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Abstract

With the increasing availability of advanced imaging technologies, we are
entering a new era of neuroscience. Detailed descriptions of the complex brain
network enable us to map out a structural connectome, characterize it with
graph theoretical methods, and compare it to the functional networks with
increasing detail. To link these two aspects and understand how dynamics
and structure interact to form functional brain networks in task and in the
resting state, we use theoretical models. The advantage of using theoretical
models is that by recreating functional connectivity and time series explicitly
from structure and pre-defined dynamics, we can extract critical mechanisms by
linking structure and function in ways not directly accessible in the real brain.
Recently, resting state models with varying local dynamics have reproduced
empirical functional connectivity patterns, and given support to the view that
the brain works at a critical point at the edge of a bifurcation of the system.
Here, we present an overview of a modeling approach of the resting brain network
and give an application of a neural mass model in the study of complexity
changes in aging.
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1. Introduction1

With the turn of the millennium, a paradigm shift slowly occurred in the2

field of brain science. In the 1990s, driven by the maturation of fMRI and3

its high spatial resolution, studies mainly focused on the precise localization4

of specific brain functions, leading to a new level of understanding of many5

perceptual processing streams, the mapping of two visual pathways in the brain,6

and localization of various specific functions. However, with time it also became7

clear that many neural responses depend strongly on context. Also, complex8

brain functions such as attention and consciousness interact widely throughout9

the brain, and there are also networks of brain areas actively structuring brain10

dynamics in the absence of any task. Especially the latter sparked interest in the11

dynamics of the fixation-only or eyes-closed awake ’resting state’ condition as a12

potential baseline for various task conditions, and the investigation of intrinsic13

structure, self-organizing principles and dynamics of the brain as a network of14

networks (Gusnard and Raichle, 2001). With concurring advances in DTI/DSI15

and related technologies it has been possible to create a first generation of16

structural macro-connectomes (Hagmann et al., 2008; Hagmann et al., 2010;17

Sporns et al., 2005; Sporns, 2011) as well as large-scale functionally connected18

networks in fMRI-BOLD (Damoiseaux et al., 2006; Doucet et al., 2011; Fox19

and Raichle, 2007; Fox et al., 2005; Greicius et al., 2003), and, most recently,20

MEG and EEG recordings (Brooks et al., 2011a; Brookes et al., 2011b; Hipp et21

al., 2012; Mantini et al., 2007; Yuan et al., 2012). Furthermore, we are now in22

the process of obtaining detailed structural and physiological descriptions of the23

brain on multiple scales at once for large, physiologically detailed reconstructions24

of its networks (Van Essen and Ugurbil, 2012; Van Essen et al., 2012).25

However, a major challenge we will face in the coming years will not only26

be the pure recreation of realistic brain connectivity and dynamics. It will be27

the extraction of important features and mechanisms of these dynamics and28

of the network structure that are critical to brain function. This is critical to29

understand how this most complex network self-organizes into a very stable and30

consistent, yet flexible and adaptive system and its core components. In the31

following, we will review and discuss how large-scale theoretical brain models32

are crucial to bridging the gap between purely anatomical brain networks and33

their cognitive architectures by identifying key network properties underlying34

the empirically observable network dynamics. We will outline how modeling35

evidence supports the idea that the brain works in a critical region close to a36

bifurcation, and that these dynamics are common to resting-state models cap-37

turing the spatial patterns of spontaneous brain activity. Finally, we will apply38

this modeling approach to the study of Multiscale Entropy (MSE) in the aging39

brain, and give an outlook on how capturing spatiotemporal dynamics such as40

complexity and oscillatory dynamics presents the next big challenge for compu-41

tational models, to contribute further to understanding cognitive architecture42

of the brain and its relation to the underlying structural connectome.43

In following section, we will first describe how large scale computational44

models link the structural connectome to functional networks and dynamics.45
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We then exemplarily review the underlying architecture of a biophysically so-46

phisticated resting-state model and its reduction to a neural mass model in47

section 3. Finally, in section 4, we give an application of the model for studying48

changes in cognitive architecture and complexity of spontaneous dynamics in49

aging.50

2. Linking structure and dynamics: model approaches51

An inportant question which remains to be answered in spite of the ad-52

vances in structural mapping of the human connectome and intrinsic functional53

networks, is how they are related in detail. For large scale spontaneous fMRI54

dynamics, it has been shown that functional correlations of slow fluctuations are55

mainly determined by the underlying structural large-scale connectivity in the56

long run (Greicius et al, 2009; Hagmann et al., 2008; Honey et al., 2009; Skud-57

larski et al., 2008), and both functional and structural network characteristics58

