigenvalue corresponding to the above eigenfunction is Λ = 2N + 3, where N = n1 + n2

+ n3 defines the total energy of the spring. In a similar fashion, the basis functions in q-space

are separable, and given by
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(23)

and the three-dimensional q-space signal can be expressed as

(24)

where the second summation is taken over all possibilities of non-negative indices ni (i = 1,

2, 3), satisfying the condition n1 + n2 + n3 = N. The signal attenuation is given by

(25)

where an1n2n3 = ãn1n2n3/S0 and S0 is the non-diffusion-weighted signal intensity revealed by

setting q = 0 in Eq. 24, yielding the expression

(26)

where

(27)

and Kn1n2n3 = 1 if n1, n2, and n3 are all even, and Kn1n2n3 = 0 otherwise.

The number of unknown coefficients to be estimated from the fit is

(28)

However, when complex data are unavailable or when the propagator is expected to be

symmetric, which is the case in the absence of flow, Y-shaped crossings, etc., the

coefficients corresponding to odd values of N vanish. In this case, the number of coefficients

is given by

(29)

where F =⌊Nmax/2⌋.

The propagator, which is just the three-dimensional inverse Fourier transform of E(q) is

similarly given by

(30)
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Taking A as the covariance matrix of displacements, i.e., setting (Basser, 2002)

(31)

where D is the diffusion tensor in the anatomical reference frame, reveals the connection

between the MAP-MRI method and DTI. Note that Φ000(A, q) = exp(−2π2qTAq).

Therefore, with the choice in Eq. 31, the first term of the series in Eq. 25 is nothing but the

signal model employed in DTI. It follows naturally that the first term of the series in Eq. 30

is an oriented Gaussian function. All high order terms are the “orthogonal corrections” to the

Gaussian approximation.

In many applications of 3D q-space imaging, one is interested in visualizing the

orientational features of the propagator. To this end, one can compute the following integral:

(32)

where Ω̂ = (Ωx,Ωy,Ωz)T is a unit vector. Is(Ω̂) can be considered as the sth order “radial

moment” of the propagator. This function is expected to be well-defined for all values of s

greater than or equal to −2. Note that I0(Ω̂) is a true orientation distribution function (ODF)

as its integral over the surface of the unit sphere is unity. The above quantity can be readily

estimated from the expansion coefficients via the expression

(33)

where

(34)

with

(35a)

(35b)

(35c)

(35d)
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Computing the function Is(Ω̂) for many values of Ω̂ using the above expressions yields the

desired orientational profile. Note that this profile should be transformed to the image

reference frame prior to visualization by using the expression Ω̂′= RT Ω̂.

4. Scalar Indices for 3D q-Space Imaging (QSI)

In this section, we shall introduce some indices that could be used to quantify various

features of the three-dimensional diffusion process. In each subsection, one of the indices is

discussed within the context of three-dimensional q-space imaging. Subsequently, an

expression relating the index to the MAP-MRI coefficients is provided for easy estimation

of the index.

4.1. Return-to-the-Origin Probability (RTOP), Mean Compartment Volume, and their
Variants for Lower-Dimensional Diffusion

4.1.1. Zero-displacement probabilities and their relations to microstructure—
Perhaps one of the most important quantities to obtain is the probability for molecules to

undergo no net displacement between the application of the two diffusion sensitizing

gradients. This return-to-the-origin probability (RTOP) is simply given by the value P(0),

which, according to Eq. 1, is just the integral of the signal attenuation function over the

entire q-space, i.e.,

(36)

To illustrate the significance of RTOP, we shall consider a population of isolated pores and

employ the simplifying assumption that the gradients are infinitesimally short. Each

compartment in the ensemble may be of arbitrary size, shape, and orientation. Since each

pore’s contribution to the aggregate signal is proportional to the number of spins within the

pore, the measured signal attenuation is given by

(37)

where f(V) is the compartment volume distribution and E(q, V) is the signal attenuation for a

single pore of volume V. Note that the denominator in the above expression is just the mean

compartment volume, which we shall denote as 〈V〉. Inserting Eq. 37 into Eq. 36, we see that

the observed RTOP value is given by

(38)

where RTOP(V) is the RTOP value for a single pore of volume V. When the diffusion time

(separation of the diffusion gradients) is long enough for the molecules to traverse the

longest end-to-end distance within the pore space, this value is just the reciprocal of V

(Özarslan et al., 2009b), i.e., RTOP(V) = V−1; this follows from the fact that the propagator

is the autocorrelation function of the pore indicator function (Callaghan, 1991), which is
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constant within the pore space and vanishes elsewhere. Consequently, the integral in the

above expression is unity, and the RTOP value is nothing but the reciprocal of the statistical

mean pore volume, i.e.,

(39)

This is quite an important result as no assumption on the shape or coherence of the

compartments is made.

In environments like white-matter wherein the compartments have significant levels of

shape anisotropy (Özarslan, 2009), it may be difficult to satisfy the long diffusion time

requirement along certain directions, which could lead to inaccuracies in the estimated mean

pore volume. Consequently, in such environments, it is beneficial to consider only those

directions along which diffusion is restricted (e.g., on the plane perpendicular to the axons).

Since restricted diffusion leads to a significant reduction in the apparent diffusion coefficient

(ADC), these directions can be associated with lower ADC values. Thus, for the case of

coherently organized white-matter, the orientations along which diffusion is most restricted

correspond to the plane defined by the eigenvectors of the diffusion or A tensor associated

with their smaller eigenvalues. Therefore, two-dimensional q-space data can be used to

estimate a return-to-the-axis probability (RTAP) through the expression

(40)

where q⊥ denotes the q-vector on the sampled plane. Following the same lines as above, it

is straightforward to show that this quantity is simply the reciprocal of the mean cross

sectional area (〈A〉), or,

(41)

Finally, a return-to-the-plane probability (RTPP) can be computed through a one-

dimensional integral of the signal when q is parallel with the fiber orientation, i.e.,

(42)

where q// denotes the component of the q-vector along the fiber axis. A derivation similar to

those for RTOP and RTAP above reveal that for diffusion taking place within coherently

oriented capped cylinders, RTPP is equal to the reciprocal of the mean length of the

cylinders. However, inside substantially prolate confinements, the long diffusion time

condition can be difficult to fulfill along the cylinder’s axis. In this case, the RTPP value

would be close to (4πD0td)−1/2, which is its value for unrestricted diffusion.

