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Abstract
In this paper, we develop a new automated surface registration system based on surface conformal
parameterization by holomorphic 1-forms, inverse consistentsurface fluid registration, and
multivariate tensor-based morphometry (mTBM). First, we conformally map a surface onto a
planar rectangle space with holomorphic 1-forms. Second, we compute surface conformal
representation by combining its local conformal factor and mean curvature and linearly scale the
dynamic range of the conformal representation to form the feature image of the surface. Third, we
align the feature image with a chosen template image via the fluid image registration algorithm,
which has been extended into the curvilinear coordinates to adjust for the distortion introduced by
surface parameterization. The inverse consistent image registration algorithm is also incorporated
in the system to jointly estimate the forward and inverse transformations between the study and
template images. This alignment induces a corresponding deformation on the surface. We tested
the system on Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline dataset to study AD
symptoms on hippocampus. In our system, by modeling a hippocampus as a 3D parametric
surface, we nonlinearly registered each surface with a selected template surface. Then we used
mTBM to analyze the morphometrydifference between diagnostic groups. Experimental results
show that the new system has better performance than two publically available subcortical surface
registration tools: FIRST and SPHARM. We also analyzed the genetic influence of the
Apolipoprotein E ε4 allele (ApoE4),which is considered as the most prevalent risk factor for
AD.Our work successfully detected statistically significant difference between ApoE4 carriers and
non-carriers in both patients of mild cognitive impairment (MCI) and healthy control subjects. The

© 2013 Elsevier Inc. All rights reserved.

Please address correspondence to: Dr. Yalin Wang School of Computing, Informatics, and Decision Systems Engineering Arizona
State University P.O. Box 878809 Tempe, AZ 85287 USA Phone: (480) 965-6871 Fax: (480) 965-2751 ylwang@asu.edu.
*Acknowledgments and Author Contributions: Data used in preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). As such, the investigators within the ADNI contributed to the design
and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of
ADNI investigators can be found at: http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/
ADNI_Acknowledgement_List.pdf.Additional support was provided by the National Institute on Aging (AG016570 to PMT), the
National Library of Medicine, the National Institute for Biomedical Imaging and Bioengineering, and the National Center for
Research Resources (LM05639, EB01651, RR019771 to PMT).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2014 September 01.

Published in final edited form as:
Neuroimage. 2013 September ; 78: 111–134. doi:10.1016/j.neuroimage.2013.04.018.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://adni.loni.ucla.edu
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.Additional
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.Additional


results show evidence that the ApoE genotype may be associated with accelerated brain atrophy so
that our workprovides a new MRI analysis tool that may help presymptomatic AD research.

Keywords
nonlinear image registration; surface conformal parameterization; conformal representation;
surface fluid registration; tensor-based morphometry; presymptomatic AD

1. INTRODUCTION
Most brain MRI scanning protocols have been designed to acquire volumetric data on the
anatomy of a subject. Various non-linear brain volume-based registration methods
(Christensen et al., 1996; Shen and Davatzikos, 2002; Yanovsky et al., 2009) have been
developed for brain volume image analysis. However, when registering structural MR
images, the volume-based methods have much more difficulty with the highly convoluted
cortical surfaces due to the complexity and variability of the sulci and gyri. Early research
(Thompson and Toga, 1996; Fischl et al., 1999; Van Essen et al., 2001; Thompson et al.,
2004b) has demonstrated that surface-based brain mapping may offer advantages over
volume-based brain mapping as a method to study the structural features of the brain, such
as cortical gray matter thickness, as well as the complexity and change patterns in the brain
due to disease or developmental processes. To register brain surfaces, a common approach is
to compute dense correspondence vector fields that match one surface with another. Often,
higher order correspondences must be enforced between specific anatomical points, curved
landmarks, or subregions lying within two surfaces. This is often achieved by first mapping
each of the 3D surfaces to a canonical parameter space such as a sphere (Bakircioglu et al.,
1999; Fischl et al., 1999; Yeo et al., 2010) or a planar domain (Thompson and Toga, 2002;
Thompson et al., 2004b; Leow et al., 2005b). A flow, computed in the parameter space of
the two surfaces, induces a correspondence field in 3D (Davatzikos, 1996; Thompson et al.,
2000). This flow can be constrained using anatomic landmark points or curves (Pantazis et
al., 2010; Zhong and Qiu, 2010; Auzias et al., 2011), by subregions of interest (Qiu and
Miller, 2008), by constraining the mapping of surface regions represented implicitly using
level sets (Leow et al., 2005b), or by using currents to represent anatomical variation
(Vaillant and Glaunes, 2005; Vaillant et al., 2007; Durrleman et al., 2008). Feature
correspondence between two surfaces can be optimized by using the  to measure
differences in curvature profiles or convexity (Fischl et al., 1999) or by using mutual
information to align scalar fields of various differential geometric parameters defined on the
surface (Wang et al., 2005b). Artificial neural networks may also be used to rule out or favor
certain types of feature matches (Pitiot et al., 2003). Finally, correspondences may be
determined by using a minimum description length (MDL) principle, based on the
compactness of the covariance of the resulting shape model (Davies et al., 2002; Thodberg,
2003). A key direction in surface registration research has been the computation of a
diffeomorphic surface map that matches automatically identified surface features.

MRI-based measures of atrophy in several structural measures, including whole-brain (Fox
et al., 1999; Chen et al., 2007; Stonnington et al., 2010), entorhinal cortex (Cardenas et al.,
2011), hippocampus (Jack et al., 2003; Thompson et al., 2004a; Wang et al., 2006; den
Heijer et al., 2010; Wolz et al., 2010), and temporal lobe volumes (Hua et al., 2011), as well
as ventricular enlargement (Jack et al., 2003; Thompson et al., 2004a), correlate closely with
changes in cognitive performance, supporting their validity as markers of disease
progression (Apostolova et al., 2010b; Costafreda et al., 2011). Of all the MRI markers of
Alzheimer's disease (AD), hippocampal atrophy assessed on high-resolution T1-weighted
MRI is the best established and validated. One of the key research topics for clinical
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assessment in diagnosis and monitoring of progression of patients with suspected Alzheimer
dementia is to establish and validate efficient biomarkers based on subcortical structures
including hippocampus. Although most subcortical structure analysis work used volume as
the atrophy measurement (Jack et al., 2003; Jack et al., 2004; Ridha et al., 2008; Holland et
al., 2009; den Heijer et al., 2010; Dewey et al., 2010; Wolz et al., 2010), recent researches
(Thompson et al., 2004a; Styner et al., 2005; Wang et al., 2006; Ferrarini et al., 2008; Chou
et al., 2009; Morra et al., 2009b; Apostolova et al., 2010b; Apostolova et al., 2010c; Madsen
et al., 2010; Qiu et al., 2010; Costafreda et al., 2011) have demonstrated that surface-based
subcortical structure analysis may offer advantages over volume measure. For example, the
surface-based methods have studied patterns of hippocampal subfield atrophy and detailed
point-wise correlation between atrophy and cognitive functions/biological markers. There
are several methods that match surfaces of subcortical structures using parametric surfaces,
such as contour parameterization (Thompson et al., 2004a; Morra et al., 2009a; Chou et al.,
2010), SPHARM (spherical harmonic) methods(Styner et al., 2005), large deformation
diffeomorphism metric matching (LDDMM) (Qiu et al., 2008; Qiu et al., 2009a; Qiu et al.,
2010), Laplacian-Beltrami eigen-features (Shi et al., 2009), multi-resolution geodesic
construction on Riemannian manifolds (Cho et al., 2011) and Beltrami holomorphic flow
(Lui et al., 2010). Recently, we introduced a set of parametric surfaces using concepts from
conformal geometry which provided a rigorous framework for representing, splitting,
parameterizing, matching and measuring subcortical surfaces (Wang et al., 2010b). It has
been successfully applied to study HIV/AIDS (Wang et al., 2010b) and AD (Wang et al.,
2011b). Even so, an automated substructure surface registration system that uses complete
surface geometric features for a diffeomorphic mapping is still highly advantageous.

Using holomorphic 1-forms, a global conformal parameterization can be developed to map a
surface to a rectangular domain in the Euclidean plane(Wang et al., 2009a). On the other
hand,fluid registration has been widely used to drive a large-deformation diffeomorphicflow
for image correspondence. By adjusting the viscous fluid method to parametrically match
scalar-valued signals representing surface geometry, we derive a method for landmark-free
surface registration. Since both kinds of mappings are diffeomorphic, their composition
leads to diffeomorphic shape correspondence (i.e., a smooth, one-to-one correspondence).
Wang et. al (2005b) proposed an automated surface fluid registration method based on
conformal mapping and image fluid registration, and applied it to register human faces and
human hippocampal surfaces. Here, we extend the Navier-Stokes equation in Wang et al.
(2005a; 2005b) into general surface space using covariant derivatives. Due to the simple
Riemannian metric induced by conformal parameterization, the general Navier-Stokes
equation can be easily adjusted for area distortion. As pointed out in Leow et al. (2005a),
inverse consistent registration method is more robust than the traditional unidirectional
registration. Leow et al. (2005a) presented a novel inverse consistent image registration
scheme with linear elastic regularization. Chiang et al.(2008) extended the method in Leow
et al. (2005a) with viscous fluid regularization to enable large deformations, and applied the
method to diffusion tensor images. We extendthe method proposed in Chiang et al. (2008) to
surfaces. Solving the Navier-Stokes equation on the surface and matching geometrically-
informed scalar functions, we develop an inverse-consistent surface registration algorithm.
In this paper we apply our algorithm to hippocampal shapes in the ADNI dataset.

In general, in order to study structural features of the brain, such as cortical gray matter
thickness, complexity, and deformation over time, etc., there are roughly two different
approaches, deformation-based morphometry (DBM) (Ashburner et al., 1998; Chung et al.,
2001; Chung et al., 2003; Wang et al., 2003) and tensor-based morphometry (TBM)
(Davatzikos et al., 1996; Thompson et al., 2000; Chung et al., 2008). DBM tends to analyze
3D displacement vector fields encoding relative positional differences across subjects, while
TBM tends to examine spatial derivatives of the deformation maps registering brains to a
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common template, constructing morphological tensor maps such as the Jacobian
determinant, torsion or vorticity. One advantage of TBM for surface morphometry is that
TBM can make use of the intrinsic Riemannian surface metric to characterize local
anatomical changes. Chung et al. (2008) showed that the single value of the determinant of
Jacobian can reliably detect surface morphometry due to autism. In our system, we use
multivariate statistics based on surface deformation tensors to study brain surface
morphometry as proposed in (Leporé et al., 2008; Wang et al., 2008). The multivariate
tensor-based morphometry (mTBM) computes statistics from the Riemannian metric tensors
that retain the full information in the deformation tensor fields, thus may be more powerful
in detecting surface difference than many other statistics (Wang et al., 2009a; Wang et al.,
2010b; Wang et al., 2011b; Wang et al., 2012b). Our hypothesis is that, together with
mTBM as the surface statistics, our surface fluid registration method may help boost
statistical power to detect disease burden and genetic influence on hippocampal
morphometry compared with some existing researches in the literature. Here we set out to
validate our algorithm in the Alzheimer's Disease Neuroimaging Initiative (ADNI) baseline
dataset.