can be described using graph theory (Bullmore and Bassett,2011; Sporns, 2011).59

However, this structure-function mapping is imperfect, as functional connectiv-60

ities are also influenced by indirect links and network dynamics, especially on61

shorter time intervals (Honey et al., 2009). In this sense, the structural connec-62

tome is like a road system, in which traffic volume (functional connections) and63

street size are closely connected in the long run, but depend much more on the64

dynamics of the population on shorter time scales. Even though this analogy65

does not extend to the specific dynamics of the systems, it nicely illustrates the66

enabling (and limiting) role of structure for function. Analogously, our observa-67

tions of functional relations and states may be strongly influenced by sampling68

window and frequency, as well as the aspects of the dynamics we focus on, such69

as mean activity, peak activity, or oscillatory phases.70

As these dynamics enable the brain’s rich repertoire of functional states, it71

is of fundamental theoretical interest to understand the critical features and72

mechanisms that link anatomical structure and recordings of brain dynamics.73

Theoretical models bridge this gap by constructing explicit network dynamics to74

capture the relations between structural connections and resulting resting-state75

recordings (Cabral et al., 2011; Deco and Jirsa, 2012; Deco et al., 2009; Deco et76

al., submitted for publication; Honey et al., 2007; Honey et al., 2009; Knock et77

al., 2009).78

These models are all implemented on graphs with nodes (brain areas), edges79

(connections), and local node dynamics, as illustrated in Fig. (1). Spatial80

connectivity is determined by the parcellated structural connectome, derived81

from diffusion imaging (Hagmann et al., 2008) and tracing studies and databases82

(Gong et al., 2009; Ktter, 2004).83

For modeling brain areas as nodes on the graph, raw diffusion data are84

parcelled, and areas and connectivities are down-sampled to the brain-area level85

and normalized. The resulting structural connectivity matrices are taken as fiber86

tracts between brain areas, and their functional transmission strength in the87

model is taken as the relative density of these tracts. The topological properties88

of the extracted brain network depend on, and are limited by the precision89
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of several parameters such as fiber extraction algorithms (see e.g. Hagman et90

al., 2008; methods section, for an exemplary analysis pipeline), extraction of91

connectivity direction, and cortex parcellation (Jbabdi et al., 2009; Wang et al,92

2009; Zalesky et al., 2010). At least on low-resolution parcellations, though, our93

earlier work shows model robustness over different parcellations for exploration94

of large-scale BOLD patterns of structural and functional networks (Cabral et95

al., 2012).96

Delays, reflecting finite transmission velocities along axonal fiber tracts, and97

which may reach up to 200ms in the human brain (Nuez, 1995) further shape98

the full spatiotemporal structure, especially in the presence of oscillatory local99

dynamics (Campbell, 2007; Freyer et al., 2011; Jirsa and Ding, 2004). Intrinsic100

local dynamics have been captured in models by simple (Cabral et al., 2011;101

Deco et al., 2009; Ghosh et al., 2008a; Ghosh et al., 2008b) and chaotic (Honey102

et al., 2007; Honey et al., 2009) oscillators as well as by detailed biophysically re-103

alistic descriptions of spiking neuron populations (Deco and Jirsa, 2012). Noise104

is added to keep the system active and in a dynamic regime in the absence of105

structured external input (Deco et al., 2009; Ghosh et al., 2008b).106

The simulated time series for every node are then constructed as a for-107

ward model on the basis of local dynamics and input from other nodes arriving108

through the network structure. Functional connectivities are computed from109

the time series raw, phase or power correlations and related functional connec-110

tivity measures. Generally, for low couplings, the system nodes are in a state111

dominated by low activity (Deco and Jirsa, 2012; Ghosh et al., 2008b; Honey et112

al., 2007) or intrinsic oscillations (Deco et al., 2009, Cabral et al., 2011). With113

increasing coupling, the system transitions to higher activity or synchroniza-114

tion states, which are spatially structured by the topography of the underlying115

anatomical connectome. These structurals connections are important as they116

provide117

As the global strength level of the connections is not known apriori, the118

optimal model working point can be determined by comparing the model and119

the empirical functional connectivities for different coupling strengths. For the120

different resting state models, this has commonly been found to be at the crit-121

ical point of a bifurcation at the edge of instability; i.e. at the border between122

a stable homogenous baseline state and emergent activation or synchronization123

patterns (see Fig. 1,). Critical dynamics of fluctuations between unstable func-124

tional brain states have been suggested to occur in neural networks (Beggs,125

2011; Haken, 1996, Rabinovich et al., 2001; Rabinovich et al., 2008), and there126

is ever increasing empirical and model evidence for criticality as an organizing127

principle in the brain as a whole (Basset et al., 2006; Kitzbichler et al., 2009;128