4.1.2. Estimation of the zero-displacement probabilities from MAP-MRI
coefficients—The MAP-MRI representation of the MR signal enables simple estimation

of the RTOP value. The relevant expression is given by
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(43)

Moreover, since the MAP-MRI coefficients are computed in a reference frame determined

by the anatomy, the signal and the propagator can be easily separated into components along

the three axes defining the anatomical reference frame. For example, in white-matter areas

with coherently oriented fibers, the principal eigenvector of the matrix A can be assumed to

be the fiber orientation (Basser et al., 1994b), which can be assigned to the x-direction

without loss of generality. In this case, RTPP is simply the integral of P(0, y, z) over the yz-

plane, while RTAP is equal to the integral of P(x, 0, 0) over the x-axis. In terms of the MAP-

MRI coefficients, these quantities are given by

(44a)

(44b)

4.2. Measuring the Similarity of 3D Apparent Propagators

In this section, we introduce a similarity measure for two three-dimensional propagators.

Our formulation extends the angular metric introduced for the case of one-dimensional

propagators. As before, the crucial step involves defining an inner product (〈P(r),Q(r)〉) of

two propagators, P(r) and Q(r), through the three-dimensional version of the integral in Eq.

13. This integral can be evaluated from the MAP-MRI coefficients through the expression

(45)

where am1m2m3 denotes the MAP-MRI coefficient for P(r) obtained with the scale

parameters ux, uy, and uz. Similarly, bn1n2n3 is the MAP-MRI coefficient for Q(r) obtained

with the scale parameters υx, υy, and υz.

An angular metric can be computed via an equation analogous to Eq. 17. When the scale

parameters are the same for the two propagators, i.e., ux = υx, uy = υy, and uz = υz, the

angular metric can be computed through the simple expression

(46)

It should be noted that the MAP-MRI coefficients are computed in the anatomical reference

frame, which varies from voxel to voxel. If the comparisons are to be made in a common
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reference, e.g., the image or laboratory frame, the coefficients would have to be “rotated”

accordingly. This can be done using the well-known transformation rules (Nazmitdinov et

al., 1996).

The above expressions are expected to be useful in applications such as image segmentation

and registration. They can also be used to compute meaningful indices that quantify various

important features of the three-dimensional propagator. Two such indices are introduced

next.

4.3. Propagator Anisotropy (PA)

An important characteristic of the diffusion process is its directional dependence

(anisotropy). A scalar index that quantifies the degree of anisotropy is known to be an

important marker whose value has been recognized since the early days of DTI (Pierpaoli

and Basser, 1996). Indices have been defined for more general high angular resolution

acquisitions as well (Özarslan et al., 2005). In this section, we shall move one step further

and define an index that relates the entire three-dimensional apparent propagator to a

measure of anisotropy. This can be accomplished by computing the angular metric between

the propagator, and its isotropic version. The latter can be obtained by computing the

isotropic part of the propagator using the scheme detailed in Appendix B. The end result is a

series of MAP-MRI coefficients on1n2n3 associated with the isotropic stiffness tensor

, where I is the 3×3 identity matrix. The propagator anisotropy (PA) index then

measures the angular similarity between the propagator P(r) and its isotropic part O(r) as

introduced in the previous section. We found that rescaling the sine of the angle with the

shape parameter, ε = 0.4, yields the desired level of contrast in real images. So, we define

the PA index through the relationship

(47)

where the scaling function σ(.) is defined in Eq. 19. Note that the isotropic propagator is

rotationally invariant by definition. Therefore, the angular metric can be computed without

transforming the coefficients to a common reference frame.

To make comparisons with DTI-based anisotropy information possible, we devise a new

DTI anisotropy measure based on the same idea of comparing the dissimilarity of the

anisotropic Gaussian propagator to its isotropic version. The corresponding index, which we

shall denote by PADTI, is obtained by using the form for the similarity measure given below:

(48)

This similarity measure between the anisotropic Gaussian propagator and the isotropic

Gaussian propagator is used for two purposes within the MAP-MRI framework. Its first

application involves the determination of u0 from ux, uy, and uz. Among all choices for u0

corresponding to different instances of the isotropic propagator, we are interested in the one

most similar to our anisotropic propagator characterized by the parameters ux, uy, and uz.
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Thus, we take the derivative of the above quantity with respect to u0 and set the result to 0.

With the definitions , and , the value of U that determines the

most similar isotropic propagator is given by the root of the cubic polynomial

(49)

This equation has only one real positive root, which determines the value of u0 for which the

similarity measure given by Eq. 48 is maximized.

The second application of Eq. 48 is in the computation of the PADTI index. After u0 is

determined according to the procedure in the above paragraph, (sin θPO)DTI is computed

from the resulting maximum value of , which is subsequently plugged into Eq.

47 to obtain PADTI.

Since the quantities ux, uy, uz, and u0 are related to the eigenvalues of the diffusion tensor,

PADTI and traditional DTI-based anisotropy indices like fractional anisotropy (FA) can be

written as functions of the same quantities. Note that PADTI could capture information that

is unavailable in more traditional measures of anisotropy like FA. The novel conceptual

features of the PADTI index are the employed angular metric and the notion of the “most

similar isotropic propagator” consistent with this metric. On the other hand, traditional DTI

indices tend to be based on the statistical spread of the three eigenvalues, which intrinsically

assumes that the “most similar isotropic propagator” is defined by the mean of the three

eigenvalues of the diffusion tensor. Most importantly for our purposes, the same notion of

distance between propagators is employed in the definitions of PA and PADTI; this feature

makes PADTI useful for comparisons.

4.4. Non-Gaussianity (NG)

A similar idea is used to formulate an index of non-Gaussianity that quantifies the

dissimilarity between the propagator, P(r), and its Gaussian part, G(r). The latter Gaussian

propagator is readily available from a diffusion tensor analysis, and is given solely by the

first term of the series in Eq. 30. If the coefficients for the non-Gaussian propagator are

computed with the same A tensor as in Eq. 31, the similarity between P(r) and G(r) is given

by

(50)

The non-Gaussianity (NG) index is then defined to be

(51)

Note that the anatomical reference frame is established by the same tensor, A. Thus, there is

no need to transform the coefficients into a common reference frame in this case either.

The NG index can be considered an alternative to the kurtosis measure (Jensen et al., 2005),

which is referred to as another index for non-Gaussianity. While kurtosis is based solely on
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the moments of the propagator up to order 4, NG is based on the distance between the entire

propagator and its Gaussian counterpart; as such, NG is typically influenced by the

propagator’s higher order moments. It should be noted that the MAP-MRI coefficients can

be employed to accurately estimate all moments of the MAP. In fact, an explicit relationship

was provided for the 1D problem elsewhere (Özarslan et al., 2008a) and the temporal

scaling of the moments were characterized as a potentially novel contrast by Özarslan et al.

