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Abstract

Measuring iron content in the brain has important implications for a number of neurodegenerative 

diseases. Quantitative susceptibility mapping (QSM), derived from magnetic resonance images, 

has been used to measure total iron content in vivo and in post mortem brain. In this paper, we 

show how magnetic susceptibility from QSM correlates with total iron content measured by X-ray 

fluorescence (XRF) imaging and by inductively coupled plasma mass spectrometry (ICPMS). The 

relationship between susceptibility and ferritin iron was estimated at 1.10 ± 0.08 ppb susceptibility 

per μg iron/g wet tissue, similar to that of iron in fixed (frozen/thawed) cadaveric brain and 

previously published data from unfixed brains. We conclude that magnetic susceptibility can 

provide a direct and reliable quantitative measurement of iron content and that it can be used 

clinically at least in regions with high iron content.
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Introduction

Iron is an important endogenous biomarker for many neurological diseases and normal aging 

(Haacke et al., 2005; Schenck and Zimmerman, 2004). Previous histological work has 

shown that focally elevated iron deposition is associated with various neurological and 

psychiatric disorders, including multiple sclerosis (MS) (LeVine, 1997), Alzheimer’s disease 

(Bouras et al., 1997; Hallgren and Sourander, 1960; LeVine, 1997), Huntington’s disease 

(Chen et al., 1993; Dexter et al., 1991) and Parkinson’s disease (Chen et al., 1993; Dexter et 

al., 1991). Increased iron accumulation has been detected in chronic hemorrhage, MS 

lesions, cerebral infarction, anemia, thalassemia, hemochromatosis, and NBIA 

(neurodegeneration with brain iron accumulation) (Haacke et al., 2005). An in vivo non-

*Corresponding author at: HUH-MR Research/Radiology, Wayne State University, 3990 John R Street, Detroit, MI 48201, USA. Fax: 
+1 313 745 9182. nmrimaging@aol.com (E.M. Haacke). 

Conflict of interest
The authors have no Conflicts of interest.

Neuroimage. Author manuscript; available in PMC 2013 November 28.
Published in final edited form as:

Neuroimage. 2013 September ; 78: 68–74. doi:10.1016/j.neuroimage.2013.04.022.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



invasive and quantitative estimation of non-heme iron deposition (predominantly ferritin) is 

essential to understand the cause of iron accumulation and its distribution patterns as well as 

its physiological role in any given disease (Bartzokis et al., 2007; Gerlach et al., 1994; Ke 

and Qian, 2003).

A variety of methods have been used in the past to quantify iron using magnetic resonance 

imaging (MRI) (Haacke et al., 2005). The standard workhorses in this area are T2 (House et 

al., 2007; Jensen et al., 2010; Mitsumori et al., 2012) and T2* (or R2* = 1/T2*) imaging 

methods that create T2* or R2* maps derived from multi-echo gradient (recalled) echo 

magnitude images. The latter are particularly useful since gradient echo sequences are very 

sensitive to the local susceptibility induced magnetic field inhomogeneity due to iron 

(Bartzokis et al., 1993; Haacke et al., 1989, 2005; Ordidge et al., 1994; Peters et al., 2007; 

Reichenbach et al., 1997). Further, T2* or R2* maps provide an important contrast 

mechanism to investigate brain tissue microstructure and to detect abnormal levels of brain 

iron (Bartzokis et al., 2007; Bouras et al., 1997; Chen et al., 1993; Dexter et al., 1991; 

Haacke et al., 2005, 2009; Hallgren and Sourander, 1960; LeVine, 1997; Wallis et al., 2008).

In this paper, we focus on susceptibility measurements from phase images. Phase has been 

used as a means to measure iron content (Haacke et al., 2007). However, phase is dependent 

on the geometry of the object and so it can be misinterpreted. The solution lies in using a 

susceptibility map reconstructed from the phase information. In theory, this approach is 

independent of field strength, echo time, the object’s relative orientation to the main field 

and the object’s shape (Cheng et al., 2009b; de Rochefort et al., 2010; Haacke et al., 2010; 

Kressler et al., 2010; Li et al., 2011; Liu et al., 2009; Marques and Bowtell, 2005; Schweser 

et al., 2011; Shmueli et al., 2009; Wharton and Bowtell, 2010; Yao et al., 2009). Recent 

work has suggested that susceptibility changes in the basal ganglia, thalamus and other deep 

gray matter nuclei have better correlation with iron concentration than phase information 

(Bilgic et al., 2012; Fukunaga et al., 2010; Langkammer et al., 2012b; Schweser et al., 2011, 

2012; Shmueli et al., 2009; Wharton and Bowtell, 2010; Yao et al., 2009) and, therefore, 

quantitative susceptibility mapping (QSM) may provide a good means to study tissue iron 

content.