Poil et al., 2008; Poil et al., 2012; Tagliazucchi et al., 2012).129

For global resting-state dynamics, the working location of the system at130

a critical point may maximize its flexibility and enable it to explore various131

functional states. Typical resting state dynamics with fluctuations between132

functional states occur as nodes transiently synchronize into sets of co-activated133

brain regions when being pushed beyond the bifurcation by noise. While the134

structure of the network depends on the underlying connectome, degree and135
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variability of expression for specific networks are shaped by the proximity to the136

bifurcation and the noise of the dynamics. From this perspective, the emergence137

of Resting-State Networks (RSN) reflect the dynamical capacity of the system to138

explore the brain’s state space spontaneously while remaining able to efficiently139

respond to minimal external inputs. Recently, Deco and Jirsa (2012) have found140

such critical dynamics in a detailed and realistic spiking neuron attractor model,141

represented by populations of excitatory (AMPA and NMDA) and inhibitory142

(GABA-A receptor) integrate and fire neurons.143

In the non-oscillatory, asynchrouneous state, as in the presented model, the144

key component to the model and its dynamics depend on the topography of145

its spatial connectivity structure and the location of its bifurcation, where the146

available states may change mainly with the graph properties of the network.147

In this case, the consistently reduced dynamic mean field model captures the148

resting state dynamics and bifurcation structure of the spiking model (Deco et149

al., submitted). This is not necessarily true in the presence of oscillations, as150

the delay structure and fast dynamics become important and must be taken151

into account as additional factors and the network interactions become more152

complex.153

In the following, we will illustrate the bifurcation from a trivial low activity154

state to multistable attractors with this model, and how its reduction to a155

neural mass model can help us appreciate its main mechanisms and necessary156

preconditions.157

3. Biophysical model characterization of the resting state158

3.1. Spiking model159

The spiking neuron model combines the large-scale network graph structure160

used in all full spatiotemporal resting state models with biophysically realistic161

populations of integrate-and-fire neurons on the microscopic scale. Fig. 1 shows162

the basic network setup.163

In this model, each node is represented by an excitatory and an inhibitory164

population of leaky integrate-and-fire neurons with AMPA and NMDA, or GABA-165

A synaptic receptor types, respectively (Brunel and Wang, 2001). This type of166

network of spiking neuron network tends to settle in stationary states, so called167

attractors, typically characterized by a stable pattern of firing activity (Deco168

and Rolls, 2006; Deco et al., 2008), depending on its input level. External or169

even intrinsic noise that appears in the form of finite size effects can provoke170

destabilization of an attractor inducing therefore transitions between different171

stable attractors. The spiking activity of the local network is determined by172

the dynamics of the membrane potentials V (t), which are governed by a set of173

equations relating V (t) to leakage and synaptic activity Isyn (including a noise174

term). For the equations and parameter values, see the Appendix.175

This model is very detailed, but due to the large number of equations com-176

putationally costly. In order to simplify the model and make simulations for177

different connectivity structures and multiple runs and parameters feasible, the178
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model can be reduced to a neural mass model under certain assumptions. Based179

on the mean field model of Brunel and Wang (2001), the dynamic mean field180

(Wong and Wang, 2006) simplifies the original spiking model by replacing the181

synaptic gating variables by a DC component and a Gaussian fluctuation term182

dependent only on external synaptic gating variables, reducing the latency of183

the dynamics to the slow NMDA component, and linearizing the input-output184

relation of the inhibitory inter-neurons and integrating them into the excitatory185

dynamical equation.186

BOLD fMRI signal was simulated by means of the Balloon-Windkessel hemo-187

dynamic model of Friston et al. (2000,2003) and all parameters are taken from188

there. The model describes the perfusion changes based on neural activity (Si189

in the reduced model) in each brain region causing a vasodilatatory signal with190

auto-regulatory feedback. The BOLD signal is then modeled as a static nonlin-191

ear function of volume and deoxyhemoglobin that comprises a volume-weighted192

sum of extra- and intra-vascular signals. In the context of the present simula-193

tions, the BOLD signal is vastly dominated by the linear contributions of the194

hemodynamic model and the nonlinearities do not impact the results.195

While the model is restricted to modeling spontaneous low-rate activity be-196

low the stabilization of high-activity states due to the linearizations and re-197

duction to slow dynamics, the reduced model captures both the bifurcation198

properties of the underlying spiking model and the empirical functional connec-199

tivity patterns at the critical working point (Fig. 1 e; Deco et al., submitted).200