(2012). The corresponding expressions for the 3D problem, which could be employed to

compute the multivariate kurtosis, were not included here for brevity.

Next, we once again exploit the separability of the MAP-MRI expansion to model diffusion

along directions parallel with and perpendicular to the principal eigenvector of the diffusion

tensor to quantify the non-Gaussianity of the diffusion process along these directions. We

outline how this can be achieved for the orientation along the principal eigenvector, which

defines the x-axis. We are interested in diffusion along x, and thus we set y and z coordinates

to 0. The resulting function has an expansion in the 1D-SHORE basis, and the

corresponding coefficients an1 can be computed by equating the three- and one-dimensional

expansions, i.e.,

(52a)

(52b)

(52c)

resulting in the relationship

(53)

where the second summation assigns all values of n2 and n3 satisfying the condition n2+n3 =

N − n1. These an1 coefficients can be subsequently used to compute the angular metric

between the Gaussian and non-Gaussian propagators along the principal eigenvector:

, and NG// = sin θPG// in analogy with Eq. 51.

The derivation for diffusion on the transverse plane follows similarly from the expansions of

P(0, y, z), and is based on the expression NG⊥ = sin θPG⊥ with

, where the coefficients an2n3 can be computed

through
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(54)

5. Methods

5.1. Numerical Implementation

The actual implementation of the MAP-MRI framework is relatively straightforward. Our

implementation consists of the following steps:

1. The MR data set was first used to fit the equation S(q′) = S0 exp(−2π2q′TA′q′). It is

important to impose a positive-definiteness constraint for the tensor A′. To this end,

a scheme discussed in Koay et al. (2006) is used. This scheme employs the

following steps: (i) By taking the logarithm of both sides of the above equation, one

obtains a linear relationship. This equation is solved using a weighted linear

regression method. Weighting the logarithm of the signal values by multiplying

them with the actual signal values was necessary to reduce the noise-induced

effects in the linear estimation (Basser et al., 1994a). (ii) The resulting estimate for

the tensor is fed into a modified Cholesky decomposition routine, which is used in

obtaining an upper triangular matrix, U, so that UTU is as close as possible to the

estimate from the weighted linear fit. (iii) The components of the matrix U are fed

into a Levenberg-Marquardt nonlinear fitting procedure called MP-FIT (provided at

http://www.physics.wisc.edu/craigm/idl/fitting.html), to fit the equation S(q′) = S0

exp(−2π2q′TUTUq′) to the signal values. The final estimate of A′ is obtained via

the expression A′ = UTU. We note that any other tensor estimation scheme

imposing a positive definiteness constraint could be used for this step.

2. The matrix A′ obtained from the first step is diagonalized. The resulting

eigenvalues are assigned to the scale parameters, , and . The matrix whose

columns are the eigenvectors of A′ is defined to be the transformation matrix R so

that the matrix A = RA′RT is diagonal. The q′ vectors were also transformed

according to q = Rq′.

3. This step involves the estimation of the MAP-MRI coefficients from the signal

values. The essential goal is to find the set of coefficients that best represents the

data (in q-space) while enforcing constraints in the displacement domain (r-space).

So, there is only one unified estimation problem, and this set of an1n2n3 coefficients

is used in all subsequent computations. First, we discuss how the problem is posed

within a quadratic programming framework, and then describe how the constraints

on the probability values implied by the coefficients can be imposed.

Posing the estimation problem. Eq. 24 was used to estimate the coefficients ãn1n2n3
from the entire q-space data consisting of Ndata points. Nmax was taken to be 6

(unless stated otherwise), resulting in Msym = 50 coefficients. The coefficients were

cast into an Msym-dimensional vector a, and the signal values were also placed

inside a vector of dimension Ndata denoted by y. The Ndata × Msym dimensional
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design matrix Q was formed by computing the basis functions Φn1n2n3(A, q) in a

consistent manner. With these definitions, Eq. 24 turns into a matrix equation y =

Qa. Thus, we are interested in minimizing the quantity ‖y−Qa‖2 = aTQTQa
−2yTQa+yTy subject to non-negativity and normalization constraints as described

below. It is clear that the estimation of a can be cast as a convex quadratic

programming problem. To solve it, we used the QUADPROG routine in the IMSL

library (Rogue Wave Software, Boulder, CO, USA) provided by IDL’s (Exelis,

Boulder, CO, USA) Advanced Math and Stats Module. This procedure allows the

incorporation of constraints in the estimation. This feature was exploited to enforce

the positive definiteness of the propagator as described next.

Constraining the estimation. To enforce positive-definiteness, the displacement

space is sampled by a Cartesian grid of 35×35×18 points so that the first “slice” of

this grid is on the xy-plane, and the remaining data points have positive z

coordinates effectively sampling half of the displacement space. The longest

distance from the origin we are interested in sampling was taken to be

, where D0 is the bulk diffusivity. Therefore, the spacing between

adjacent points was Δx = rmax/17. Those points that are farther than rmax from the

origin were excluded, resulting in a total of Nsample=10690 samples in the

displacement space. Eq. 30 was also turned into a matrix equation using these

points for the displacement. The constraints were set up such that the probability

density value at each point on this lattice is nonnegative. An additional constraint

was imposed by limiting the integral of the probability density (over the sampled

half-space) to values less than or equal to 0.5 so that the total number of constraints

is Nsample + 1. This integral probability value was estimated by adding up the

probability density values over the sampled lattice after halving the values that lie

on the xy-plane.

In mathematical terms, the constraints can be expressed by the inequality

(55)

where K is an Nsample × Msym matrix. The ith row of this matrix, where 1 ≤ i ≤

Nsample, is evaluated by computing the function Ψn1n2n3(A, ri), and multiplying it

by (Δx)3 for proper scaling. Here, ri is the ith sample in the displacement space.

The last row is necessary to impose the constraint on the integral of the probability.

Here, w is a vector of Nsample elements, indicating the weights of all samples, i.e.,

the elements of w take the values of −0.5 and −1 for samples that are on the xy-

plane and otherwise, respectively. The minus signs on the elements of w as well as

on the right hand side of the above matrix inequality are necessary because the

constraints define the minimum values whereas the integral probability is bounded

from above.
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The end result of this step includes the an1n2n3 coefficients, which are obtained by

dividing the ãn1n2n3 estimates by S0 obtained from Eq. 26 for each voxel of the

image. We note that although our implementation is based on quadratic

programming, any other constrained optimization framework such as the

nonnegative least squares (NNLS) algorithm (Lawson and Hanson, 1987) could be

used to estimate the MAP-MRI coefficients.