Currently, the neuroscience community relies upon the 50 year old data on iron in cadaveric 

brains published by Hallgren and Sourander (Hallgren and Sourander, 1958). Total iron in 

cadaveric brain has been measured using synchrotron X-ray fluorescence (XRF) iron 

mapping (Hopp et al., 2010; Zheng et al., 2012), proton-induced X-ray emission mapping 

(Butz et al., 2000), inductively coupled plasma mass spectrometry (ICPMS) measurements 

(Langkammer et al., 2010, 2012a) and atomic absorption spectrometry measurements 

(House et al., 2007). Among these, the first two techniques can provide a voxel by voxel 

quantification of iron content which can then be compared with MR iron quantification.

In this paper, our goal is to develop an absolute quantification scale by separating the iron 

induced susceptibility change from other potential sources by comparing ferritin-gelatin 

phantoms with quantified XRF iron maps of basal ganglia from cadaver brains and ICPMS 

iron values.
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Materials and methods

Preparation of ferritin phantoms

Horse spleen ferritin (Ref. F4503, Sigma-Aldrich, USA) was used to prepare ferritin-gelatin 

phantoms. The iron concentration as determined by the supplier using ICPMS was 7.13 

± 0.15 mg/ml. The ferritin solution was first diluted by adding 4 ml of original solution with 

16ml warm 7% gelatin resulting in a stock solution with iron concentration of about 1426 

± 30 μg/ml. This stock solution was serially diluted six times in warm gelatin by a factor of 

2 each time. The ferritin-doped gelatin solutions as well as pure gelatin were loaded into 

straws and then embedded in a pure gelatin matrix. Total iron was measured in aliquots of 

the ferritin-doped gelatin by XRF and ICPMS. See the detailed scheme of the experiment in 

Table 1.

Rapid scanning X-ray fluorescence (RS-XRF)

All XRF measurements were conducted at the Stanford Synchrotron Radiation Lightsource 

(SSRL). RS-XRF images of ferritin phantoms and cadaveric brain were acquired at wiggler 

beam line 10–2 at SSRL. The samples were mounted onto a set of motorized stages oriented 

at 45° to the incident beam. The incident beam (12 keV) passing through a tantalum aperture 

produced a 100 μm × 100 μm spot on the sample which was raster-scanned in the beam 

using a dwell time of 15 ms/point. Fluorescent energy windows were centered for Fe (6.21–

6.70 keV) as well as all other biologically interesting elements, scatter and total incoming 

counts. Elements were quantified in μg iron/g wet tissue by comparison of signal strength 

with XRF calibration standards (±5% uncertainty) (Micromatter, Vancouver, BC, Canada) 

according to Hopp and colleagues (Hopp et al., 2010) using Sam’s Microanalysis kit (Webb, 

2010). An area of the ferritin-doped gelatin block was mapped and average counts were 

compared with XRF calibration standards.

Inductively coupled plasma mass spectrometry

To confirm the total iron content of the ferritin phantoms, 5 ml samples were taken from the 

straws after MR imaging and the iron content was determined by ICPMS using an ELAN 

9000 system (PerkinElmer, Waltham, MA, USA) (American Environmental Testing 

Laboratory Inc., California). The samples were diluted to the range acceptable for ICPMS 

via serial dilutions.

Preparation of the cadaveric brain sample

One frozen coronal section (96 mm long × 132 mm wide × 5 mm thick) of human cadaveric 

multiple sclerosis (MS) brain (MS 3852) (see Fig. 1) was obtained from the Human Brain 

and Spinal Fluid Resource Center, Los Angeles, CA, under the University of Saskatchewan 

ethics approval BioREB 06-250. Coronal sections showed extensive irregular demyelination 

throughout the brainstem. There were also a few small scattered demyelinating 

periventricular foci (bilateral). The surface of the sample (a 5 mm thick section) showed 

patchy areas of slight rarefaction without significant axonal loss or change in 

oligodendrocyte density. There were varying degrees of associated gliosis. The areas of 

rarefaction were associated with extensive demyelination. To reduce storage artifacts such as 

Zheng et al. Page 3

Neuroimage. Author manuscript; available in PMC 2013 November 28.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



leaching of metals, fresh autopsy brain was flash frozen and the slices were shipped on dry 

ice and stored frozen until they were thawed by immersion in buffered formalin. After 6 h of 

fixation, the brain slice was drained and sealed in plastic prior to initial synchrotron imaging 

of the surface of the slice. To resolve regions of interest, the slices were embedded in gelatin 

for MR imaging. The brain hemispheres were sectioned to expose the region of interest and 

then the slice was sealed in metal-free thin polypropylene film. RS-XRF images were 

acquired and quantified at SSRL (see the detailed scheme of the experiment in Table 1).