This, and the closeness of the working point to the bifurcation, indicate that201

Resting State Dynamics do not fully explore the whole state-space of possible202

configurations available to the brain, but rather a lower-dimensional subspace203

of possible states consisting of “ghost” attractors, regions of state space at the204

edge of the bifurcation (Deco and Jirsa, 2012). In this perspective, RSN dynam-205

ics are equivalent to the brain wandering around in the atrium of our cognitive206

architecture. The criticality of the dynamics can be likened to the flexibility of207

movement within this architecture: below the working point, the system remains208

near the entrance and does not visit any functional states (no functional connec-209

tivity), whereas supercritical dynamics keep it located in specific sections. The210

situation at the critical point allows the system to move most freely, to efficiently211

access more specific building compartments (functional states) when prompted212

(by specific inputs). If this analogy holds true, explicit analysis of the model213

time course pattern dynamics and quantification with high-order moments such214

as variance or entropy can help us shed light on the detailed underlying compu-215

tations at rest by making model performance comparable on more dimensions.216

The temporal dynamics between resting state patterns such as sequence orders217

of activation patterns or co-expression and responses to external stimulations or218

network damage should be evident also in the complexity and variability of the219

simulated time series, and provide empirically testable measures and predictions220

to understanding the brain’s criticality.221

In the following section, we will illustrate how dynamical biophysical markers222

such as complexity (described in detail in section 4.3) can provide an excellent223

comparison measure for model and empirical resting state dynamics. In this224
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ongoing work, we show first results relating empirical observations of decreasing225

spontaneous MSE in senescence to criticality and model dynamics, and demon-226

strate how dynamical markers provide quantifiable access to network dynamics227

beyond spatial pattern analysis.228

4. Application: Modeling complexity in Aging229

4.1. Brain structure changes in aging230

Above, we have laid out how there is an important, yet complex relation231

between structural and functional brain connectivity, and that computational232

models find a certain regime of critical connectivity and network interactions233

optimize the dynamical properties and functional connectivities. This view im-234

plies that in the real brain, some mechanisms regulate effective brain connectiv-235

ity to establish and maintain this regime. Fallacy of the system to do so should236

result in dysfunctional states. In line with this notion, brain connectivity is237

known or suspected to be altered in psychopathology (Bullmore and Sporns,238

2009; Whitfield-Gabrieli and Ford, 2012). In fact, observable changes in brain239

connectivity Alstot et al., 2009; Honey and Sporns, 2008) and their functional240

consequences (Lynall et al., 2010; Supekar et al., 2008) allow us to further probe241

and improve our models, and, in turn, to better characterize neurological dis-242

eases and lesions (Cabral et al., 2012) in terms of their principle mechanisms. To243

better understand how changes in connectivity affect the brain dynamics, and244

to what extent the brain can adapt to those changes, we can use computational245

models.246

This approach is not limited to the study of pathological states. Our brain247

network naturally changes over our lifespan, with maturation-related changes in248

childhood and both gray and white matter decreases in healthy, non-pathological249

aging. Many structural, cellular, and physiological mechanisms appear to tune250

our brain during its maturation to maximize its complexity and cognitive per-251

formance (Tononi et al., 1994; Lipp et al., 2009; McIntosh et al., 2008; Vakorin252

et al., 2011). In contrast, senescence is primarily associated with involuntary253

anatomical decline and decreasing complexity. Structural changes in adult aging254

have recently been mapped out in some detail with advances in high-resolution255

structural MR, DTI/DSI, tractography, and derived measures. Results still vary256

in the specifics, in part due to the still developing methodologies (Galluzi et al.,257

2008; Sullivan and Pfefferbaum, 2007; Giorgio et al., 2010; Gunning-Dixon et258

al, 2009). In general, though, both gray and white matter are found to decrease259

with age, with an anterior-posterior gradient in white matter (Ardekani et al.,260

2007; Grieve et al., 2007; Head et al., 2004; Pfefferbaum and Sullivan, 2003;261

Salat et al., 2005). Temporally, gray matter decreases approximately linear,262

while measurements of white matter changes are more heterogeneous: volume263

increases up to ages 30-40 and decreasing only from around age 50 in volume264

in most areas (Pfefferbaum, 1994; Ge et al., 2002; Giorgio et al., 2010), but265

diffusion measures show linear decay at this age already (Giorgio et al. 2010;266

Salat et al., 2005).267
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These changes in structure and structural connectivity with age are asso-268

ciated with decreases in cognitive performance: older adults show decreases in269

many aspects of cognition attributed to loss of processing speed (e.g. Salthouse,270