Fig. 1 summarizes the overall step sequence in our system. The brain MR image data was
from ADNI baseline dataset. The hippocampal regions and surfaces were segmented and
constructed automatically. We then computedhippocampal surface conformal
parameterization with holomorphic 1-forms and obtained their feature images consisting of
conformal factor and mean curvature. With the inverse consistent surface fluid registration
method, we enforced symmetric displacements in bothsurfaces(h(x) denotes the forward
mapping and g(x) denotes the inverse mapping, where g(x) = h–1 (x)). Multivariate statistics
were computed to study differences between diagnostically different groups and the genetic
influence on Alzheimer's disease.

2. SUBJECTS AND METHODS
2.1. Subjects

Data used in the preparation of this article were obtained from the Alzheimer's Disease
Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in
2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-
private partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). Determination of
sensitive and specific markers of very early AD progression is intended to aid researchers
and clinicians to develop new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical Center
and University of California – San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and private corporations, and
subjects have been recruited from over 50 sites across the U.S. and Canada. The initial goal
of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research,
approximately 200 cognitively normal older individuals to be followed for 3 years, 400
people with MCI to be followed for 3 years and 200 people with early AD to be followed for
2 years. For up-to-date information, see www.adni-info.org.
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At the time of downloading (09/2010), the baseline dataset consisted of 843 adults, ages 55
to 90, including 233 elderly healthy controls, 410 subjects with mild cognitive impairment
(MCI) and 200 AD patients. In this study, we manually excluded 1 subject from the control
group and 2 subjects from the MCI group because of name duplication. For subjects with
duplicated names, we retained the one which was the repeated scan. All subjects underwent
thorough clinical and cognitive assessment at the time of acquisition, including the Mini-
Mental State Examination (MMSE) score (Folstein et al., 1975), Clinical Dementia Rating
(CDR)(Berg, 1988), and Delayed Logical Memory Test(Wechsler, 1987).

2.2. Image Acquisition and Preprocessing
All T1-weighted images were automatically segmented using FIRST (http://
www.fmrib.ox.ac.uk/fsl/fsl/list.html). FIRST is an integrated surface registration and
segmentation tool developed as part of the FSL library, which is written mainly by members
of the Analysis Group, FMRIB, Oxford, UK. FIRST is able to extract subcortical structures
and assign the image voxels with different numerical labels. Then the binary image
segmentation can be obtained by a simple threshold process. After obtaining the binary
segmentation, we used a topology-preserving level set method (Han et al., 2003) to build
surface models. Based on that, the marching cubes algorithm (Lorensen and Cline, 1987)
was applied to obtain triangular surface meshes. However, the surface models constructed
from medical image data, which has limited resolution and noise from scanning, may
contain much noise. Surface smoothing may help restore the original shape and overcome
partial volume effects. Furthermore, the triangular meshes obtained by the marching cubes
algorithm (Lorensen and Cline, 1987) often contain obtuse angles, which make the meshes
inappropriate for direct use in conformal parameterization. In our system, to compute the
conformal parameterization, we need first compute harmonic forms and it requires solving a
linear system to minimize harmonic energy (Wang et al., 2011b). In the finite element
formulation, there is a cotangent weight term (Gu et al., 2004a) which should be positive.
The system became unsolvable if there are too many obtuse angles (negative cotangent
weight terms). Thus mesh smoothing is needed before any further processing. Many mesh
smoothing algorithms have been proposed. In (Taubin, 1995), Taubin proposed a simple,
linear and isotropic method to improve the smoothness of a surface mesh. This method is
fast because it does not rely on expensive functional minimizations. Some variants of this
algorithm have also been developed (Desbrun et al., 1999; Ohtake et al., 2000). However,
these techniques are isotropic, thus indiscriminately smooth noise and salient surface
features. Recently, feature-preserving mesh smoothing methods (Clarenz et al., 2000;
Desbrun et al., 2000; Zhang and Fiume, 2002; Bajaj and Xu, 2003; Fleishman et al., 2003;
Jones et al., 2003; Meyer et al., 2003; Sun et al., 2007; Sun et al., 2008; Li et al., 2009) have
also drawn more and more interests. In this paper, we applied a two-step mesh smoothing
method to all the surfaces. The smoothing process consists of mesh simplification using
“progressive meshes” (Hoppe, 1996) and mesh refinement by Loop subdivision surface
(Loop, 1987). All the meshes were smoothed by 5 iterations of mesh simplification using
“progressive meshes” and Loop subdivision. In order to smooth the surfaces while preserve
surface features, we gradually increased the face numbers of the surfaces in each iteration.
As a result, we obtained relatively smooth but accurate surfaces that are suitable for
computing derivative maps. Fig. 2 illustrates the histograms of the Hausdorff distances
between the smoothed meshes and the original meshes for both the left and right
hippocampi. We can see from the figure that the majority of the absolute distances fall into
the range [0.9, 1.1] with the unit as millimeter. Given the volumes of hippocampus lie
between 3000 and 4000 mm3 (Hasboun et al., 1996; Hickie et al., 2005; Ystad et al., 2009;
Carmichael, 2011), our smoothed meshes can be regarded as accurate approximations of the
original surfaces.We applied this method in our prior subcortical surface analysis work
(Wang et al., 2010b; Wang et al., 2011b). From our experience, a continuous subdivision
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and mesh simplification process will generally eliminate the obtuse angles and improve the
mesh quality. Later all the smoothed meshes were normalized into a standard space using
affine transformation with a 9-parameter (3 parameters for translation, 3 parameters for
rotation, and 3 parameters for scaling) matrix that was computed by FIRST. In our study, 1
subject from each group (AD, MCI, and control) failed the FIRST segmentation step
probably due to the original images’ resolution or contrast issues. We also manually checked
all the constructed and smoothed meshes and excluded 5 AD, 5 MCI, and 3 control subjects
due to wrong topologies. As a result,the baseline MR hippocampus image data of 194 AD
(age: 76.1±7.6 years), 402 MCI (age: 75.0±7.3 years), and 228controls (age: 76.0±5.0 years)
were studied using the new system within the scope of this paper.

2.3. Surface Conformal Parameterization with Holomorphic 1-Forms
Let S be a surface in  with an atlas {(Uα, zα)}, where (Uα, zα) is a coordinate chart
defined on S. The atlas thus is a set of consistent charts with smooth transition functions
between overlapping charts. Here  maps an open set  to a complex plane

. If on any chart (Uα, zα) in the atlas, the Riemannian metric or the first fundamental form
can be formulated as ds2 = λ(zα)2dzαdz̄α, and the transition maps

 are holomorphic, the atlas could be called conformal.
Given a conformal atlas, a chart is compatible with the atlas if adding this chart still
generates a conformal atlas. A conformal structure is obtained by adding all possible
compatible charts to a conformal atlas. A Riemann surface is a surface with a conformal
structure. All metric oriented surfaces are Riemann surfaces. One coordinate chart in the
conformal structure introduces a conformalparameterization between a surface patch and the
image plane. The conformal parameterization is angle-preserving and intrinsic to the surface
geometry(Do Carmo, 1976; Guggenheimer, 1977).

For a Riemann surface S with genus g > 0, its conformal structure can always be represented
in terms of a holomorphic 1-form basis, which is a set of 2g functions , i = 1, ...,
2g(Wang et al., 2007). Here, K1 represents the simplicial 1-complex*. Any holomorphic 1-
form τ is a linear combination of these functions. This finite-dimensional linear space
generates all possible conformal parameterizations of surface S and the quality of a global
conformal parameterization is fundamentally determined by the choice of the holomorphic
1-form (Wang et al., 2007; Wang et al., 2011b). By considering the holomorphic 1-form

as an  function, the conformal parameterization  at point p can be computed
by integrating the holomorphic 1-form:

(1)

where γ is an arbitrary path joining p to a fixed point p0 on the surface. The details of our
holomorphic 1-form based conformal parameterization algorithms were reported in our prior
work (Wang et al., 2007; Wang et al., 2011b). Fig.3 (a) illustrates a pair of hippocampal
surfaces and their conformal parameterizations to a rectangular domain.

2.4. Surface Conformal Representation
It has been known that surface registration requires defining a lot of landmarks in order to
align corresponding functional regions. Labeling features could be accurate but time-

*In mathematics, a simplicial complex is a topological space that is constructed by gluing together points, line segments, triangles, and
their n-dimensional counterparts. A simplicial k-complex Kk is a slimplicial complex where the largest dimension of any component
in Kk equals to k. In our settings, a simplicial 1-complex is an edge.
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consuming. Here we show that surface conformal parameterization could represent surface
geometric features, thus avoiding the manual definition of landmarks.

For a general surface and its conformal parameterization , the conformal factor at
a point p can be determined by the formula:

(2)

where Bε(p) is an open ball around with a radius ε. The conformal factor λ encodes a lot of
geometric information about the surface and can be used to compute curvatures and
geodesic. In our system, we compute the surface mean curvatures only from the derivatives
of the conformal factors as proposed in Lui et al. (2008a), instead of the three coordinate
functions and the normal, which are generally more sensitive to digitization errors.
Mathematically, the mean curvature is defined as:

(3)

where . Using this formulation of H, we need to use the surface normal 
only when computing sign(ϕ), which takes the value 1 or -1. Thus, the surface normal does
not need to be accurately estimated and still we can get more accurate mean curvatures.
Using the Gauss and Codazzi equations, one can prove that the conformal factor and mean
curvature uniquely determine a closed surface in , up to a rigid motion(Gu et al., 2004b).
We call them the conformalrepresentation of the surface. Fig.3 (b) shows the computed
conformal factor (left) and mean curvature (right) on a hippocampal surface with color
indices according to the values. Since conformal factor and mean curvature encode both
surface intrinsic structure and 3D embedding information, they are completesurface features
to be used for solvingsurface registration problems(Gu and Vemuri, 2004; Wang et al.,
2005a).