4. The estimated coefficients were fed into Eqs. 43 and 44a–b to compute the zero

displacement probabilities, and into Eq. 51 for the NG indices, respectively. The

coefficients were also used in Eq. 33 to visualize the orientational profile Is(Ω̂).

Prior to visualization, the transformation Ω̂′= RTΩ̂ was applied to undo the

coordinate transformation in Step 2 above.

5. To compute the PA index, essentially the same scheme described in Step 3 was

repeated, this time for the formulation in spherical coordinates presented in

Appendix A yielding the coefficients κjlm. In this analysis, the isotropic scale

parameter u0 was taken by finding the roots of the cubic polynomial in Eq. 49

numerically. These κjlm coefficients were used in computing the MAP-MRI

coefficients, on1n2n3, representing the isotropic part of the threedimensional

propagator through Eq. 65. These were further used in the computation of PA

(through Eq. 47) as discussed in the previous section.

All computations above except the computation and visualization of the Is(Ω̂) profiles took

32 minutes (approximately one minute for the DTI estimation, 10 minutes for the

computation of the MAP-MRI coefficients and zero displacement and non-Gaussianity

indices, and another 21 minutes for the estimation of the coefficients for the isotropic

distribution and the PA index) for the slice shown in Figure 1. The computations were

performed on a laptop computer with a 2.6 GHz Core i7 processor (Intel, Santa Clara, CA,

USA) using the IDL programming language (Exelis, Boulder, CO, USA). Significant

improvements in computational speed can be achieved via more efficient implementations,

through paralelization, and low-level programming languages.

5.2. MR Image Acquisition

MR images of an excised, formalin-fixed marmoset brain washed in buffered saline were

acquired on a 7-T vertical-bore Bruker Avance III scanner (Bruker BioSpin, Billerica, MA,

USA) equipped with a micro2.5 gradient system with GREAT 60 amplifiers. The brain

specimen was immersed in perfluoropolyether (Fomblin LC/8, Solvay Solexis, Italy), and

imaged in a 25 mm NMR tube using a radiofrequency coil with 30 mm diameter. The tube

was suspended from the top to avoid contact with the gradient coil. The temperature was

monitored during the acquisition.

A diffusion-weighted multislice spin echo EPI pulse sequence with 4 segments was used. A

total of 489 acquisitions were performed by sampling q-space on 7 different shells defined

by b-values: 200, 800, 1800, 3200, 5000, 7200, and 9800 s/mm2 obtained by employing

gradients of magnitude 109, 218, 327, 436, 546, 655, and 764 mT/m, respectively. The

numbers of images acquired on these shells were, respectively, 5, 14, 32, 56, 87, 125, and

170. The gradient vectors on each shell were distributed isotropically over the surface of the
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respective sphere. MR imaging parameters were: TE=45 ms, TR=6 s, Δ=30 ms, δ=3 ms,

bandwidth=250 kHz, NEX=40, matrix=90×90, number of 2D slices=20, voxel

size=300×300×600 µm3. The acquisition of the entire data set took 5.5 days. Figure 1

illustrates seven randomly selected images each at a different diffusion-weighting.

6. Results

Resolution of orientational complexity

In Figure 2, coronal grayscale PA maps of the excised marmoset brain located 0.7 mm

posterior (top row), 1.2 mm anterior (middle row) and 4.9 mm anterior (bottom row) to

bregma (Palazzi and Bordier, 2008) are shown with companion MAP-MRI-derived I2(Ω̂)

profiles visualized via color glyphs from selected regions. In the top row, there is a diagonal

area of crossing between the inferior-located external medullary lamina and the superiorly-

located internal capsule within the thalamic reticular nucleus. In the second row, the internal

capsule extends superiorly from the bottom left corner through the orthogonal fibers of the

external capsule to become the corona radiata. In the bottom row, significant anisotropy is

detected in a caudatolenticular gray matter bridge traversing the oblique caudocranial

orientation of the internal capsule.

Scalar indices

The scalar MAP-MRI indices introduced above along with the traditional DTI-derived

indices (Basser and Pierpaoli, 1996) of S0, fractional anisotropy (FA), mean diffusivity

(MD), diffusivites parallel with (D//) and perpendicular to (D⊥) the principal eigenvector of

the diffusion tensor, and direction-encoded color (DEC) (Pajevic and Pierpaoli, 1999) maps

are shown in Figure 3. In the third row, the MAP-MRI maps of zero displacement

probabilities are illustrated. To generate images with consistent dimensions of reciprocal

length, the cube root of RTOP and square root of RTAP are shown. There appear to be two

main clusters of voxels in the (RTOP)1/3 image wherein the white-matter areas generally

appear hyperintense, and gray-matter areas make up the lower intensity regions. There is

limited contrast within each cluster. The RTPP and RTAP values can be seen as the

“decomposition” of the RTOP values into components parallel and perpendicular to the

direction of the primary eigenvector of the diffusion tensor, respectively. Since gray-matter

areas are relatively isotropic, this decomposition does not change the values significantly—

the intensity differences between the three images are mostly due to differences in the

scaling of the underlying values. However, in highly anisotropic white-matter areas, RTPP is

significantly smaller than (RTAP)1/2 as the propagator is considerably broader along the

fiber orientation. Interestingly, the RTPP values in white-matter are distributed around the

values for gray-matter. There is some contrast within the white-matter areas. The higher

intensity regions in the RTPP map are expected to correspond to the white-matter areas with

complex fiber orientation distributions (e.g., due to crossing or fanning fibers) or substantial

presence of isotropic restrictions (e.g., glial cells). Indeed, a portion of these white-matter

regions with larger RTPP values, most notably in corona radiata, exhibit crossing patterns in

the orientation maps (not shown). On the other hand, the RTPP values are small in regions

with highly anisotropic, coherent single fiber architecture such as the corpus callosum,

internal capsule and optic tracts. The principal eigenvector of the diffusion tensor deviates
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substantially from the fiber orientations in regions with crossing fibers. This deviation does

not occur in regions with coherent fiber architecture, which appear hypointense in RTPP

maps. Thus, we conclude that the local apparent propagator is considerably broader along

the fiber orientation. Similar though inverted features of the contrast in the D// maps

supports this conclusion. The contrast in the (RTAP)1/2 map is similar to that in the

(RTOP)1/3 image, with the main difference being the enhanced contrast between the

coherently organized white-matter areas and gray-matter.