1996), and aspects of executive functions including task switching and working271

memory seem especially vulnerable (Park et al., 2002). In trying to link cognitive272

decline with structural changes, some studies have found associations between273

gray matter volume and memory or cognitive performance in some areas (Salat274

et al., 2002; Rosen et al., 2003; Rodrigue and Raz, 2004, but see Tisserand275

et al., 2000; Gunning-Dixon and Raz, 2003 for contrary results). Decreases in276

white matter volume are related to executive function and memory (Brickman277

et al., 2006; Guttmann et al., 1998; Resnick et al., 2003), and micro-structural278

damage (white matter hyperintensities, WMH), have been linked to decreased279

processing speed and executive functions (DeCarli et al., 1995; Gunning-Dixon280

& Raz, 2000, 2003; Madden et al., 2009; Oosterman et al., 2004; Prins et al.,281

2005). Finally, processing speed and age have also been linked to lower brain282

signal complexity in recent studies (Garrett et al., 2011, 2012; McIntosh et al.,283

2008; McIntosh et al., 2010; McIntosh et al., submitted; Yang et al., 2012).284

Here, we investigated how structural connectivity pruning (representing white285

matter losses) affects complexity in a large-scale computer model of resting state286

dynamics. To this end, we created connectomes with different levels of con-287

nectivity with two pruning algorithms (detailed in the methods section), and288

simulated resting state dynamics with a dynamic mean field model. We then289

calculated MSE from the time series, to test whether or not complexity can290

serve as a marker to distinguish different structural decline scenarios.291

4.2. Model network structure292

The global network structure determining the connectivity between the 74293

nodes of the model was comprised of a combination of long-range and short-294

range connections. For the long-range connections, high resolution diffusion295

tensor images were down-sampled and parcellated into 74 areas to construct296

a coarse-grained connectivity matrix. These connections were extracted from297

a combination of diffusion spectrum MRI tractography and a mapping of the298

macaque connectome (CoCoMac database) onto the human brain (for details299

see Knock et al. (2009).300

As DTI measures directionality of water diffusion in white matter tissue301

(Beaulieu et al., 2002), the more diffuse lateral connections along the cortical302

sheet are not detected by DTI measuring, and are here considered by short-range303

connectivity matrices.304

These matrices used here were constructed from a Gaussian decaying con-305

nectivity on a triangulated cortical surface ’Cortex reg13.mat’ that is included in306

The Virtual Brain software package, available at http://thevirtualbrain.org/app/.307

The triangulated mesh that describes an individual cortical surface is based on308

a set of anatomical MRI scans. The mesh was obtained by extracting a high-309

resolution surface from MRI and sampling down the high-resolution surface,310

while balancing between curvature preservation and mesh regularity. The re-311

sulting surface composes the cortical geometry of 16,384 vertices and 32,760312
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triangles. Each vertex covers nearly 16 mm2 of the cortical sheet. Periodic313

boundaries conditioned the two hemispheres composed of 8,192 vertices each.314

To obtain the connectivity of each vertex with its neighborhood on the trian-315

gulated mesh, the edge lengths (with the mean of 3.9761 mm) were considered316

for sampling the short-range connectivity function (Spiegler and Jirsa, submit-317

ted). The short-range connectivity matrices used here differ in spatial decay of318

connectivity between vertices, with standard deviations of the gaussian spatial319

filter ranging between 10 mm and 40 mm. Each vertex of the cortical surface320

was then assigned to one of the 74 brain regions (37 per hemisphere), and the321

sum of the weighted lateral connections between vertices belonging to two dif-322

ferent brain regions was taken as the short-range connectivity between those323

two regions.324

To capture white-matter decreases, we studied the effects of long-range prun-325

ing by repeatedly decreasing the coupling weight of randomly selected node pairs326

of the long-range connectivities, and to capture decreasing lateral connections,327

we used short-range connectivity with increasingly faster spatial decay in steps328

of 10 mm. Matrices were combined in both cases, with pruning affecting selec-329

tively the short-range or the long-range contributions of the combined matrix.330