2.5. Inverse Consistent Surface Fluid Registration
After computing surfacegeometric features, we align surfaces in the parameter domain with
a fluid registration technique to maintain smooth, one-to-one topology (Christensen et al.,
1996). Using conformal mapping, we essentially convert the surface registration problem to
an image registration problem. In our prior work (Wang et al., 2005a), we proposed an
automated surface fluid registration method combining conformal mapping and image fluid
registration (D'Agostino et al., 2003) with mutual information (Kim et al., 1997; Meyer et
al., 1997; West et al., 1997; Rueckert et al., 1999; Hermosillo, 2002) as the driving force of
the viscous fluid. In Wang et al. (2005a), the mutual information between two surface
feature images, i.e., the conformal representations of the two surfaces that need to be
registered, was maximized by the viscous fluid flow as in D'Agostino et al. (2003). On ,
fluid flow is governed by the Navier-Stokes equation. For compressible fluid flow, we have

(4)

Here v(x) is the deformation velocity, μ and τ are the viscosity constants. f(x, u(x)) is the
force field that is used to drive the fluid flow, which was defined as the mutual information
in Wang et al. (2005a).
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To simulate fluid flow on Riemann surfaces, we need to extend Eq.4 into surface space by
the manifold version of Laplacian and divergence(Aris, 1989; Stam, 2003; Lui et al., 2005).
By covariant derivatives, the Navier-Stokes equation for Riemann surface can be defined as:

(5)

where λ is the conformal factor as introduced in Sec. 2.4. Please refer the appendix A for
the derivation of Eq. 5. It is well known that area distortion is an inevitable problem of
conformal parameterization. However, considering the definition of conformal factor λ as
Eq. 2, we can see that conformal factor is a smooth function which describes the stretching
effect of conformal parameterization(Lui et al., 2008b). In Eq. 5, by factoring out the
conformal factor λ, the flow induced in the parameter domain is adjusted for the area
distortion introduced by the conformal parameterization. As a result, Eq. 5 is now governing
fluid flow on the manifolds. In this paper, considering that hippocampi across the population
should have similar shapes, we assume the conformal representations of different
hippocampi have similar intensity range and distribution. Thus, the body force f in Eq. 5
driving the fluid flow in this paper is defined as the sum of squared intensity differences
(SSD) between the deforming image and the template image. In our experiments, the SSD
based energy formulation has similar performance with mutual information energy which
was adopted in our prior work (Wang et al., 2005a) while significantly improves algorithm
efficiency compared with the latter method. As shown in Fig. 4, we illustrate the
performance of the inverse consistent fluid registration driven by SSD and mutual
information respectively, on the synthetic C-shape images. As can be seen from the figures,
these two types of driving forces were able to obtain similar registration results while the
time cost by SSD was 14.15 seconds. It was much more efficient than mutual information
based energy formulation, which ran up to 1730.15 seconds.Both algorithms were executed
on a 2.66GHz Intel Quad CPU Q8400 PC with Windows 7 64-bit operating system. Given
the large number of surfaces to be registered, we chose to adopt SSD based energy
formulation for improvedefficiency (Christensen, 1994; Bro-Nielsen and Gramkow, 1996).
Since conformal mapping and fluid registration generate diffeomorphic mappings, a
diffeomorphic surface-to-surface mapping is then recovered that matches surfaces in 3D.

As pointed out in Leow et al. (2005a), image registration problem should be symmetric, i.e.,
the correspondences established between the two images should not depend on the order we
use to compare them. However, traditional non-linear image registration algorithms are not
symmetric, thus the deformation field depends on which image is assigned as the deforming
image and which image the non-deforming target image.Furthermore, the asymmetric
algorithms tend to penalize the expansion of image regions more than the shrinkage (Rey et
al., 2002), making these methods problematic in applications where the Jacobian of the
mappings is interpreted as measuring anatomical tissue loss or expansion. Many inverse
consistent registration algorithms (Christensen and Johnson, 2001; Shi et al., 2009; Reuter et
al., 2010; Reuter and Fischl, 2011) have been proposed to overcome the shortcomings of
conventional inverse non-consistent methods. Leow et al. (2005a) proposed a novel inverse
consistent image registration method. Instead of enforcing inverse consistency using an
additional penalty that penalizes inconsistency error as in Christensen and Johnson (2001),
the method in Leow et al. (2005a) directly modeled the reverse mapping by inverting the
forward mapping. Chiang et al. (2008) replaced the linear elastic regularizer in Leow et al.
(2005a) with the fluid regularization to enable large deformations and applied the inverse
consistent fluid registration algorithm to diffusion tensor images. Here with the inverse
consistent scheme proposed in Chiang et al. (2008), we extend Eq. 5 into an inverse
consistent surface fluid registration method.
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Let I1(x), I2(x) be two images, using the sum of squared intensity differences as the
matching cost function, the inverse consistent image registration problem seeks two
mappings h(x) and g(x) to minimize the following energy function:

(6)

where h(x) = x – uf(x) is the mapping from image I1 to image I2 (forward direction) and
uf(x) is the forward displacement field. g(x) = x – ub(x) is the mapping from image I2 to
image I1 (backward direction) and ub(x) is the backward displacement field, g(x) = h–1(x). α
is a positive scalar weighting of the regularization terms applied to the forward and
backward mappings. Following prior work in fluid registration (Leow et al., 2005a; Chiang
et al., 2008), welet α = 1 to achieve a fast and stable convergence. Eq. 6 is symmetric and
does not depend on the order of I1 and I2, i.e., E(I1, I2) = E(I2, I1). Suppose we have two
surfaces S1, S2 and their conformal representation I1, I2 in . With fluid regularization

scheme, R(h(x)) is defined as  and R(g(x)) is defined as

 with the forward and backward velocities vf(x) and vb(x), respectively.
 is the surface linear operator as in Eq. 5. Then the energy function in Eq. 6

can be minimized by solving for the velocities vf(x) and vb(x) in the following general
Navier-Stokes equations:

(7)

where the forward force field ff = –[I1 (x – uf(x)) – I2(x)]∇I1(x – uf(x)) and backward force
field fb = –[I2(x – ub(x)) – I1(x)]∇I2(x – ub(x)). λf is the conformal factor of surface
S1 and λb is the conformal factor of surface S2.

With the mappings h(x), g(x) initialized as the identical mapping at t = 0, the forward and
backward mappings at time t are given by the following equations as in (Leow et al., 2005a):

(8)

Here, ε is an infinitesimally small positive time step. η1, η2, ξ1, ξ2 are computed as (Chiang
et al., 2008):

(9)

2.6. Multivariate Tensor-Based Morphometry Statistics
Suppose ϕ: S1 → S2 is a map from the surface S1 to the surface S2. To simplify the
formulation, we use the isothermal coordinates of both surfaces as the arguments. Let (u1,
v1) be the isothermal coordinates of S1 and S2. The Riemannian metric of Si is representedas

, i = 1,2. In the local parameters, the map ϕ can be represented as ϕ(u1, v1)
= (ϕ1(u1, v1), ϕ2(u1, v1)). The derivative map of ϕ is the linear map between the tangent
spaces, dϕ:TM(p) → TM(ϕ(p)), induced by the map ϕ. In the local parameter domain, the
derivative map is the Jacobian of ϕ:
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Let the position vector of S1 be r(u1, v1). Denote the tangent vector fields as , .

Because (u1, v1) are isothermal coordinates,  and  only differ bya rotation of π/2.
Therefore, we can construct an orthonormal frame on the tangent plane of S1 as

.

Similarly, we can construct an orthonormal frame on S2 for its isothermal coordinates. Since
any two surfaces are locally conformal (Hsiung, 1997), we can have an orthonormal frame

on S2 as . The derivative map under the orthonormal frames is represented
as

In practice, smooth surfaces are approximated by triangle meshes. In the triangle mesh
surface, the derivative map dϕ is approximated by the linear map from one face [v1, v2, v3]
to another [w1, w2, w3]. First, the surfaces [v1, v2, v3] and [w1, w2, w3] are isometrically
embedded onto the plane  (i.e., λ1 = λ2 = 0 in the above equation), the planar coordinates
of the vertices vi, wi are denoted by the same symbol vi, wi. Then the Jacobian matrix for the
derivative map dϕ can be explicitly computed as (Wang et al., 2009a)

(10)

The deformation tensor can be defined as  (Chung et al., 2001; Hua et al., 2011).
Instead of analyzing shape change based on the eigenvalues of the deformation tensor, a new
family of metrics, the “Log-Euclidean metrics” (Arsigny et al., 2006) is considered in the
multivariate tensor-based morphometry (mTBM). In this framework, Riemannian
computations can be converted into Euclidean ones once tensors have been transformed into
their matrix logarithms (Arsigny et al., 2006). This conversion makes computations on
tensors easier to perform, as they are chosen such that the transformed values form a vector
space, and statistical parameters can then be computed easily using the standard formulae
for Euclidean spaces (Leporé et al., 2008; Wang et al., 2008).

To compute group differences with mTBM, we then apply Hotelling's T2 test (Hotelling,
1931; Cao and Worsley, 1999; Thirion et al., 2000; Kim et al., 2012) on sets of values in the
log-Euclidean space of the deformation tensors. Given two groups of n × 1 -dimensional
vectors, Si, i = 1,2, ..., p, Tj, j = 1,2, ..., q, we use the Mahalanobis distance M to measure the
group mean difference,

(11)

where NS and NT are the number of subjects in the two groups, S̄ and T̄ are the means of the
two groups and Σ is the combined covariance matrix of the two groups (Leporé et al., 2008;
Wang et al., 2010b; Wang et al., 2011b). In our study, S and T are the log-Euclidean
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metrics, e.g. , i = 1,2, ..., p and , j = 1,2, ..., q. Since the
statistic M is a uni-variate, our analysis does not introduce any bias because of the increase
of the variable number.

3. RESULTS
3.1 Synthetic Surface Registration with Inverse Consistent Surface Fluid Registration

In order to validate the effectiveness of the proposed method, we generated two synthetic
surfaces as shown in Fig. 5 (a) and (b). The two C shapes have different sizes and positions.
This can also be seen from the corresponding feature images at the bottom of Fig. 5 (a) and
(b). The feature images were generated by summing up the local conformal factor and the
mean curvature, expressed in the conformal parameterization domain. The black lines drawn
on the surfaces are used to show equal distances on the surfaces and represent the
differences in their shapes. With the inverse consistent fluid registration, in Fig. 5(c) and (d),
we can see that the feature image of surface 1 was successfully registered to the feature
image of surface 2 and the feature image of surface 2 was also registered to the feature
image of surface 1. With the forward and backward mappings obtained in the parameter
domain, we induced a forward deformation and a backward deformation in surface 1 and
surface 2, respectively. As we can see from Fig. 5 (c) and (d), without changing the shape of
the surfaces, the features on them are well aligned to each other.