MR imaging and image processing

Imaging and phase processing of ferritin samples—MR data of ferritin samples 

were collected on a 3 T Siemens Verio system using a multi-echo susceptibility weighted 

imaging (SWI) sequence with 11 echoes (TR = 40 ms, FA = 15°). The resolution was 1 mm 

× 1 mm × 1 mm with a matrix of 256 × 256 × 128. The shortest echo time was 5 ms with a 

2.39 ms increment for the other 10 echoes. Magnitude and phase images were reconstructed 

from the raw data for each individual and combined channel. The geometry of the ferritin 

samples was segmented from multi-echo spin echo images (TR = 2000 ms, resolution 0.22 

mm × 0.22 mm × 3 mm).

In order to reconstruct a susceptibility map, a pristine phase map was required. That is, the 

phase was unwrapped and all spurious phase information was removed. Phase images (TE = 

21.73 ms) were unwrapped using Prelude in FSL (Jenkinson, 2003). To remove the low 

spatial frequency background field effects, phase from regions outside the straws were 

chosen, where there were minimal remnant dipole effects. First, a circular mask with a 

radius three times that of the straw was defined and centered on each straw and all the 

information inside this mask was removed from the images. The remaining signal was fit 

with a quadratic function and extrapolated back into the masked region. Then the estimated 

dipole phase was obtained by subtracting this modified background phase from the original 

phase. The susceptibility inside each of the ferritin straws was assumed to be uniform and 

was estimated using a least squares fitting of the forward simulated dipole phase with the 

estimated phase (Neelavalli et al., 2009). All the steps were performed in MATLAB R2009a. 

The results of each step are shown in Fig. 2.

Imaging and image processing of cadaveric brain—MR images were collected on a 

3 T Siemens Verio system using the same 11 echo SWI sequence but with different imaging 

parameters. The coronal images were acquired with a resolution 0.5 mm × 0.5 mm in phase 

encoding and readout direction and 0.7 mm in the slice select direction with a readout 

bandwidth of 465 Hz/pixel, a field-of-view of 256 mm × 192 mm with Nx = 512, Ny = 384 

and Nz = 40. The shortest echo time was 5.68 ms with a 2.57 ms increment for the other 10 

echoes. MR phase images (TE = 8.25 ms) were first unwrapped using Prelude in FSL 

(Jenkinson, 2003) and then the background phase was removed using TSVD-SHARP 

(Schweser et al., 2011) with a kernel size of 5 mm. An initial estimation of the susceptibility 

distribution was obtained using truncated k-space division, with a threshold value of 0.1. 

Due to the presence of some air bubbles near the brain tissue, the streaking artifacts would 

mask several important regions in the susceptibility map. Thus, the air bubbles were first 

extracted from the susceptiblity map by setting a threshold, since air has a much higher 
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susceptibility relative to water than that of brain tissue. The extracted susceptibility maps of 

the air bubbles were used to predict their induced field variation through a forward field 

calculation. Finally, the predicted fields induced by the air bubbles were removed from the 

SHARP (Schweser et al., 2012) processed field map. The central region of these air bubbles 

in phase images was set to be zero, in order to reduce the streaking artifacts caused by the 

noise inside the bubble. This newly processed field map was used to generate the final 

susceptibility maps, using a truncated k-space division with a threshold of 0.1 (Haacke et al., 

2010) via SPIN (Signal Processing in NMR, Detroit, MI, USA) software.

Results

Correlation between susceptiblity and ferritin iron content

The susceptibilities (TE = 21.73 ms) of the five empty straws embedded in gelatin were 

estimated at (9.46 ± 0.015; 9.64 ± 0.015; 9.46 ± 0.016; 9.65 ± 0.013; 9.46 ± 0.015) ppm. 

Assuming that the susceptibility difference between the air and gel is 9.4 ppm (Cheng et al., 

2009a), the total susceptiblity measurement including the background removal, straw 

geometry segmentation error and least squares fitting had a bias of 1.42%.