Simulations were run for four different connectivity levels, with a 16% con-331

nectivity decrease for every step, for both long-range pruning and short-range332

pruning.333

To locate the system at Resting State dynamics, we here set the global334

coupling weight between nodes w to 3.50, where the original, unpruned matrix335

was at its critical point just below bifurcation. and simulations remained in an336

asynchronous low-firing regime.337

4.3. Complexity and Multiscale Entropy338

“Complexity” is a dynamic neurophysiological marker of efficient process-339

ing, cognitive performance and age, representing the richness of information340

in a system. For time series, it can be quantified by entropy-related measures341

such as MSE (Costa et al., 2002,2005) or Permutation Entropy (Richman and342

Moorman, 2000). Complexity has been linked to behavioral stability and task343

performance (McIntosh et al., 2008; McIntosh et al., 2010; Yang et al., 2012)344

as well as knowledge (Heisz et al., 2012). It increases in the early years of345

life (Lipp et al., 2009; McIntosh et al., 2008) as processing shifts from local346

to more distributed processing (Vakorin et al., 2011). This tuning process re-347

flects the increasing functional differentiation with development. In older adults,348

less complex dynamics are observed at rest (Yang et al., 2012), and a smaller349

increase in complexity is observed in task (Garrett et al., 2012) or photic stimu-350

lation (Takahashi et al., 2009). These findings suggest that MSE can serve as a351

neurophysiological marker between underlying structure and functional network352

integrity or efficiency. Healthy, young brains are generally described by more353

complex time series, and Yang and colleagues’ (2012) findings suggest that this354

relation can even be found in relatively short, resting fMRI data sets.355

Many physiological systems produce irregular, complex time series, so highly356

regular states often mark dysfunction and disease (Pincus and Goldberger, 1994;357
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Goldberger et al., 2002). However, an increase in irregularity does not always358

mean an increase in complexity: noise signals are highly irregular and maximize359

entropy on the first temporal scale, but lose complexity quickly towards larger360

time scales (Goldberger et al., 2002): over longer periods, noise is deterministic,361

as it has one single expected mean value. To address this multiscale nature of362

truly complex time series, Costa et al. (2002, 2005) developed the MSE mea-363

sure, which estimates sample entropy (Richman and Moorman, 2002) on the364

original time series as well as on down-sampled versions, revealing variability365

of the signal across different time scales. Given a time series x of length t, a366

down-sampled time series xs is calculated for every scale factor s by constructing367

t/s non-overlapping windows of x, and taking the mean of all x in the window368

as new value for xt, shortening xs by the scale factor. Sample entropy is then369

calculated for each scale. It is defined as the negative natural logarithm of the370

conditional probability that sequences in a dataset that are similar for m data371

points (within similarity tolerance r, given as fraction of the standard deviation372

of the dataset) will remain similar adding another data point. We calculated373

MSE using the physionet (Goldberger et al., 2000) MSE algorithm (available374

at www.physionet.org/physiotools/mse/) both on the neuronal activity and the375

virtual BOLD signal for all simulations. For the BOLD signal, biophysical pa-376

rameters were taken as in Friston et al. (2003), and sampling rate TR=2500ms377

and low-pass filtering (at .08 Hz) were set equal to the values in Yang et al.378

(2012) for comparability. To be able to calculate MSE for five time scales for379

the BOLD time series to and compare the results to empirical data, we used pat-380

tern length m=1 and similarity factor r=.35 (varied between .05 and .5 without381

changes in the results patterns). MSE was calculated from the neuronal time382

series at sampling resolution of 125 ms and from the BOLD signal at 2500 ms383

over scales 1:5 (2.5-12.5 s).384

4.4. Complexity declines in aging385

Results are presented from simulations of the dynamical mean field model for386

decreasing levels of structural connectivity, imitating the decreasing connectivity387

in the adult human brain. Network structure was derived from a combined388

anatomical connectome of long-range and short-range connections between brain389

areas, and the lower-connected matrices were constructed by pruning at one of390

the two ranges. For each pruning level and method, MSE was then calculated391

for both the neuronal time series and an fMRI BOLD model. For the rate392

model, both short-range and long-range pruning led to lower complexity values393

over all scales. As visible in Fig. 3, MSE decrease was strongest for the first394

pruning step. Entropy decreases with respect to the baseline were significant in395

all cases (all p-values < .001), resembling the difference between younger and396

older subjects in the empirical data, with no differences between short-range397

and long-range pruning (largest t(18)=1.60, p = .13).398

MSE curves from the BOLD model time series are shown in Fig. 4. For399

all simulations using the BOLD model, there was an increase in entropy from400

scale 1 to 2, after which it gradually declined. This initial increase was not401
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visible in the empirical data of Yang et al.(2012), where the entropy values de-402

creased gradually by about 0.1 from scales 1 to 5. The difference in the shape403

of the MSE curve appeared in spite of the fact that the same BOLD sampling,404

low-pass filtering, and MSE calculation parameters were used. On the second405

to fifth scales, the entropy values were quite similar in shape and amplitude406

to the empirical data, though with a steeper drop in complexity across scales.407