The fourth row of Figure 3 shows the non-Gaussianity (NG) indices associated with the

threedimensional propagator (left), along the principal eigenvector of the diffusion tensor

(NG//, middle), and perpendicular to it (NG⊥, right). Note the different scaling employed in

the NG// map. The contrast in the NG map is very similar to that in the (RTOP)1/3 image

wherein the white-matter areas similarly exhibit greater overall non-Gaussianity than the

gray-matter regions. The decomposition of this non-Gaussianity into directions parallel with

and perpendicular to the principal eigenvector of the diffusion tensor, however, yields very

different results. The NG// map is relatively homogeneous (despite the narrower dynamic

range captured by the scaling); the most significant elevation occurs within voxels of

subcortical white matter. Based on their relative locations, these anatomic regions appear to

represent an interface between cortex and classic white matter tissue architectures that may

be susceptible to partial volume effects. We note that lower S0 values in white-matter and

rapid decay along the fiber orientation could push the signal toward the Rician noise floor at

larger q-values, which would lead to an apparent non-monoexponential behavior (Koay et

al., 2009a), thus elevate the observed NG// value in white-matter. Nonetheless, the lack of

contrast between white- and gray-matter suggests that diffusion is relatively Gaussian

throughout gray-matter and parallel to coherent fiber orientations within white-matter. Note

that this information and contrast are not available in any of the DTI-derived maps. Non-

Gaussianity in the orientation perpendicular to the principal eigenvector is the major

contributor to the overall non-Gaussianity; thus the contrasts in NG and NG⊥ maps are

similar. It is interesting that in all NG maps, fiber crossings in white-matter do not contribute

to non-Gaussianity—an assumption previously employed by the multi-tensor models.

Finally, anisotropy measures are shown in the last row of Figure 3. On the left is the PADTI

index, which is computed from Eqs. 48 and 47 and is based on the distance between the

propagator implied by DTI and the Gaussian component of the isotropic distribution, which

is most similar to the anisotropic Gaussian propagator as described in Section 4.3. This

Gaussian and isotropic distribution is defined by the first term in the MAP-MRI

representation of the isotropic propagator as described in Appendix B. Similarly, the map in

the middle is the propagator anisotropy (PA) index that is based on the dissimilarity of

MAP-MRI’s full propagator, and possibly non-Gaussian isotropic propagator. Finally, the

image on the right is the difference between the angular dissimilarities employed in the

computation of PADTI and PA indices. The PADTI map is very similar to the FA map as

expected for all DTI-based anisotropy images. The intensity differences between FA and

PADTI maps are due to the way the indices are defined. The PADTI index has the advantage

that its definition employs the same approach taken in the development of the PA index. To

compare the PA map with its DTI version, we used the differences between the angular
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dissimilarity measures rather than the actual PA values to keep the final difference map

insensitive to the employed scaling function. The difference image is scaled such that

positive values are represented in grayscale while anisotropy decrease is represented in a

color scale (Özarslan et al., 2008b). Anisotropy in the full MAP is significantly greater than

the anisotropy of DTI’s Gaussian propagator in most voxels, except for a few voxels

immediately adjacent to the ventricles or basal cisterns (demonstrated by the color portion of

the scale). Interesting contrasts appear within gray- and white-matter regions in the angular

difference map. Anisotropy is well-captured by DTI in the corpus callosum, external capsule

and temporal subcortical white matter, resulting in hypointense regions in the angular

difference map. However, in more paramedian regions like the internal capsule, corona

radiata and parietal subcortical white matter, non-Gaussian terms seem to contribute

significant levels of anisotropy to the PA measure, thus yielding large ΔθPO values.

Compared to DTI, MAP-MRI’s PA indices also detect more underlying structural

anisotropy within traditional gray matter structures, such as the cortex, thalamus and caudate

nucleus in the coronal slice shown. For example, there is more apparent anisotropy within

the deep and superficial layers of the parietal cortex presumably from the pyramidal neuron

exiting axons and peripheral dendritic trees, respectively. Similarly, there is increased

anisotropy detected throughout the dentate gyrus likely from the radial granule cell neuron

orientations. Thus, tractography based on the PA values obtained via MAP-MRI may

increase our ability to interrogate neuronal connectivity within nervous tissue structures that

do not just contain coherently-oriented macroscopic axon bundles (Shepherd et al., 2006).

The reciprocal of the RTOP and RTAP values have the dimensions of volume and area, and

can be used to derive maps of apparent mean volume (AMV) and apparent mean cross

sectional area (AMCSA), respectively (Fig. 4). For clarity, only those voxels with a PADTI

value of at least 0.4 are included in the AMCSA maps as the AMCSA parameter is more

meaningful in white-matter. Under certain idealized conditions, these parameters then equal

the mean volume and mean cross-sectional area of the pores that contain the observed water

molecules (see Theory). This suggests AMV and AMCSA maps may correlate with the

volume and cross-sectional area of cells within nervous tissue. Because the myelinated

white-matter axons are not very permeable, the influence of axons’ cross sectional area on

the computed AMCSA map is expected to be strong. Indeed, Ong et al. (2008) report that

zero displacement probabilities are inversely related to the axon diameter in excised mouse

spinal cord specimens. In the present marmoset data, the AMCSA values for the corpus

callosum are approximately 13 µm2, which corresponds to about a 2 µm radius if the cross

section of the pores is assumed to be perfectly circular. Some overestimation is expected

since this analysis does not account for the extracellular space (Ong et al., 2008). Most

voxels within the marmoset brain dataset will contain more complex and heterogeneous

tissue architectures than simple corpus callosum or spinal cord white matter, but Figure 4

suggests cell size distribution is one of the determinants for the computed AMCSA and

AMV values. This will require further investigation in future studies.
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MAP analysis on limited data

The original marmoset brain imaging dataset comprises 489 different images obtained by

sampling the q-space up to a b-value of 9800 s/mm2. This is a relatively timeand gradient-

intensive protocol, which would be difficult to acquire when strong gradient coils, large

signal-to-noise ratios, and/or long acquisition times are unavailable, which is invariably the

case in clinical settings. To assess the feasibility of the method under more clinically-

feasible conditions, we repeated the MAP-MRI analysis using a small subset of the entire

data set. Specifically, we used the data points up to a b-value of 3200 s/mm2, and further

reduced the total number of q-space samples used in the MAP-MRI analysis by including

those points with a non-negative z-component. This resulted in a total of only 55 data points.