3.2 Hippocampal Surface Registration with Inverse Consistent Surface Fluid Registration
We have developed an automatic algorithm to identify two landmark curves at the front and
back of the hippocampal surface, representing its anterior junction with the amygdala, and
its posterior limit as it turns into the white matter of the fornix (the hole boundaries are
shown as blue curves in Fig. 3 (a)) (Wang et al., 2011b). They are biologically valid and
consistent landmarks across subjects. Given the hippocampal tube-like shape, these
landmark curves can be automatically detected by checking the extreme points by searching
along the first principle direction of geometric moments of surface (Elad et al., 2004; Zhang
and Lu, 2004; Wang et al., 2011b). For consistency, we also make sure these landmark
curves have the same length. Next we cut open the surface along the two landmark curves.
The new surface still has the same geometry but becomes a genus zero surface with two
open boundaries. We term this operation as topological optimization. The goal is to compute
curvilinear coordinates by holomorphic 1-forms (as shown in Fig. 1 (c)) which introduce a
planar surface conformal parameterization. To register hippocampal surfaces, the boundaries
serve as landmark curves and are forced to match each other. The computed curvilinear
coordinates help apply fluid registration method to align other geometric similar areas. We
have applied the topological optimization method in a few of our prior work (Wang et al.,
2009a; Wang et al., 2009c; Wang et al., 2011b) and the method can identify these consistent
landmark curves. Besides, for quality control purpose, all the hole-labeled meshes were
manually checked in this paper. Then the surfaces were conformally mapped to a rectangle
plane using holomorphic 1-forms.

We chose to encode surface features using a compound scalar function based on the local
conformal factor and the mean curvature: C(u, v) = βλ(u, v) + H(u, v), where (u, v) is the
conformal coordinates of the surface and β is a constant scalar to control the ratio of
conformal factor and mean curvature. In the current study, similar to our prior work (Wang
et al., 2005a; Wang et al., 2005b), we empirically set β as 7 for both visualization and
registration. We then linearly scaled the dynamic range of the conformal representation into
[0,255]. With a target image randomly selected, we aligned the deforming images to the
target image with the inverse consistent fluid registration method as introduced in Sec. 2.5.
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The alignment induced displacements in both u and v directions in the deforming image. We
then deformed the corresponding surface with these displacement vectors.After the cross-
subject registration was computed with a selected target surface, we calculated the Jacobian
matrices J as Eq. 10. The “Log-Euclidean metric” on the set of deformation tensors, S, was
computed as the matrix logarithm log (S). Since S is a positive-definite matrix, the first 3 of
the 4 vector elements, analyzed in mTBM, are the logarithm of the deformation tensor S.
We define the multivariate surface morphometry statistic as a 3 × 1 feature vector consisting
of the logged deformation tensors (detailed in Section 2.6).

3.3 Associating Hippocampal Morphometry and Clinical Characteristics
To check the group difference between any two groups (AD vs. MCI, AD vs. control, and
control vs. MCI), we performed a group comparison with the Hotelling's T2 test as Eq. 11
on the 3-dimensional feature vectors. Specifically, for each point on the hippocampal
surface, given 0.05 as the significant level, we ran a permutation test with 10,000 random
assignments of subjects to groups to estimate the statistical significance of the areas with
group differences in surface morphometry.The covariate (group membership) was permuted
10,000 times. The probability was estimated as the ratio of the Mahalanobis distance for a
random assignment larger than the group Mahalanobis distance with the true group
membership. The probability was later color coded on each surface point as the statistical p-
map of group difference. Fig. 6(a)-(c) shows the p-maps of group difference detected
between AD and control, AD and MCI, control and MCI groups, respectively, using mTBM
as a measure of local surface area change and the significance level at each surface point as
0.05. In Fig. 6, the non-blue color areas denote the statistically significant difference areas
between two groups.All group difference p-maps were corrected for multiple comparisons
using the widely-used false discovery rate method (FDR) (Benjamini and Hochberg, 1995).
The FDR method decides whether a threshold can be assigned to the statistical map that
keeps the expected FDR below 5% (i.e., no more than 5% of the voxels are false positive
findings). Fig. 6(d)-(f) are the cumulative distribution function (CDF) plots showing the
uncorrected p-values (as in a conventional FDR analysis). The x value at which the CDF
plot intersects the y = 20x line represents the FDR-corrected p-value or q-value. It is the
highest statistical threshold that can be applied to the data, for which at most 5% false
positives are expected in the map. In general, a larger q-value indicates a more significant
difference in the sense that there is a broader range of statistic threshold that can be used to
limit the rate of false positives to at most 5%. The use of the y = 20x line is related to the
fact that significance is declared when the volume of suprathreshold statistics is more than
20 times that expected under the null hypothesis (Wang et al., 2011b).

In this experiment, the 194 AD, 402 MCI, and 228 healthy control surfaces were
successfully registered by our system. The FDR-corrected p-values for AD vs. control, AD
vs. MCI, and control vs. MCI are 0.049, 0.0244, and 0.0483, respectively.

3.4 Diagnostic Group Difference Comparison
In this experiment, we compare our system with the popular surface registration tools FIRST
and SPHARM (Styner et al., 2006) in diagnostic group difference detection.

FIRST is an integrated registration and segmentation tool (Patenaude et al., 2011). Before
segmentation, FIRST aligns all images onto the MNI152 template with FSL's integrated
registration tool, FLIRT. This is a two-stage linear registration process. The first stage is an
affine transformation of the whole head to the template with a standard 12 degrees of
freedom registration and the second stage achieves a more accurate and robust 12 degrees of
freedom registration to the template using a subcortical mask, which is defined in the MNI
space. Following the registration, the inverse transformation will be applied to the surface
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models to get them into the native image space. The subsequent segmentation will be
conducted in the native image space with the original non-interpolated voxel intensities
(Patenaude et al., 2011). With the default configuration, we obtained hippocampal surface
models generated by FIRST, which are in their native image spaces. We then transformed
the surfaces into MNI standard space with the transformation matrices computed by FLIRT.
As pointed out in (Patenaude, 2007), applying the original transformation to the mesh in the
native image space is equivalent to reconstructing the mesh from the MNI space model.
Thus all the surfaces have a common reference frame. The mTBM statistics were computed
directly on these registered surfaces given that all the hippocampal surfaces have the same
number of vertices and faces and the cross-subject vertex correspondence established by
FIRST (Patenaude et al., 2011). It is notable that some prior work (Patenaude, 2007;
Carmichael, 2011; Patenaude et al., 2011) also took the established vertex correspondences
across subjects by FIRST to study local subcortical structure shape difference between AD
patients and healthy controls (Patenaude, 2007; Patenaude et al., 2011) and between patients
with learning disabilities and healthy controls (Carmichael, 2011).

SPHARM is another surface mapping tool which is extensively used in the literature(Tae et
al., 2011; Alhadidi et al., 2012; Paniagua et al., 2012; Paniagua et al., 2013). It takes binary
image segmentation as input and provides functions such as surface extraction, spherical
harmonic mapping and surface registration; statistical tools are also included (Styner et al.,
2006). In the comparison experiments, we resampled the binary image segmentation
processed by FIRST and thresholding as described in Sec. 2.2 with FIRST to generate
images with isotropic resolution of 1mm × 1mm × 1mm. The generated isotropic images
were used as the input of SPHARM. The parameters used with SPHARM package were set
as recommended for hippocampus (Styner et al., 2006). The template was chosen as the
same template with the inverse consistent fluid registration. The registered surfaces obtained
by SPHARM have the same number of vertices and faces and cross-subject vertex
correspondence. We computed the mTBM statistics on these surfaces and generated the
significance p-maps. In our experiments, within the dataset that we processed in our fluid
registration experiments, 4 AD and 6 MCI subjects failed in SPHARM system either due to
segmentation failure or parameterization failure and we excluded them from our
experiments.The details of the experiment with SPHARM arediscussed in Appendix B.

For performance comparison purpose, Fig. 7 illustrates the experimental results showing
difference maps resulted from the inverse consistent surface fluid registration, FIRST, and
SPHARM among the three diagnostic groups (AD, MCI and control) and the CDF plots. In
this experiment, considering fairness, we excluded the 4 AD and 6 MCI subjects that failed
in SPHARM from the dataset studied by surface fluid and FIRST methods. Thus, 190 AD,
228 controls, 396 MCI subjects were used to compare the surface fluid, FIRST, and
SPHARM statistics. MCI is an intermediate stage between the expected cognitive decline of
normal aging and the more pronounced decline of dementia. If MCI could be found and
treated, the risk of AD will be significantly reduced. However, at MCI stage, changes in
brain surface are not significant thus impose more difficulty on the detection. We can see
from Fig. 6 and Fig. 7 that, in the experimental results, the most prominent results between
the proposed method and other methods are in Fig. 6 (b) and Fig. 7 (b). Fig. 6 (b) showed
that the new method detected more significant different areas on right side of hippocampus
between AD and MCI groups. On the left side, the significant areas are more on lateral zone
proximal to the CA1 subfield and superior zone proximal to the combined CA2, CA3, CA4
subfields and gyrusdentaus (GD) (Duvernoy, 1988; Wang et al., 2006). The results agree
well with a prior discovery on morphology difference between AD and MCI groups (Morra
et al., 2009a), although these two methods used different hippocampal segmentation
methods and different surface statistics. Comparing two results, our method detected more
significant areas. Table 1 gives the FDR corrected p-values comparison, which also shows
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that our system outperformed two other methods as our method achieved higher FDR
corrected p-values.

3.5 Effects of ApoE4 Genotype
The Apolipoprotein E ε4 allele (ApoE4) gene is of special interest in AD analysis as it is the
major genetic risk for AD (Poirier et al., 1993; Strittmatter et al., 1993). It has been found
that the presence of this allele is more frequent in AD patients than age-matching normal
persons and is associated with a younger age of disease onset (Corder et al., 1993; Poirier et
al., 1993; Strittmatter et al., 1993; Blacker et al., 1997; Meyer et al., 1998). MRI studies
have shown that this allele is associated with greater hippocampal atrophy (Lehtovirta et al.,
1995; Geroldi et al., 1999; Hashimoto et al., 2001; Agosta et al., 2009) and one work
(Lehtovirta et al., 1995) reported a significant correlation between hippocampal loss and
memory deficits. However, only a few studies have investigated the local effect of ApoE4
on hippocampal atrophy in patients of AD/MCI or healthy control subjects (Morra et al.,
2009a; Mueller and Weiner, 2009; Qiu et al., 2009b; Pievani et al., 2011). Morra et al.
(2009a) discussed that in healthy elderly subjects, presence of ApoE4 may be correlated
with future development of AD. In order to investigate this correlation, the authors designed
two experiments: (1) group difference between ApoE4 carriers and non-carriers in all
samples; (2) group difference between ApoE4 carriers and non-carriers in subjects that have
not developed AD, i.e., MCI and control groups. The experiments are aimed to determine if
the ApoE4 allele is linked with hippocampal atrophy in all subjects or in just the non-AD
subjects. In their study, 400 subjects with 100 AD subjects, 200 MCI subjects, and 100
healthy controls from ADNI baseline data were analyzed with surfaces segmented by a prior
work (Morra et al., 2009b). However, no significance was reported in Morra et al. (2009a).
Qiu et al. (2009b) studied ApoE4 effects on hippocampal volume and shape in 38 depressed
patients without ApoE4, 14 depressed patients with one ApoE4 allele and 31 healthy
controls without the ApoE4 allele. They found that the depressed patients with one ApoE4
showed more pronounced shape inward-compression in the anterior CA1 than the depressed
patients without the ApoE4 when compared with the healthy controls without the ApoE4.
Pievani et al. (2011) designed more systematic experiments to study ApoE4 effects. Their
studying subjects include 14 AD patients heterozygous for the ApoE4 allele and 14 patients
not carrying the ApoE4 allele and 28 age-, sex-, and education-matched controls. Radial
atrophy was analyzed by the same method that used in Morra et al. (2009a). In the group
difference study between AD patient ApoE4 carriers and AD non-carriers, they found
statistically different atrophy on the left hippocampus but not on the right side.