The measured susceptibilities (TE = 21.73 ms) and iron concentrations of the six ferritin 

samples are listed in Table 2. The dipolar phase pattern outside the straw from the sample 

with the lowest iron concentration (39 ± 6 μg Fe/ml) had its sign reversed compared with 

other samples. This sample shows a negative susceptibility of −14ppb when using the 

forward fitting approach. One possible explanation for this could be a small baseline shift 

coming from an imperfect background removal. Since the iron concentration range that can 

be measured with XRF is broad, there was no need for dilution. In contrast, ICPMS requires 

dilution of samples to make iron concentration in the proper range for analysis. The results 

in Table 2 show that the iron content measured by two approaches (XRF and ICPMS) was 

essentially the same. The correlation slopes in Fig. 3 obtained from ICPMS (1.11 ± 0.06 ppb 

per μg iron/ml) and XRF imaging (1.10 ± 0.08 ppb per μg iron/ml) were close and both were 

less than the theoretical estimation of 1.27ppb per μg iron/ml from Schenck (1992).

Correlation between susceptibility and iron in cadaveric brain

In order to correlate the susceptibility and XRF iron maps, images from both methods were 

co-registered (Fig. 4). ROIs marked in each image were used for a voxel by voxel 

comparison of susceptibility and iron measurements (Table 3). At TE = 8.25 ms, the 

correlation equations were found to be Y = 0.80(±0.01) (ppb susceptibility per μg iron/g wet 

tissue) * X (μg iron/g wet tissue) + 10.87(±2.9) (ppb susceptibility) and Y = 0.79(±0.02) * X 

− 3.66(±4.2) (ppb suscep rowsep=“1”tibility) for left and right hemisphere, respectively, as 

shown in Fig. 5 (A, B). The phase images at TE = 21.1 ms were also processed, the fitted 

equations were Y = 0.78(±0.02) * X − 4.36(±4) (ppb susceptibility) and Y = 0.79(±0.01) * 

X − 5.22(±2.8) (ppb susceptibility) for left and right hemispheres respectively. The slopes 

(0.80 and 0.79 ppb susceptibility per μg iron/g wet tissue) determined from the TE = 21.1 ms 

data were similar to those from TE = 8.25 ms (0.78 and 0.79). Although phase is clearly 

modified as a function of echo time, tissue susceptibility change is expected to be and here is 

shown to be independent of echo time (Haacke et al., 2010). The estimated susceptibility 
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based on our simulation of the inverse process using the structures of a similar size showed 

an underestimate or bias of −14%.

Discussion

Using ferritin phantoms and a cadaveric brain sample, we have found that the susceptibility 

correlates reasonably well with the iron measured by XRF and/or ICPMS (Fig. 3). The 

cadaveric brain used in the study was from a person with multiple sclerosis. It is commonly 

assumed that the iron in normal and pathological MS brains is predominantly stored in the 

form of ferritin. As long as this assumption holds, the MS pathology will not affect the 

susceptibility/iron correlation slope. Our correlation of iron content with susceptibility for 

cadaveric brains (Fig. 5) was comparable with that obtained by Langkammer et al. (2012b). 

This is expected since we used SHARP with the same parameters to remove the background 

fields. The SWIM approach used in this paper underestimates the susceptibility by 14% for 

deep gray matter structures according to our simulations. The homogeneity-enabled 

incremental dipole inversion (HEIDI) method used by Langkammer et al. (2012b) 

underestimates the susceptibility by about 7% (Langkammer et al., 2012b; Schweser et al., 

2012). Our slope (0.8 / (1–14%) ≅ 0.93) is close to that in Langkammer et al. (2012b) (0.89 / 

(1–7%) ≅ 0.957) for deep gray matter when these biases are accounted for. Since the 

cadaveric brain in our experiment was for-malin fixed and those in Langkammer et al. 

(2012b) were unfixed, this suggests that fixation may not change tissue susceptibility in deep 

gray matter.

However, the slope of 0.59 ppb susceptibility per μg iron/g wet tissue obtained from our in 

vivo data (Haacke, 2012) and other single orientation results that used Hallgren and 

Sourander’s equation as the iron baseline (Shmueli et al., 2009; Wharton and Bowtell, 2010) 

was smaller than the 0.8 ppb susceptibility per μg iron/g wet tissue obtained from our 

cadaveric brain data, even though they were processed with the same methods. Thus, there 

appears to be a difference between in vivo and ex vivo susceptibilities and their correlation 

with iron. The reason for this is unclear but could be due to the freezing and fixation process 

which could affect local susceptibilities of the tissue.