Figure 5 illustrates the MAP-MRI results obtained from the full (left) and partial (right)

datasets. It was necessary to reduce Nmax to 4 for the latter. This choice was established on

observations of the condition number of the design matrix and simulations performed on

well-characterized systems. The estimations are expected to be most meaningful when the

condition number of the design matrix is not very large. When we use the full data set, the

condition numbers were found to be 18, 250, and 5800 when Nmax was set to 4, 6, and 8,

respectively. When the small subset of the entire data set is used (to generate the right hand

side of Figure 5), the condition numbers are 62 and 2600 for Nmax values of 4 and 6,

respectively. Based on these findings, we have decided to use Nmax=6 for the full data set,

and Nmax=4 for its subset. Further simulations of idealized systems (results not shown)

confirmed that reasonable estimates are achieved with these choices for Nmax.

The orientation profiles, overlaid on the coronal grayscale PA maps, demonstrate the impact

of reconstruction with partial data on a region 4.3 mm anterior to bregma (Palazzi and

Bordier, 2008) with the anterior commissure (left-to-right) and septal fornix (through plane

central part of figure). It is very encouraging that the partial data reconstruction is

reasonably similar to the original one despite significant reductions in the number of images

and the range of b-values employed. The scalar maps, particularly the PA image, appear to

be affected more. Although the images generated from partial data appear less detailed,

more anisotropic, and less Gaussian, much of the information content prevails in the

significantly less demanding protocol. Future studies will be directed towards developing a

feasible dataset for MAP analysis that overcomes the multiple technical limitations of q-

space MRI acquisitions in human subjects.

Choice of the radial moment order, s

The maps in Figures 2 and 5 were generated by computing the integral in Eq. 33 with s = 2.

Figure 6 shows the maps as a function of s for three different ROIs representative of white-

matter regions with coherent (green box) and crossing (red box) fibers, and cortical gray-

matter (blue box). In the last column, glyphs representing the Gaussian propagator

associated with the DTI analysis, obtained from the first term of the MAP-MRI

representation, are shown. It should be noted that DTI’s Gaussian propagator has the same

orientational information for all s. Setting it to some “non-special” value like 5 was to

emphasize that the derivations would be valid for any value of s. The function I0(Ω̂) is a true

orientation distribution function (ODF) as its integral over the sphere is unity. Figure 6

demonstrates that increasing s leads to sharper orientation profiles. However, at very large s-
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values, distinct fiber orientations tend to merge and some orientational features start to

disappear. Disappearance of orientational complexity was observed in simulations of

multifiber systems as well (results not shown) indicating that very large values of s should

be avoided. Based on these observations, we argue that the orientational features of the

propagator can be captured adequately when s is set to a value slightly above 0—hence our

choice s = 2 in Figures 2 and 5.

Orientation profiles in the anatomical reference frame

As described in the Theory section, the reconstruction is performed in the reference frame in

which the diffusion tensor is diagonal. When the orientational features of the underlying

propagator are to be visualized, the reconstructed MAP needs to be transformed back into

the reference frame common to all voxels (the image reference frame). This was

accomplished for the function Is(Ω̂) by transforming its argument via the expression Ω̂′ = RT

Ω̂. This transformation was necessary to provide a correct representation of the glyph

consistent with the location of the voxel within the entire image. However, the form of the

apparent propagator before it undergoes this transformation could be potentially very useful

as well. To illustrate this point, in Figure 7 we show eight voxels selected within the cortical

gray-matter of the marmoset brain. These voxels are marked via blue dots on the PA map on

the left. The corresponding set of orientational profiles before and after the reference frame

transformation are shown on the right. The approximately radial preference of diffusion

within the cortex is evident from the top row, which provides the glyphs after the

transformation. On the other hand, the glyphs in the anatomical reference frame, illustrated

on the bottom row, are aligned so that the preferred orientation is consistently along the

horizontal direction, which follows from assigning the largest eigenvalue of the diffusion

tensor to the horizontal axis in the diagonalization scheme. Having the propagator defined in

a consistent frame of reference could make it possible to quantitate the parameters

associated with the shape of the apparent propagator without having the influence of its

orientation. By using a metric between the propagators (e.g., the angular metric employed in

the formulation of the scalar indices in this work), the image could be clustered into regions

with similar shape characteristics (Freidlin et al., 2007). We envision this approach to be

useful in addressing problems such as cortical parcellation.

7. Discussion

Influence and estimation of the tensorial scale parameter

The MAP-MRI framework requires the estimation of not only the coefficients ãn1n2n3 but

also the anisotropic scale parameter A′ (hence A) as seen in Eq. 24. A novel aspect of our

implementation, which proved to be very robust in practice, involves breaking this otherwise

challenging computational problem into two very wellstudied problems of (i) positive-

definite tensor estimation to obtain A′, and (ii) convex quadratic programming to estimate

the coefficients ãn1n2n3. Although the coefficient estimates depend on A′, we have observed

that the propagator and the scalar measures are very weakly dependent on the particular

value of A′, which functions merely as a scale parameter. This dependence is weak because

the employed basis is complete, and thus capable of representing any function. For this

reason, a scale parameter is not even used in statistics literature (see e.g., Schwartz (1967)).
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However, to efficiently represent the propagator (i.e., with few terms in the series), one

needs a scale parameter in reasonable proximity to the width of the functions being used. In

an earlier implementation of the method (results not shown), we used only those data points

in the low-q regime to estimate the tensor. Although the tensor fit was very satisfactory, the

end results were not as good as those we obtained when the tensor model was fitted to the

entire data set. This is because when the entire data set is used, the scale parameter captures

the overall structure of the data set better even though the tensor fitting yields relatively

large residuals. These residuals are partly due to the non-Gaussianity of the diffusion

process. Thus, they are modeled by the subsequent terms of the MAP-MRI series. It should

be noted that an important feature of the tensorial scale parameter is its anisotropy. In certain

anatomical regions, decay rates along some directions can be an order of magnitude

different than rates along other directions. Therefore, it is important to employ an

anisotropic scale parameter; not doing so would lead to employing scale parameters far from

its optimal value along some directions. This problem was not realized in some of the earlier

works. To assess the quality of the fitting achieved, we computed the adjusted R2 values for

all voxels. These values were clustered very close to unity, with slight reductions in white-

matter regions. This behavior can be attributed to the sharpness of the diffusion profiles and

the effects of noise (see the S0 map in Figure 3). Nonetheless, an average adjusted R2 value

of 0.98±.07 across the brain parenchyma was observed, demonstrating the level of data

fidelity achieved using the basis along with our estimation scheme. Reliance on the tensor

model as its first step is a useful feature of our technique also because it makes comparison

with DTI meaningful and convenient (see above).