To study the genetic influence of ApoE4 on hippocampal morphometry, we conducted five
sets of experiments that are similar to those studied in (Morra et al., 2009a; Pievani et al.,
2011).

1. Group difference between ApoE4 carriers and non-carriers in all subjects;

2. Group difference between ApoE4 carriers and non-carriers in healthy subjects and
patients with MCI;

3. Group difference between AD ApoE4 non-carriers and healthy control ApoE4 non-
carriers;

4. Group difference between AD ApoE4 carriers and healthy control ApoE4 non-
carriers;

5. Group difference between ApoE4 carriers and non-carriers in AD patients.

Fig. 8 shows our experimental results when we used mTBM as the surface statistics. In our
study, we used all available samples from ADNI baseline dataset. Among the 824 subjects,
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725 subjects have been diagnosed as ApoE4 carriers or non-carriers (366 non-carriers vs.
359 carriers), 558 of which are MCI or controls (310 non-carriers vs. 248 carriers). Fig. 8(a)
and (b) show the significance maps for the two experiments. Fig. 8(b) illustrated the results
on ApoE4 effects on both healthy control and MCI groups. Our results suggested more
significant areas were detected on the left side. The permutation test results showed our
method detected significant difference between ApoE4 carriers and ApoE4 non-carriers in
healthy subjects and patients with MCI (p=0.0014). A few studies to date have investigated
ApoE4 effect on the hippocampal atrophy at the subregional level (Morra et al., 2009a;
Mueller and Weiner, 2009; Pievani et al., 2011). Among them one study failed to detect an
effect (Morra et al., 2009a) and others (Mueller and Weiner, 2009; Pievani et al., 2011)
detected effects. However, Mueller and Weiner (2009) investigated a rather small ApoE4
sample (n=5 patients) and Pievani et al. (2011) used the manually traced hippocampal
contours to segment the hippocampal shape in a small patient data set (n=28 patients). Our
work is the first study, to our knowledge, which found ApoE4 effect on subregional
hippocampal atrophy in healthy subjects and MCI patients in the ADNI dataset. Our method
used an automatic image segmentation method to segment hippocampus so our method may
have the high throughput advantage. Our results, more significant areas on the left side than
on the right side, may also agree with the prior discovery (Pievani et al., 2011) where the
effect of ApoE4 mapping was statistically significant on left hippocampus whereas
statistically insignificant on the right hippocampus.

Among the 228 healthy controls, 150 subjects are diagnosed as ApoE4 non-carriers; among
the 194 AD patients, 56 subjects are diagnosed as ApoE4 non-carriers and 111 subjects
ApoE4 carriers. We conducted group difference experiments (3)-(5) among these three
groups. Fig. 8(c)-(e)show the significance maps of the three experiments. With mTBM, our
system detected significant atrophy areas in group difference experiments (1)-(4). In the last
experiment (5), our system detected consistent significant areas on the left hippocampus and
more significant areas on the right hippocampus than (Pievani et al., 2011), whereas the
significant p-value is 0.0581, which is statistically insignificant.

Forcomparison purpose, we also tested with the other two surface registration methods as in
Sec. 3.4. As we mentioned above, we excluded the 4 AD and 6 MCI subjects that failed in
SPHARM from our studying dataset usedin the surface fluid and FIRST experiments. As a
result, among the 814 subjects, 715 subjects have been diagnosed as ApoE4 carriers or non-
carriers (360 non-carriers vs. 355 carriers), 552 of which are MCI or controls (306 non-
carriers vs. 246 carriers); among the 228 healthy controls, 150 subjects are diagnosed as
ApoE4 non-carriers; among the 190 AD patients, 54 subjects are diagnosed as ApoE4 non-
carriers and 109 subjects ApoE4 carriers. Fig. 9 shows the significance p-maps of all five
experiments with FIRST as the surface registration method. Fig. 10 shows the significance
p-maps of all five experiments with SPHARM as the surface registration method.The
surface fluid registration method on the 814 genetic study dataset gave similar p-maps as
Fig. 8 thus we did not add a figure for it. From Figs. 8, 9 and 10, we can find that these three
methods generated consistent p-maps. The CDF plots comparisons of the five experiments
are shown in Fig. 11. The CDF plots are the comparisons of the surface fluid registration,
FIRST, and SPHARM on the 814 dataset. From the figure, we can see thatour system
outperformed FIRST and SPHARM in the third and fourth experiments and obtained
comparable results as SPHARM in the first and second experiments. For the fifth
experiment, all three methods achieved comparable performance but none was statistically
significant when using mTBM as the morphometry statistics.
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4. DISCUSSION
The current study has two main contributions. First, we built a subcortical structure surface
morphometry systemwithconformal parameterization and 2D inverse consistentimage fluid
registration. Pioneering work (Thompson and Toga, 2002; Thompson et al., 2004b) in brain
surface registration proposed a cortical pattern matching algorithm to register cortical
surfaces by computing a flow field in the cortical parameter space, which matches up
corresponding sulci (represented as a set of landmark curves). With surface conformal
parameterization (Wang et al., 2007), here we show how the image fluid registration method
may be adjusted to enforce appropriate surface correspondences in the parameter domain.
We proposed novel surface features, surface conformal representation, to guide the fluid
flow to register subcortical surfaces. The proposed surface conformal representation
captures both intrinsic surface feature, i.e. conformal factor and extrinsic surface feature, i.e.
mean curvature. The surface conformal parameterization was computed by solving a linear
system (Wang et al., 2007) so our system is computationally efficient and scalable.
Furthermore, due to the simplicity of the Riemannian metric introduced by conformal
parameterization, extension of Navier-Stokes equation into general surface space is easy to
implement and thus avoids rather complicated Christoffel symbol computation(Thompson et
al., 2004b). Our software package together with our multivariate statistic package are
publically available at (Wang, 2011). Second, in an open brain imaging dataset, ADNI, we
demonstrated ApoE4 is associated with greater atrophy of hippocampal formation in both
patients of MCI and healthy control subjects. Our work outperformed the results of a prior
work (Morra et al., 2009a) on the same dataset and also validated the observations in Pievani
et al. (2011) in a much larger imaging dataset. Our results are related to the concept of
preclinical stage AD, a concept that has been validated through autopsy studies (Dickson et
al., 1992; Gouras et al., 1997; Bennett et al., 2009; Kok et al., 2009; Caselli et al., 2010),
fluorodeoxyglucose positron emission tomography (FDG-PET) studies (Reiman et al., 1996;
Reiman et al., 2005) and amyloid ligand binding studies(Reiman et al., 2009) based on the
use of Pittsburgh Imaging Compound B (PiB). Our work may provide a structural MRI
analysis tool that helps study large numbers of genetically at-risk individuals before the
onset of symptomatic memory impairment.

Comparison with SPHARM on synthetic models
The main advantage of our algorithm is the ability to register surface features via a
diffeomorphic mapping while preserving the surface topology. To validate the idea, we have
conducted a synthetic experiment and compared the result with SPHARM given that the
source code of SPHARM is available online. First, we generated a binary volumetric image
of a cylinder (Fig. 12 (a)). The SPHARM image segmentation and surface construction tool
generated the surface model (Fig. 12 (a)). Then, a C-shape was added on the cylinder model
at two different locations to simulate the region of interests (ROI) on different surfaces (Fig.
12 (b)). The combination of the C-shape and the cylindrical surface did not change the
vertex number, face number, and connectivity of the original cylindrical surface. Note some
staircase effect on the surfaces in Fig. 12 (b) was introduced from the SPHARM surface
construction tool. For a fair comparison, we applied these two surfaces as the input for both
SPHARM and our inverse consistent surface fluid registration. As shown in Fig. 12 (c) and
(d), the resulting SPHARM surfaces were reconstructed from the spherical harmonic
coefficients, which were computed from the input surfaces and their spherical
parameterizations. To show the registration results, we drew the ROI on the study surface
with red color and the rest area with blue color. We transferred all the color setting to the
template surface via the registration. Presumably, a good registration result will have a clear
C-shape (i.e. the ROI) drawn in the red color. In Fig. 12 (d), we can see that the resulting C-
shape is not totally in red, which indicated that the two ROIs were not well aligned. We also
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see that some surface features were lost or altered during the reconstruction. On the other
hand, as shown in Fig. 12 (c), the C-shape on the template surface is clearly in red and the
rest in blue, which indicated that our method was able to well register the regions of interest
and keep the surface topology as well. The staircase effect of the input surfaces was well
retained in our results. This simple experiment may demonstrate that our method can
register surfaces by matching surface features, such as curvature or conformal factor.

Comparison of the inverse consistent fluid registration with/without area distortion
correction on synthetic surfaces

Our inverse consistent surface fluid registration method involves solving the Navier-Stokes
equation on general manifold. It requires the comparison of vectors at different points on the
surface. In general, these vectors are in different tangent planes and we need a way to
compare them in a common space (Stam, 2003). On the other hand, parametric surfaces
allow tangent vectors to be compared in their parameter domains. To do that, one needs
formulate the distortions caused by the surface parameterizations and remedy them by some
compensation terms, so we can achieve a set of coordinate invariant differential operators
(Stam, 2003; Thompson et al., 2004b; Lui et al., 2005; Wang et al., 2007). Compared with
the relatively complicated area distortion compensation terms adopted by some prior work
(Stam, 2003; Thompson et al., 2004b), the global conformal parameterization allows a
simple formulation using the conformal factor (Lui et al., 2005; Wang et al., 2007). In
computer graphics literature (e.g. Stam(2003)), it has been observed that the fluid simulation
artifacts were drastically reduced when these compensation terms were applied. To validate
if the compensation terms help improve our surface registration quality, we have performed
two experiments on the synthetic surface models that have been used in Fig. 5. In our
experiments, we applied the inverse consistent surface fluid registration on both directions to
register surface 1 to surface 2 (the first row in Fig. 13) and surface 2 to surface 1 (the second
row in Fig. 13). We tried to perform the registrations with or without the parameterization
compensation terms. We also visualized the pull-back metrics by drawing those equal-
spaced black strips defined on the target surfaces back to the source surfaces based on the
registration. It is obvious that the registration results with the area distortion correction ((c)
and (d)) have more uniform strips than those without the area distortion correction ((e) and
(f)). Similar to prior work (Stam, 2003; Thompson et al., 2004b; Lui et al., 2005; Wang et
al., 2007), this simple example may help justify our formulation and demonstrate its efficacy
to produce a good surface correspondence.