The increase in entropy in the model from the time scale of about 2.5 to 5-10408

seconds indicates that the network dynamics are more regular on the fastest409

timescale, and that network interactions are therefore mainly shaped on the410

slower time scales. This is in line with the non-oscillatory network dynamics411

and slow NMDA component, producing slow BOLD fluctuations. The difference412

between model and empirical data on the fastest time scale may have various413

possible reasons,though. On the empirical side, scanner, movement or phys-414

iological artifacts may appear. Concerning neural dynamics, the model is in415

a low-firing regime producing slow BOLD fluctuations of several seconds (for416

detail, see Deco and Jirsa, 2012). At faster time scales, neural oscillations and417

local dynamics may modulate the dynamics of each node in a way that would418

not be captured by the model. However, if this were the case, the same pattern419

should be visible in rate-derived MSE measures. As the origin of this difference420

is unresolved and manifests on the fastest scale, we focus in the following on the421

slower time scales 3-5 (7.5-12.5s) for the BOLD signal. The effect of pruning422

was much smaller than for the neuronal rate (Fig. 5). There were no differences423

between the two pruning methods on any of the scales (largest t(18) = .94,424

p = n.s.), and the effect of decreasing the density of the connectome became425

apparent as an interaction of pruning and scales. The tendentially higher com-426

plexity of the pruned cases at the third scale (highest t(9) = −2.67, p < .05427

for short range pruning; p-values for long-range pruning between .05 and .10,428

their difference n.s.) inverted to lower complexity at the slowest time scale429

(t(9) =3.14, p <.05)) for all lower-connected cases (Fig. 4, top right panel).430

On this scale, the pruned case reached lower entropy values due to its steeper431

slope over lower scales (lowest t(9) = −3.14, p < .05). In summary, rate based432

measures showed concordance with empirical fMRI-BOLD MSE decreases with433

weakening connectivity. Model BOLD complexity showed lower entropy for434

lower connectivities on the largest scale only.435

Here, we investigated the changes in dynamical complexity of a model of436

spontaneous large scale activity with decreasing connectivity. Connectome437

pruning was implemented by two different algorithms targeting diffuse lateral438

short-range connections along the cortical sheet and DTI-based white fiber tract439

long-range connections, respectively. MSE complexity measures were calculated440

from simulated neuronal and BOLD dynamics based on a large scale compu-441

tational model of cortical resting state dynamics. From the model perspective,442

the decrease in complexity observed in the neuronal time series corresponded443

best to an increasing distance from the model working point at which the model444

best reproduces healthy resting state functional connectivity (Deco and Jirsa,445

2012). This point lays just below the bifurcation from a global low activity state446

to the appearance of high firing states and multi-stability in the system. From447
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this point, as a consequence of pruning, mutual communication between the448

nodes becomes weaker and dynamics modulations from large-scale connectivity449

quickly decreased on large time scales.450

The fact that the largest difference in entropy was caused by the first 16%451

of connectivity decline suggests that the resulting complexity of the model is452

most strongly affected near the dynamical working point of the model. Once453

the system is not near its dynamical working point anymore, the spontaneous454

dynamics of the nodes will be largely dominated by their internal dynamics.455

This may also be the reason why short-range and long-range pruning did not456

show differential effects on complexity: while the increasingly different connec-457

tomes may give rise to different network structures and attractor landscapes458

in high activity states, the main effect of connectivity reduction will be simi-459

lar in the low-activity regime. In analogy, one would expect a similarly lower460

complexity in older brains due to structural decline and synaptic efficacy loss461

independent of the specific hypo-connection structure, while the form of the462

functional changes would depend on the specifics of the connectivity losses. For463

comparison, We show MSE curves for very high and low couplings in Inline Sup-464

plementary Figures 1 and 2. In line with our interpretation, MSE is highest for465

optimal coupling, and lower for both high and low-connected cases, with lowest466

MSE for low coupling strength. Note, however, that, the very high coupling467

state is not straightforward to interpret as it leaves the low activity regime for468

which the dynamic mean field is well defined.469

The interpretation of these results is limited by the fact that, while pruning470

resulted in lower rate entropy over most scales as expected from the model,471

complexity of the simulated BOLD signal was affected much less clearly than472

expected. Here, the model did not reproduce the empirical pattern of steady de-473

cline and lower entropy for decreased connectivity occuring in old age over most474

scales. There may be various reasons for this. Surely, a network of similar nodes475

may only produce such effects that lay in the model dynamics and connectivity476

itself, and not those that may be due to changes in the local dynamics. This477

should, in principle, not only affect the BOLD dynamics differentially, but dif-478

ferences in sampling, filtering, and the BOLD conversion model itself introduce479

factors that may shape both signals differently.480

In summary, both BOLD and rate signals did point towards lower complexity481

caused by structural connectivity decline on large scales. This effect may well be482

connected to the large proportion of cognitive performance decrease explained483

by processing speed changes in aging (Salthouse, 1996), as the system needs484

higher overall activation and provides lower communication efficiency. A more485

in depth comparison of pruning with and without compensatory shifting of the486

global or specific couplings, and pruning-related changes in graph properties are487

worthwhile topics for further investigation, e.g. in the context of stroke recovery.488