Scalar quantities for diffusion along parallel and perpendicular directions

Yet another novel feature of the MAP-MRI framework is the formulation of the problem in

a reference frame determined by the tensorial scale parameter A′. This feature enabled us to

introduce scalar measures parallel with and perpendicular to the principal eigenvector of this

tensor. By no means do we suggest that this decomposition would consistently represent

diffusion parallel with and perpendicular to the fiber orientation as the principal eigenvector

of A′ would coincide with the fiber orientation only in regions with highly coherent fiber

bundles. The mismatch between the principal eigenvector and the fiber orientation is

expected to be most significant in white-matter areas with more than one distinct fiber

bundles. Consequently, the presence of fiber crossings is interpreted as one of the

determinants of contrast in these scalar maps. In fact, contrast induced by fiber-crossings

was observed to some extent in RTPP maps as discussed above.

Comparison with reconstruction via Gram-Charlier series

The MAP-MRI framework has a number of important differences from the reconstruction

via the Gram-Charlier series, which also employs Hermite functions, but is based on the

cumulant expansion of the characteristic function (Liu et al., 2003, 2004). First, the signal

models are different. In the cumulant expansion approach, the logarithm of the signal (the

characteristic function) is expanded in a Taylor series, and the cumulants are estimated from

the coefficients of this non-orthogonal expansion. As such, the Hermite functions do not

appear in the signal domain. Unlike in this approach, our signal model employs the

orthogonal basis of Hermite functions (see Eqs. 3 and 24). The first terms in both
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approaches contain Gaussians; hence both techniques are generalizations of DTI. However,

unlike in the case of cumulant expansion, the tensor that we employ functions as a scale

parameter, which is estimated from the entire q-space data. It is not meant to represent the

second order cumulants of displacements. There are a number of difficulties associated with

applying the Gram-Charlier series to the propagator reconstruction problem. It is well-

known that the Gram-Charlier series does not yield a proper (e.g., positive-valued)

propagator in many cases of interest (Pawula, 1987; Blinnikov and Moessner, 1998).

Application of this technique to reconstruct the diffusion propagator has proven to be

problematic within the diffusion MR context as well (Ghosh et al., 2010). Another problem

is that the cumulant expansions suffer from limited radius of convergence (Frøhlich et al.,

2006), and can fail to model the high-q behavior of the signal decay profiles (see Figures 1

and 5 in Özarslan et al. (2013)). These problems are overcome in the MAP-MRI framework.

Other applications of the method

The developed method can be used as a numerical tool to aid in addressing several important

problems that involve the estimation of microstructural parameters. For example, the

decomposition of the signal into directions parallel and perpendicular to the fiber direction

could make it very convenient to employ the AxCaliber model (Assaf et al., 2008) to

determine the axonal size for arbitrarily oriented fibers. Because the MAP-MRI framework

enables the estimation of indices such as RTOP that demands a complete characterization of

q-space in a robust way, a four-dimensional acquisition (three spatial and one temporal) to

characterize the temporal scaling (TS) contrast (Özarslan et al., 2012) could be feasible that

would produce meaningful estimates of the apparent fractal dimension in the brain (Özarslan

et al., 2006a). The ability of the Hermite functions to represent the three-dimensional q-

space signal could be exploited along with the compressed sensing method (Donoho, 2006;

Candés et al., 2006) to reconstruct the propagator (Rathi et al., 2011; Paulsen et al., 2011)

from sparsely sampled data (Koay et al., 2012) to further boost the efficiency of the MAP-

MRI technique. Similar to what was done for one-dimensional q-space imaging (Özarslan et

al., 2012), any bias due to the Rician character of the signal, particularly at large b-values

could be mitigated in three-dimensional q-space data by incorporating the MAP-MRI

framework into a method developed to remove the effects of noise in magnitude-valued data

(Koay et al., 2009a,b). The MAP-MRI method could be used with complex data as well; in

that case, the odd-ordered φ(.) and ψ(.) functions would also have to be included in the

analysis. This would enable the reconstruction of asymmetric profiles (Ozcan, 2010), which

are known to arise in geometries involving Y-shaped crossings (Liu et al., 2003), a nearby

surface on one side of the voxel (Özarslan et al., 2008b), and curving fibers (Özarslan et al.,

2009a).

8. Conclusion

MAP-MRI represents a new comprehensive analytical framework to model the three-

dimensional q-space signal and transform it into apparent propagators. The key feature of

the approach is the anisotropic spring constant or scale parameter. The anisotropically-

scaled basis not only improves the ability of MAP-MRI to adapt to very different signal

profiles, but can reduce the technique to the widely-employed DTI method if only the first
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of the basis functions is employed. Consequently, the MAP-MRI technique subsumes DTI

while also providing several novel, quantifiable parameters that capture previously obscured

intrinsic features of nervous tissue microstructure. The features of the employed basis make

the MAP-MRI framework very robust and it also may be adapted to the technical limitations

of in vivo imaging of clinical patients. Hence, MAP-MRI should prove helpful for

investigating a spectrum of important scientific problems regarding the functional

organization of normal and pathologic nervous tissue. This may ultimately lead to increased

diagnostic accuracy of diffusion-weighted MRI for patients with CNS disease.
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Appendix A

3D-SHORE: The Special Case of Isotropic Stiffness and its Representation

in Spherical Coordinates

In this section, we shall treat a special case of the above formulation in which the stiffness

tensor A is isotropic. In this case all eigenvalues of A are equal, and will be denoted by .

The operator on the left hand side of Eq. 20 becomes , and the problem can

be stated in q-space using spherical coordinates as

(56)

where q = |q|, Λjlm = 2l + 4j −1, and the basis functions are given by

(57)

where  is the associated Laguerre polynomial and Ylm(Ω̂
q) is the spherical harmonic,

which is a function of the gradient vector’s orientation described by the unit vector Ω̂
q. Then

the MR signal profile can be expanded in this basis

(58)

where the second summation is evaluated over all possible values of j ≥ 1 and l ≥ 0

satisfying the condition 2j + l = N + 2. Figure 8 illustrates the allowed values of N, l, and j

when Nmax = 8. Here, the squares represent the terms corresponding to the even values of l.

Those corresponding to odd values of l, depicted by circles, can be neglected when the
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propagator is symmetric. Note that each point corresponding to a certain l value contributes

2l + 1 coefficients as the remaining index m takes values between −l and l.