ε-Isometric parameterization vs. conformal parameterization
Mathematically speaking, an isometric mapping between two surfaces requires that the first
fundamental forms to be equivalent throughout the surfaces whereas a conformal mapping
only requires the first fundamental forms to be different by a scalar. As a result, the
conditions for conformal mapping are relatively loose. Similar to the cartography problems,
it is impossible to compute a mapping from the hippocampal surface to a Euclidean plane
that preserves all the geodesic distances. This is a consequence of the theoremaegregium(Do
Carmo, 1976): because the Gaussian curvature of the hippocampal surface is nonzero on
most of surface areas, whereas the plane has zero curvature, these two surfaces cannot be
isometric. In the computer graphics and computer vision fields, there were numerous
methods proposed to compute the ε-isometric parameterization, i.e. an approximation of
isometric mapping, e.g. some methods (Schwartz et al., 1989; Bronstein et al., 2006) apply a
multidimensional scaling method (Torgerson, 1952; Shepard, 1962; Kruskal, 1964b; a) to
compute the near-isometry mapping to the plane for retinotopic mapping and 3D face
recognition study.
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On the other hand, conformal parameterization was adopted in various imaging and graphics
applications to study surface registration (Lipman and Funkhouser, 2009; Boyer et al., 2011;
Wang et al., 2012b). Because of the uniformization theorem, conformal mappings to certain
domains exist on every simply connected Riemann surface. The discrete conformal mapping
has a rigorous theoretic definition and can be computed accurately. In our study, there exists
a conformal mapping from a hippocampal surface with two introduced cuts to the Euclidean
plane. Our prior work (Wang et al., 2007) introduced a holomorphic 1-form based method to
compute such a conformal mapping. Although there are area distortions on a conformal
mapping, considering the definition of conformal factor λ as Eq. 2, we can see that
conformal factor is a smooth function which describes the stretching effect of conformal
parameterization. With the conformal factor as the compensation term, the major novelty of
the current work is to introduce the Navier-Stokes equation for Riemann surface by the
covariant derivatives. Specifically, in Eq. 5, by dividing the conformal factor λ, the flow
induced in the parameter domain is adjusted for the area distortion introduced by the
conformal parameterization and one may achieve a coordinate invariant PDE solving
formulation. The proposed formulation is simpler than the prior work (Thompson and Toga,
2002; Thompson et al., 2004b) and may offer a numerically stable and efficient method for
surface registration problem.

Comparison with isometry-based surface registration methods
Many existed isometry-based algorithms have focused on mappings of surfaces to their
flattened ones on the Euclidean plane (Timsari and Leahy, 2000; Sander et al., 2001;
Zigelman et al., 2002; Balasubramanian et al., 2010). Some research also tried to enforce
either distance preserving or near-isometry in the surface registration work (Schreiner et al.,
2004; Eckstein et al., 2007; Cho et al., 2011). Among them, Cho et al. (2011) proposed a
multi-resolution distortion-minimizing mapping scheme to compute surface correspondence
between subcortical surfaces. The same research problem that we are trying to address may
justify the effort to briefly compare our work with their work.

In (Cho et al., 2011), although they do not map a hippocampal surface to the Euclidean
plane, they employ an area-preserving approximation spherical parameterization method
(Shen and Makedon, 2006) to establish an initial surface alignment and, for each iteration,
generalize the mapping from the low resolution meshes to high resolution meshes. In the
registration step, they formulate the matching problem as an energy minimization problem
that is defined on a high-dimensional Riemannian manifold and penalizes the deviation from
isometric mapping and triangle flippings. The surface deformation is constrained to move
along the source surfaces. Our work formulates the surface registration as an image flow
problem so that we convert a 3D registration problem to a 2D one via the conformal
parameterization. Because of the nature of 2D image registration, our work is more intuitive
and easier to be visualized. Due to the differential covariants, our work compares vector
fields and deforms surfaces on their tangent planes and also deforms surfaces on surfaces
themselves (both source and target surfaces). Furthermore, the inverse consistent registration
framework helps maintain a symmetric correspondence and does not depend on the order we
use to compare surfaces. Overall, these two papers take two different approaches, i.e. one
projects the matching problem to a high-dimensional Riemannian manifold and pursues an
approximated isometry deformation while the other converts the problem to the 2D image
plane and solves it with some stable 2D image registration schemes. Although a quantitative
comparison may be of interest for future work, two algorithms are comparable and
complementary to each other. We expect one method may outperform the other in some
contexts but not others, or in some diseases but not others, depending on the type of surfaces
to be registered.
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Benefits of conformal parameterization
For surface morphometry study, one traditional way to do this is to set up parametric grids
on surfaces, which are registered across subjects, and then use differential geometry to come
up with useful descriptors of surface features of interest, or to summarize the geometry as a
whole. Conformal maps help to induce particularly well-organized grids on surfaces. This
simplifies a number of downstream computations of registration and surface metrics. The
major benefits of conformal parameterization in our work include: (1) a good initialization
alignment. For two similar shapes, their conformal structures are also similar. As a result,
the conformal parameterization provides good initial alignments between hippocampal
surfaces which are similar in nature; (2) surface conformal representation. It represents both
surface intrinsic and extrinsic geometry features; (3) an efficient numerical scheme to solve
PDEs on general surfaces. It simplifies the extension of PDEs such as Navier-Stokes
equation, to general surface and avoids complicated Christoffel symbol computation
(Thompson et al., 2004b). Our work pursues an inverse consistent registration so we need
solve the PDEs for multiple times. Therefore, the computational efficiency introduced by the
conformal parameterization may help us achieve an efficient and stable solution for surface
morphometry study.

System structure design
As a shape analysis software tool, the input to our system is the binarized images, which are
obtained either by some automatic image segmentation tools (Morra et al., 2010; Patenaude
et al., 2011) or manual segmentation results using some interactive graphic tools (Shattuck
and Leahy, 2002; Yushkevich et al., 2006a). In the current paper, we took the input as the
automatic segmentation results by FIRST (Patenaude et al., 2011). We generated binary
images by thresholding the segmentation results and built surface models for the subsequent
surface morphometry analysis. Note other options are also available for such a morphometry
system. For example, the FIRST software tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST)
generated both images and surface models of subcortical structures. The surface models
obtained by FIRST already had cross-subject correspondences and were used in this paper as
a comparison method. Whether or not the integrated system provides superior discrimination
power than the one working with binarized images still needs more validation. However, the
benefit of our current system design is the flexibility for users to adapt the system to
different data sources. Furthermore, similar to some other work that used FIRST
segmentation results to study relative pose information of subcortical nuclei (Bossa et al.,
2011), our software tool may also be interesting to FIRST users so that it may be appealing
to a broader range of researchers in the neuroimaging community.

Alternative pipeline consideration
Since the initialization is affected by the mapping, so one may wonder whether it is possible
to use a least metric distortion mapping for initialization and then conformal mapping for the
fluid flow. The alternative pipeline is appealing but it has some difficulties. First, in our
work, similar to M-reps or cm-rep work (Pizer et al., 1999; Yushkevich et al., 2006b), we
tend to use a cylindrical parameterization for the hippocampus (Wang et al., 2010b; Wang et
al., 2011b). Under this setting, it is rare to have two conformally equivalent hippocampal
surfaces (i.e. there is a conformal mapping between them) because of the biological variety.
As a result, the fluid flow does not generate a conformal mapping in general. Secondly, it is
a common belief that a least metric distortion mapping, either defined by explicitly defined
landmarks or implicit geometry features, could align anatomical surface for neuroanatomy
analysis because functional and architectonic boundaries of the human brain have been
linked to the brain structure shapes (Brodmann, 1909). So the current approach, to use
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conformal parameterization for initial alignment and refine it with least metric distortion
mapping, is indeed a valid and practical approach.

Initial alignment computation
. The initial alignment is important for the success of the proposed surface registration
algorithm. Numerous efforts are taken to guarantee good initial alignments between surfaces
to be registered. First, all our input data has been registered to the MNI standard space,
where all the surfaces have the same orientation. Secondly, we label two consistent
landmark curves at the front and back of the hippocampal surface, representing its anterior
junction with the amygdala, and its posterior limit as it turns into the white matter of the
fornix. They are biologically valid and consistent landmarks across subjects. Given the
hippocampal tube-like shape, these landmark curves can be automatically detected by
checking the extreme points by searching along the first principle direction of geometric
moments of surface (Elad et al., 2004; Zhang and Lu, 2004; Wang et al., 2011b). For the
quality control purpose, we have manually checked the consistency of all landmark positions
in our current work. Lastly, we parameterize the surfaces to a rectangle by tracing a constant
line (iso-u) on the parameter domain. We also make sure the cutting curve passes a
geometrically consistent point, e.g. the extreme point on x direction in the MNI standard
space. Because the conformal structure is surface intrinsic feature and all hippocampal
surfaces have similar shapes, their conformal parametrizations are very similar on the 2D
plane. Taken the parameterization as the canonical space, we establish the initial alignment
between hippocampal surfaces.

Global affine normalization
In computational neuroanatomy research, brain images are usually transformed into a
standardized stereotactic space via a global affine transformation followed by a nonlinear
deformation to match the atlas or template, which is a fixed reference coordinate system of
the brain. The global affine normalization removes most of the within- and between-subject
global differences in brain size. Because global brain size difference does not provide much
biological information, these global morphological variabilities should be removed before
any localized shape analysis is performed (Chung, 2012). It is a common practice for tensor-
based morphometry (TBM) research (Davatzikos et al., 1996; Thompson et al., 2000; Chung
et al., 2008; Wang et al., 2010b; Wang et al., 2011b; Wang et al., 2013). In our work, after
segmentation, we transformed the segmented hippocampal models into MNI standard space
with the transformation matrices computed by FLIRT. Since we use the parameterization
space as a common space for registration, this global affine normalization does not affect
our registration. The normalization is purely for the following mTBM analysis. It may affect
the area or the deformation tensor computation but, by removing the global differences in
brain sizes, it provides a stable reference space for hippocampal subfield analysis.

Area distortion compensation and registration regularization terms
There are several coefficients in our formulation (Eqs. 6, 7 and 8). Among them, λf,b are
conformal factors and used as the area distortion compensation terms for parametric surface
based PDE solving. α, μ and τ are registration regularization terms. Although they are all
involved in surface registration, they have different functions. As we discussed, λf,b mainly
help achieve coordinate invariant differential operators so that one may solve surface fluid
PDEs with parametric surfaces. The benefits to have λf,b are not to achieve an area
preserving mapping between 3D surface and parameter domain, instead, they are used to
define partial differential operators on manifolds and the covariant differentiation on tensor
fields (Do Carmo, 1976). With conformal parameterization, their computation becomes very
simple and is only related to conformal factors, λf,b. On the other hand, similar to prior work
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(Leow et al., 2005a; Chiang et al., 2008), α, μ and τ are registration regularization terms
which controls the distortion introduced during the fluid registration. With different settings
on these parameters, one may penalize the induced area distortion or enforce smoothness.
With these two different regularization terms, our surface fluid registration framework is
aimed to achieve a surface registration framework which is both computationally efficient
(induced by the conformal parameterization) and produces diffeomorphic surface mappings
with controlled distortion (enforced by registration regularization terms).