Formalin fixation might change MR signal but previous work on myelin susceptibility (Lee 

et al., 2012; Liu et al., 2011) demonstrated that the effect of formalin fixation on the 

susceptibility changes due to myelin was subtle. The similar iron/susceptibility slopes of 

fixed brain in our work and of the unfixed brains in the work of Langkammer and colleagues 

(Langkammer et al., 2012b) further supports the view that formalin fixation has negligible 

effect on susceptibility. The effects of fixation on R2 and thus R2* values, however, are 

known to be substantial (Dawe et al., 2009; Lee et al., 2012; Pfefferbaum et al., 2004; 

Schmierer et al., 2008) and are beyond the scope of this paper.

The susceptibility/iron correlation slopes obtained from cadaveric and in vivo brains in Table 

4 are generally smaller than the theoretical slope of 1.32 ppb susceptibility per μg iron/g wet 

tissue except for the slope obtained with myelin correction in Schweser et al. (2011). One 

possible reason for the smaller slope from the in vivo human brains is that there are still 

some forms of iron that are MR invisible although these may be in other species that are 
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known to be present at low levels (Hopp et al., 2010). A second explanation for smaller 

slopes seen in our work (Haacke, 2012) and other work (Shmueli et al., 2009; Wharton and 

Bowtell, 2010) is that Hallgren and Sourander’s measurements of total iron (Hallgren and 

Sourander, 1958) may not be accurate. Third, susceptibility mapping is known to have a bias 

and leads to a smaller slope, but this bias can be potentially corrected (J. Liu et al., 2012; T. 

Liu et al., 2012; Schweser et al., 2012; Wharton and Bowtell, 2010). Other possible factors 

that have been explored include contributions of myelin (Duyn et al., 2007; Liu et al., 2011; 

Ogg et al., 1999), chemical exchange between water and macromolecular protons (Luo et 

al., 2010; Shmueli et al., 2011; Zhong et al., 2008) and microstructure orientation (He and 

Yablonskiy, 2009; Lee et al., 2010; Liu, 2010). Indeed, it could well be a combination of all 

these sources that lead to different measurements of iron in vivo and ex vivo. Despite these 

imperfections, the slopes for susceptibility versus iron content are generally consistent 

between both ex vivo studies (this paper and Langkammer et al., 2012b) and in vivo studies 

using similar susceptibility mapping methods (see Table 4) (Haacke, 2012; Shmueli et al., 

2009; Wharton and Bowtell, 2010).

Conclusion

Our results suggest that susceptibility changes from iron measured in ex vivo studies 

reasonably reflect iron content even for in vivo studies, although the predicted values may be 

underestimated. Our study further demonstrates that the correlation of susceptibility with 

iron is consistent with other results in the literature and is independent of echo time and 

orientation. Thus, susceptibility would appear to be a direct and reliable quantitative 

indication of iron, especially for brain regions with high iron content. Susceptibility 

mapping provides a reliable tool for clinical investigations of iron that could be used to study 

changes in iron over time or within a given age-matched population.
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Fig. 1. 
Photograph of the cadaveric brain sample in gelatin.
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Fig. 2. 
Removing the background phase (TE = 21.73 ms). A) Geometry of the straws segmented 

from the spin echo images. B) Original phase. C) Background phase after extrapolation of 

magnetic fields into the straw regions. D) Subtraction of C from B to reveal pristine dipole 

effects due to the iron in the straws.
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Fig. 3. 
Correlation between susceptibility measured by MRI and total iron measured by ICPMS and 

XRF for ferritin phantoms.
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Fig. 4. 
Iron quantified from XRF Fe mapping (A, B) for left and right hemispheres; putative iron 

quantified as susceptibility (TE = 8.25 ms) (C, D). Images are co-registered and the ROIs 

used for a pixel by pixel correlation are outlined in both images. CN: caudate nucleus. PUT: 

putamen. GP: globus pallidus. ROIs were defined by excluding the edges in the map for 

each structure.
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Fig. 5. 
Correlation between susceptibility and XRF iron measurements for all data points taken 

from each of the regions demarcated in Fig. 4. A: fitting for left hemisphere; B: fitting for 

right hemisphere.
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Table 1

Methodology and data processing.

ICPMS XRF SWI Background phase removal QSM

Ferritin samples √ √ Quadratic fitting Forward fitting

Cadaveric brain √ SHARP Truncated k-space division (Haacke et al., 2010)
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