Similar to what was done earlier, the MR signal attenuation profile, E(q) can be expanded in

the same basis. The coefficients are given by κjlm = κ̃jlm/S0, where

(59)

Since this representation is totally equivalent to the Cartesian representation with isotropic

potential (see Pluhar and Tolar (1961) for the matrix that transforms the an1n2n3 into κjlm

and vice versa), the number of independent coefficients for general propagators is still given

by Eq. 28, while for symmetric propagators Eq. 29 holds.

The three-dimensional propagator is expressed by a similar expression

(60)

where the basis functions are given through a three-dimensional inverse Fourier transform of

Ξjlm(u0, q) by

(61)

Appendix B

The Isotropic Propagator and the Transition between Spherical and

Cartesian Representations

The spherical representation with the problem featuring isotropic stiffness is most useful

within the MAP-MRI framework in obtaining the “isotropic part” of the displacement

profile, which is the isotropic displacement profile that most faithfully represents the true,

possibly anisotropic, propagator. It is possible to extract the isotropic propagator because the

angular dependence is characterized exclusively by the spherical harmonic function, which

is separated from the radial dependence of the signal. The isotropic component of the

propagator is contained in those terms with l = m = 0 only. This condition further implies j =

1 + N/2. The relevant basis functions are given by

(62)

Using the identities (Gradshteyn and Ryzhik, 2000)
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(63a)

(63b)

it is straightforward to show that the isotropic propagator is given by

(64)

where I is the 3×3 identity matrix. The above expression is an expansion in the form of the

MAP-MRI series, with coefficients

(65)

Several inferences can be made from the above findings for isotropic propagators. First, all

MAP-MRI coefficients with at least one odd index vanish. Second, the coefficients with

permutations of the indices n1, n2, and n3 are equal to each other. Finally, there are a total of

1 + Nmax/2 unique coefficients that describe an isotropic propagator.

These observations can be used to compute the coefficients for the isotropic, though

possibly non-Gaussian, propagator that best describes a given signal profile. To this end, Eq.

58 can be used to estimate κ̃jlm, which can be subsequently divided by S0 to yield κjlm. The

MAP-MRI coefficients describing the isotropic part of the propagator can be obtained using

Eq. 65. Alternatively, one can perform the MAP-MRI fitting with 1 + Nmax/2 unknowns by

imposing Eq. 65 from the outset along with .
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HIGHLIGHTS

MAP-MRI is a comprehensive method for modeling 3D (multi-shell) q-space signal

MAP-MRI subsumes and generalizes diffusion tensor imaging (DTI)

Several novel parameters capture previously obscured microstructural features

MAP reconstruction is performed on an excised marmoset brain dataset

MAP-MRI is robust, efficient, and may be adapted to in vivo and clinical imaging
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Figure 1.
Sample coronal images for 7 increasing diffusion weightings (Δ/δ=30/3 ms) collected from

an excised, formalin-fixed marmoset brain (image plane approximately 1.8-mm anterior to

bregma (Palazzi and Bordier, 2008)).

Özarslan et al. Page 35

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Resolution of orientational complexity in three different slices (top to bottom) of the

marmoset brain. Several regions of interest with orientational heterogeneity are indicated by

rectangular boxes in the grayscale PA maps (middle). The I2(Ω̂) profiles visualized via color

glyphs (right and left) illustrate the distinct fiber orientations resolved by the MAP-MRI

technique.
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Figure 3.
Traditional DTI and MAP-MRI-derived parameter coronal maps of marmoset brain. First

two rows: traditional DTI-derived maps of non-diffusion attenuated signal (S0), direction

encoded color (DEC), fractional anisotropy (FA), mean diffusivity (MD), and diffusivities

along (D//) and perpendicular (D⊥) to the principal eigenvector. Third row: three zero

displacement probabilities are shown. The cube-root of the return-to-the-origin probability

(RTOP), and the square root of the return-to-the-axis probability (RTAP) are provided so

that these quantities have the same dimension with the return-to-the-plane probability
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(RTPP). Fourth row: three non- Gaussianity indices (from left to right: three-dimensional,

parallel with and perpendicular to the principal eigenvector of the diffusion tensor) are

illustrated. Fifth row: maps of DTI-derived and MAP-MRI-derived propagator anisotropy

(PA) maps are illustrated. The final image depicts the quantity (θPO)MAP−(θPO)DTI that

represents the difference in the anisotropy maps obtained via MAP-MRI and DTI schemes.

Please see the Results section for complete description of the differences between specific

conventional DTI and MAP-MRI parameters.
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Figure 4.
Apparent mean volume (left) and apparent mean cross-sectional area (right) maps. For

clarity, the latter was shown only on white-matter areas determined by including those

voxels with a PADTI value of greater than 0.4. The AMCSA values for the corpus callosum

are approximately 13 µm2, which corresponds to a radius of about 2 µm for pores with

perfectly circular cross sections. Each row depicts these images for a different slice in the

marmoset data set.
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Figure 5.
MAP reconstructions from limited data. MAP-MRI results obtained by using all 489 q-space

samples (on seven shells) are shown on the left. A small subset of the dataset comprising 55

samples was obtained by including only those points with a b-value of 3200 s/mm2 or less

that are located in one of the hemispheres. MAP reconstructions and scalar images obtained

by using these 55 points are shown on the right.
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Figure 6.
The effect of the “radial moment”, s, on the orientation profiles. The top image shows three

ROIs representative of white-matter regions with coherent (green) and crossing (red) fibers,

and cortical gray-matter (blue). The glyphs illustrate the corresponding Is(Ω̂) profiles with

different values of s. For comparisons, the last column shows the I5(Ω̂) profiles obtained

from the leading DTI term of the MAP-MRI representation.
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Figure 7.
Eight selected voxels within the cortex of the marmoset brain (left panel) with the

corresponding orientation glyphs in image and anatomical reference frames (top & bottom,

respectively) associated with each voxel demonstrated to the right. The latter profiles are

available from the function Is(Ω̂) prior to the coordinate transformation Ω̂′ = RT Ω̂, and

provide the glyphs oriented in a consistent way that could be useful when the orientation-

independent features of the propagator need to be compared.

Özarslan et al. Page 42

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 8.
The values of the indices j, l, and N used for Nmax = 8 in the representation of the series

involving spherical coordinates when the stiffness is isotropic. Each point on this plot

represents 2l +1 different coefficients as the index m may take any integer value from −l to l.

The terms corresponding to odd values of l vanish when the propagator is symmetric, i.e.,

when the imaginary part of the signal is 0. In this case, the points depicted by circles can be

neglected, and the total number of coefficients is reduced from 165 to 95.
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