Inverse consistency for a loss of alignment accuracy?
In our work, inverse consistency is imposed as a constraint. At the initialization, both the
forward and backward maps are set as identity maps. They are inverse consistent for sure.
But the sum of squared intensity differences (SSD) between the two different images that to
be registered will make the whole energy too large to be optimal. Then by changing the
forward and backward maps, we gradually reduce the SSD while keeping the inverse
consistency of the two maps until the energy cannot be decreased anymore. Here the inverse
consistency constraint may even improve the accuracy of the alignment because the two
images deform to each other, thus the driving force computed by SSD between them may
lead the flows to get more accurate alignments. In summary, besides the fact that it helps a
diffeomorphic and balanced surface registration, the inverse consistency does not
necessarily sacrifice surface registration accuracy.

Conformal equivalence and conformal factor update
The final deformed map was obtained by first conformally mapping a surface to the
parameter domain and second deforming to a template surface by the inverse consistent fluid
registration. The former is a conformal mapping and the latter is not a conformal mapping.
Since conformal mapping and fluid registration generate diffeomorphic mappings, the
surface-to-surface mapping established by our method is a deffeomorphic mapping but
usually is not a conformal mapping. To achieve conformal mappings between hippocampal
surfaces, the two surfaces have to be conformally equivalent. Generally speaking, two
hippocampal surfaces may not be conformally equivalent after we introduce the cuts so the
conformal mappings do not always exist. However, we may study the subtle surface
difference by studying the conformal structure quotient space - Teichmüller shape space as
demonstrated in our prior work (Wang et al., 2009c; Wang et al., 2009b).

As a surface intrinsic feature, the conformal factor is computed after we get the
parameterization of the surface and is not adjusted as the map changes. This correction term
for fluid registration could make the flow computed in the parameter domain independent of
underlying surface metrics, thus the flow directly establishes a mapping between surfaces.

Does the cutting affect the statistics?
To achieve an accurate registration between surfaces, we cut open two landmark curves and
convert the landmark matching problem as an explicit boundary matching problem. We have
adopted this approach in our prior work on brain cortical surface registration (Wang et al.,
2012b) and subcortical surface registration (Wang et al., 2011b). The topology cuts do not
change the overall surface geometry because the two sides of the cuts are still in the
identical positions. So the cuts do not affect the surface registration and the following shape
analysis work. Also since we have the conformal factor as the compensation term for the
area distortion in the fluid registration framework, theoretically these cuts should not affect
the statistical results on the neighboring regions. As shown in Fig. 14, the enlarged figures
highlight the positions of the landmark curves and the insignificant regions on the p-map.
We can see that the statistically insignificant area does not align exactly with the cutting
positions. However, to achieve an accurate surface registration and morphometry analysis,
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the cut positions need to be consistent across subjects. Besides the automatic moment-based
landmark curve identification method discussed in Sec. 3.2, we also applied a quality control
step by manually checking all the cutting positions after the automatic landmark
identification step. Although we did not find any inconsistency in this work, we consider
that it is a recommended step when applying our pipeline for new analyses.

Visualization of the differences between groups
Here we mainly applied a nonparametric, multivariate permutation testing on Hotelling's T2

statistics. Compared with the conventional Jacobian determinant (Qiu and Miller, 2008; Qiu
et al., 2008; Qiu et al., 2009a; Qiu et al., 2010), the logarithmic transforms are applied to
convert the tensors into vectors that are more tractable for Euclidean operations. On the
other hand, standard multivariate random field theory may also be applicable to analyze the
new multivariate statistics. For instance, in (Worsley et al., 2004; Taylor and Worsley,
2008), results based on random field theory for Roy's maximum root was proposed. The
inference for Roy's maximum root is based on the Roy's union-intersection principle (Roy,
1953). Recently, Chung et al. (2010) used this statistic to quantify abnormal local shape
variations of the amygdala in 22 high-functioning autistic subjects. Here since we used
Hotelling T2 test, the significant map results are like 2-sided tests and do not carry the
direction information. To visualize the deformation directions, we defined a new
measurement (Wang et al., 2011a) at each vertex k as

(12)

where  and  are the Jacobian matrices for the ith subject in one group and the jth
subject in another group, respectively, and N1 and N2 are the number of subjects in one
group and in another group. The determinant of Jacobian matrix indicates the difference in
size of the region in the individual subject compared to the template. When registering the
two groups of subjects to a common template, Rk with values greater than 1 indicating that
the surface area at that vertex is larger in one group when compared to the other group and
vice versa for values smaller than 1. From Fig. 15 we can see that, when comparing AD
patients with healthy controls or MCI subjects and when comparing MCI subjects with
healthy controls, as expected, the major area on the hippocampal surface shows atrophy,
which represented by the red color. This is also matches the corresponding p-maps as shown
in Fig. 6. We also observed some enlargements at the anterior and the posterior sides of the
surface, which represented by blue color. As pointed out in (Apostolova et al., 2010b), this
is probably due to the tissue loss in the neighboring structures of hippocampus, as the
anterior and posterior are the junctions with the amygdala and the white matter of the fornix,
respectively. As a result, the enlargements may be caused by the shifting of the long axis of
the hippocampus.

Clinical significance of surface-based morphometry statistics
Atrophy of brain structures is associated with cognitive impairment in normal aging and AD
(Frisoni et al., 2010), and typically results from a combination of neuronal atrophy, cell loss,
and impairments in myelin turnover and maintenance, and corresponding reductions in
white matter volume. These cellular processes combine at the macroscopic level to induce
observable differences on brain MRI. Several of processes (such as cellular atrophy) occur
with normal aging, and others (including neuronal loss) are further promoted by amyloid
plaque and neurofibrillary tangle deposition. Our work applies mTBM, a surface-based
morphometry feature, to study brain structure changes. Although surface expansion and
contraction are less traditional measures of morphometry, it is likely that they simply reflect
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the same processes that cause progressive brain tissue loss. Our work, as well as some
approaches developed by other groups (e.g. Winkler et al. (2010; 2012), Chen et al. (2012),
Qiu et al. (2008); Yushkevich (2009)), measure the extent and severity of cortical and
hippocampal shape deformations as a proxy for cortical and hippocampal atrophy. The
detected expansion or compression of the surface areas are associated with macrostructural
and microstructural loss in different brain regions and their association with cognition and
genetic influence makes them useful indices of the neurodegenerative process.

Integration of contextual information for hippocampal subfield analysis
Usually surface-based brain imaging approaches (Thompson and Toga, 1996; Fischl et al.,
1999; Van Essen et al., 2001; Goebel, 2012) rely on segmented image to build surfaces.
They solely use surface geometry information for image registration and shape analysis.
Some contextual information is considered in the image segmentation stage and boundaries
between two different tissues are determined based on some priors learned from the training
data. In hippocampal subfield shape analysis work (Thompson et al., 2004a; Morra et al.,
2009a; Qiu et al., 2009b; Apostolova et al., 2010a; Wang et al., 2011b), the morphometry
comparison usually only uses geometric information. Some methods (Wang et al., 2003;
Wang et al., 2006; Van Leemput et al., 2009; Yassa et al., 2010; Yushkevich et al., 2010)
segment hippocampus into different regions and analyze the volume and shape changes of
these subfields. These methods compute volumetric image registration between template and
individual subject and translate and visualize the deformation on surfaces. We hypothesize
the contextual information, e.g. surface registration consider neighboring image information,
may improve the registration accuracy. Nonetheless, the integration has many challenges,
such as different resolutions, high dimension, etc. How to combine the contextual
information, e.g. considering the neighboring image information in the analysis, to improve
statistical power still needs further investigation. We noticed some recent work (Du et al.,
2011) has proposed new methods which integrate information of curves, surface and
volumetric images. It could be a potential future work to improve hippocampal subfield
analysis research.

Our algorithm is generic and may be useful for other subcortical structure analysis. There
are two main caveats when applying the developed surface fluid registration method to study
general subcortical surface registration problem. First, in the topology optimization step, the
current algorithm requires two landmark cuts, which may restrict the applicability of the
proposed method with other subcortical structures. Thus far, we have applied this algorithm
to study putamen morphometry in prematurity study (Shi et al., 2012) and applied another
similar algorithm (constrained harmonic map through flattening 3D surfaces (Wang et al.,
2011b)) to study morphometry of thalamus (Wang et al., 2011a) and corpus collosum(Wang
et al., 2012a) on prematurity and achieved some limited success. Since the subcortical
structures are normalized in a common stereotaxic coordinate system in a controlled manner,
we assume some geometry extreme positions can serve as geometrically valid and consistent
landmarks across subjects in these work. However, it deserves more careful validation on
whether these landmarks are also biologically valid and one should be cautious about how
consistent they are for a population based study. Second, to map a hippocampal surface to a
2D plane, we introduce a few cuts on the surfaces. Currently, by introducing the same length
cuts on consistent surfaces, we try to make sure that the induced boundaries are consistent
across surfaces on the parameter domain and the flow computation is the same for vertices
that are close to the boundaries as those in the internal areas. Although the cuts may not alter
the geometry of the original surface, it could affect the quality of vertex correspondences
near the two curves during the surface fluid registration. Even so, it is a logical conclusion
from observing the maps in Fig. 14 that the introduced boundaries do not seem to introduce
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artifacts and affect the statistical results. It shows the potential of our work for the proposed
hippocampal surface morphometry analysis.

5. CONCLUSION
With conformal parameterization, we extended the inverse consistent image fluid
registration method to match general surfaces. This has numerous applications in medical
imaging. Our examples of matching various hippocampal surfaces are relevant for mapping
how degenerative diseases affect the brain, as well as building statistical shape models to
detect the anatomical effects of disease, aging, or development. The hippocampus is used as
specific examples, but the method is general and is applicable in principle to cortical and
other subcortical surfaces.

Our surface-based fluid registrationsystem automates the matching of surfaces by computing
a correspondence field guided by the differences of features between the surfaces. This is a
natural idea, in that it uses conformal parameterization to transform a surface matching
problem into an image registration problem. Whetheror not this approach provides a more
relevant correspondences than those afforded byother criteria (mutual information,
neuralnets, or hand landmarking) requires carefulvalidation for each application. Optimal
correspondencedepends more on utility for a particularapplication than on anatomical
homology. Because different correspondence principles producedifferent shape models, we
plan to compare them in future work fordetecting group differences and genetic influence in
brain structures.

As we described in Results section, the inverse consistent fluid flow that matches one
surface to another was computed with the surface feature images and the images were
computed by summing up local conformal factor and mean curvature and linearly scaling
the dynamic range to [0, 255]. It is possible that some dynamic ranges in the features will be
scaled into just one range in the image. Thus an improvement of the accuracy of the fluid
registration is to compute the flow directly on the triangular surface coordinates with the
original features and finite element method. We plan to pursue this direction in our future
work.

As we discussed in the Results section, our results agree with some literature (Morra et al.,
2009a; Pievani et al., 2011). Similar to other surface-based hippocampal subfield analysis
work (Thompson et al., 2004a; Morra et al., 2009a; Qiu et al., 2009b; Apostolova et al.,
2010a), our method is able to detect some specific significantly different regions. With our
current statistical validation strategies, permutation test and false discovery rate, our results
match with results from two other methods, SPHARM and FIRST. The spreading results,
e.g. between controls and MCI/AD, do not indicate the differences are simply smoothed/
averaged over the whole structure. Our future work will further investigate how to apply
these detected statistical group differences with drug trials (Gutman et al., 2012),
classification (Yuan et al., 2012), and progression (Ye et al., 2012).

In future, we will also apply our inverse consistent surface fluid registration framework to
work with other surface features, such as surface heat kernel signature (Sun et al., 2009b),
Beltrami coefficients (Lui et al., 2010), etc. The proposed multivariate measures may help in
detection of degenerative effects, and may also benefit imaging genetics research (Ho et al.,
2010). In this work, we used the group difference study as an application. With multivariate
features, it is natural to apply machine learning methods to perform computer-assisted
diagnosis and predict future clinical decline (Sun et al., 2009a; Kohannim et al., 2010; Wang
et al., 2010a). Our future plan is to incorporate our system with some other machine learning
tools, such as support vector machine (Vapnik, 1998), sparse learning (Candès and Tao,

Shi et al. Page 24

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2005), etc., and build a system which may identify imaging biomarkers that are able to
evaluate AD related disease burden and predict progression and response to interventions.
The combined system may offer a surface-based subcortical structure morphometry tool to
detect the anatomical effects on ageing and disease.
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APPENDIX A
With conformal parameterization, the Riemann metric is defined as:

The inverse of [gij] is:

We now provide the expression in general coordinates of the differential operators that
appear in Eq. 9(Aris, 1989; Stam, 2003).

Gradient:

Thus the gradient operator ∇S can be written as:

Divergence:
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where  and .

The Laplacian can be computed by gradient and divergence as:

Given conformal parameterization , where , , , we have

For a velocity field .

APPENDIX B
In details, three commands from SPHARM system were used in sequence:

1. SegPostProcess: This command can be used to extract a single label or a label
range from the input image, to resample the input image into isotropic resolution,
and to ensure the spherical topology of the substructure represented by the image
label. Styner et al. (2006) claimed that the input to next command, GenParaMesh
has to be of isotropic resolution and a relatively fine resolution is preferred and
suggested an isotropic resolution of 0.5mm × 0.5mm × 0.5mm for hippocampi.
However, in our experiment, if we resample the binary images obtained by FIRST
with the command SegPostProcess, about 20% of the subjects will fail the
following processing. As a result, before running the command, we resampled the
binary images into an isotropic resolution of 1mm × 1mm × 1mm with the linear
registration given by FLIRT. Thus, in our comparison experiment, the
SegPostProcess command was used as a format conversion tool, i.e., to convert the
binary analyze images into a format that can be read by the subsequent commands.
The command was run by the following example command line on each isotropic
image:

SegPostProcessLabel.hdr –o Label_PP.hdr –label 1

whereLabel.hdr is the input and Label_PP.hdr is the output.

2. GenParaMesh: This command extracts the surface of the input label segmentation
and maps the surface to a sphere with the area-preserving, distortion minimizing
spherical mapping (Styner et al., 2006). The command was run by the following
example command line:

GenParaMeshLabel_PP.hdr –iter 1000 –label 1

This command will output two surfaces: Label_PP_surf.meta is the surface and
Label_PP_para.meta is the spherical parameterization.
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3. ParaToSPHARMMesh: This command computes the SPHARM-PDM
representation and resolves issues of correspondence and alignment. The command
was run by the following example command line:

ParaToSPHARMMeshLabel_PP_surf.metaLabel_PP_para.meta –subdivLevel
10 –spharmDegree 12 – flipTemplatetemplate.coef –
regTemplatetemplate.meta

The parameters subdivLevel and spharmDegree were set as recommended for
hippocampus (Styner et al., 2006). The flip template was chosen as the same
template with the inverse consistent fluid registration and was computed by the
above command without providing a flip template. The output of the command
will be registered surfaces.
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Highlights

• Efficient formulation of manifold fluid registration by conformal
parameterization

• An inverse consistent non-linear surface registration scheme

• Surface multivariate TBM was adopted as morphometry statistics in the system

• The system achieved better performance than some other surface registration
tools

• ApoE4 may be associated with accelerated brain atrophy on MCI patients and
controls
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Figure 1.
A segmentation and surface construction chart showing the key steps in our system. After
the hippocampal surfaces were extracted from MRI scans automatically with FIRST, we
computed their conformal parameterization with holomorphic 1-forms. Then feature images
were generated by combining the local conformal factor and mean curvature that were
computed from the conformal parameterizations. After the inverse consistent fluid
registration was done in the feature image domain, we deformed the surfaces using the
obtained displacements. The statistics of multivariate TBM were computed at each point on
the resultant matching surface. Then the Hotelling T2 test was applied to compute
differences between two different groups.
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Figure 2.
Histogram showing the Hausdorff distances between the smoothed meshes and original
meshes. The majority of the absolute distances fall into the range [0.9, 1.1] with the unit as
millimeter. Given the volumes of hippocampus lie between 3000 and 4000 mm3 (Hasboun
et al., 1996; Hickie et al., 2005; Ystad et al., 2009; Carmichael, 2011), our smoothed meshes
can be regarded as accurate approximations of the original surfaces.
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Figure 3.
Illustration of surface conformal parameterization (a) and geometric features (b). In (a), the
boundaries generated in the topologyoptimization step were labeled in blue color. Each side
of the hippocampalsurface was conformally mapped to a rectangle in the parameter domain.
The overlaid checkboard texture is used to demonstrate angle preserving property; the
shading effect on theparameter space was generated by rendering the original 3D surface
with the surfacenormal directions on each point. In (b), surface geometric features were
color coded. The parameterization results and geometric features were used for surface
registration and morphometric analysis.
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Figure 4.
Inverse consistent fluid registration driven by sum of squared intensity difference (SSD) (a)
and mutual information (MI) (b) respectively on synthetic images to demonstrate the
efficiency of SSD. Although the registration results were similar, the SSD based method
took 14.15 seconds while the MI based method took 1730.15 seconds.
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Figure 5.
Matching of geometric features in the 2D parameter domain with the inverse consistent fluid
registration of two synthetic surfaces. With the forward and backward mappings obtained in
the parameter domain, we induced a forward deformation and a backward deformation in
surface 1 and surface 2, respectively. As we can see from (c) and (d), without changing the
shape of the surfaces, the features on them are well aligned to each other.
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Figure 6.
Illustration of inverse consistent surface fluid registration on map of local shape differences
(p-values) between different diagnostic groups, based on the mutivariate TBM method with
hippocampal surfaces from ADNI baseline dataset, which were automatically segmented by
FIRST. (a), (b), (c) are group difference p-maps between AD and control, AD and MCI,
MCI and control, respectively, in 194 AD, 402 MCI, and 228 control subjects. The p-map
color scale is the same as Fig. 8. (d), (e), (f) are the CDF plots.
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Figure 7.
Illustration of comparisons of inverse consistent surface fluid registration with FIRST and
SPHARM on map of local shape differences (p-values) between different diagnostic groups,
based on the mutivariate TBM method with hippocampal surfaces from ADNI baseline
dataset, which were automatically segmented by FIRST. (a), (b), (c) are results of our
method, (d), (e), (f) are result of FIRST, (g), (h), (i) are results of SPHARM on group
difference between AD and control, AD and MCI, MCI and control, respectively, in 190
AD, 396 MCI, and 228 control subjects. The p-map color scale is the same as Fig. 8. (j), (k),
(l) are the CDF plots showing the comparisons of the three methods.

Shi et al. Page 45

Neuroimage. Author manuscript; available in PMC 2014 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8.
Significance maps for ApoE4 effects with inverse consistent surface fluid registration.
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Figure 9.
Significance maps for ApoE4 effects with FIRST method.
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Figure 10.
Significance maps for ApoE4 effects with SPHARM method.
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Figure 11.
Cumulative distribution function plots comparison for ApoE4 effects with mTBM as the
surface morphometry statistics.
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Figure 12.
Comparison of surface fluid registration and SPHARM on synthetic surfaces. (a) is the
synthetic volumetric image for a cylinder and its surface model constructed with SPHARM
tools. (b) shows the surfaces on which we put two synthetic C-shapes at different locations.
(c) and (d) illustrate the surface registration achieved by inverse consistent surface fluid
registration method (c) and SPHARM method (d). To show the registered correspondence,
we drew the C-shape on the study surface with red color and transferred the color directly to
the template surface. In (c) the C-shape on template surface is in red while in (d), the red
color does not totally cover the C-shape. This simple experiment shows that our method
register surface by matching detailed surface features.
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Figure 13.
Comparison of the inverse consistent surface fluid registration with and without the area
distortion correction term in Eq. 5. We visualize the pull-back metric by drawing those
equal-spaced black strips defined on the target surfaces back to the source surfaces. Overall
the registration results with the area distortion correction ((c) and (d)) are more uniform, i.e.
less drastic area distortion strips, than the ones without the area distortion correction ((e) and
(f)).
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Figure 14.
Positions of landmark curves and statistically insignificant regions on the p-maps of the
inverse consistent surface fluid registration method. We can see that the statistically
insignificant area does not align exactly with the cutting positions.
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Figure 15.
Maps of the ratios of average determinants of the Jacobianmatrices Rk, defined in Eq. 12.
(a) AD over control, (b) AD over MCI, (c) MCI over control. From the pictures, we can see
the continuous increasing of the atrophy (red color) from control group to MCI and AD.
There is also some enlargement areas (blue color). This is probably due to the tissue loss in
the neighboring structures of hippocampus, which caused the shifting of the long axis of the
hippocampus.
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Table 1

FDR corrected p-values comparison. Our proposed system generated stronger statistical power than two other
subcortical morphometry systems.

Surface Fluid FIRST SPHARM

AD-CTL 0.0485 0.0455 0.0461

AD-MCI 0.0259 0.0058 0.0134

CTL-MCI 0.0479 0.0408 0.0468
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