4.5. Conclusions489

So far, the major focus has been on the spatial components of resting state490

networks and their alteration due to external or internal factors. We are only491

12



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

beginning to understand the spatiotemporal dynamics of RSN and their inter-492

actions. This is of particular interest to resting-state research, as complexity493

measures can be used as a biomarker of the network dynamics independent of494

external stimuli, and how the system is affected by different consciousness states495

and diseases. We suggest that scrutinizing complexity in models may contribute496

to a better understanding of the time scales of network interactions and allow497

for comparison of different models in terms of their ability to recreate observable498

complexity patterns across different scales.499

We conclude that structural connectivity decrease led to lower complexity on500

slow time scales in a biophysically based computational large-scale model mainly501

in the rate dynamics. From the perspective of model, decreased MSE in older502

adults’ resting fMRI time recordings can best be explained as a displacement503

of the system from its optimal dynamical working point. Multiscale complexity504

measures can be powerful tools to link the structural connectome to functional505

brain dynamics on various temporal scales and, as this study shows, can serve506

as functional biomarkers to link the dynamics and performance of virtual brain507

models to the richness of brain network activity.508
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5. Appendix A: Spiking model equations518

In the following, the equations for the spiking and dynamic mean field are519

given. For the spiking model, each neuron’s membrane voltage below threshold520

Vthr is governed by:521

Cm

dV (t)

dt
= −gm(V (t)− VL)− Isyn(t), (A.1)

with membrane capacitance Cm, leak conductance gm, resting potential VL and522

synaptic input current Isyn, where523

Isyn = IAMPA,ext + IAMPA,rec + INMDA + IGABA (A.2)

,524

IAMPA,ext(t) = gAMPA,ext(V (t)− VE)

Next∑

j=1

sAMPA,ext
j (t), (A.3)
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525

dsAMPA,ext(t)

dt
=

sAMPA,ext
j (t)

τAMPA

+
∑

k

δ(t− tkj ), (A.4)

526

IAMPA,rec(t) = gAMPA,rec(V (t)− VE)

NE∑

j=1

wjs
AMPA,rec
j (t), (A.5)

527

dsAMPA,rec(t)

dt
=

sAMPA,rec
j (t)

τAMPA

+
∑

k

δ(t− tkj ), (A.6)

528

INMDA(t) =
gNMDA(V (t)− VE)

1 + λe−βV (t)

NE∑

j=1

wjs
NMDA
j (t), (A.7)

529

dsNMDA(t)

dt
= −

sNMDA
j (t)

τNMDA,decay

+ αxj(t)(1− sNMDA
j (t)), (A.8)

530

dxNMDA(t)

dt
= −

xNMDA
j (t)

τNMDA,rise

+
∑

k

δ(t− tkj ), (A.9)

531

IGABA(t) = gGABA(V (t)− VI)

NI∑

j=1

wjs
GABA
j (t), (A.10)

532

dsGABA(t)

dt
=

sGABA
j (t)

τGABA

+
∑

k

δ(t− tkj ), (A.11)

with synaptic conductances g, excitatory and inhibitory reversal potantials533

VE and VI , respectively, the Dirac-delta function δ, and synaptic weight param-534

eter wj (determining the connection strengths between and within neural pop-535

ulations). The gating variables sj are the fractions of open ion channels of the536

neurons. Connections between excitatory and inhibitory pools were set to 1, and537

recurrent self-excitation to w+=1.5. Synaptic parameters were VE=0mV, VI=-538

70mV, τAMPA=2ms, τNMDA,rise = 2ms, τNMDA,decay = 100ms, τGABA=10ms,539

α=0.5kHz, β=0.062, γ=0.28. Once a neuron crosses Vthr, a spike is transmitted540

to connected neurons, and its membrane potential is reset to, and maintained541

at Vreset for refractory period τref . All neurons in the network received an ex-542

ternal background input from Next = 800 external AMPA signaling excitatory543

neurons injecting uncorrelated poisson-distributed spike trains, representing the544

noisy fluctuations that are typically observed in vivo. Specifically, for all neu-545

rons inside a given population p, the rate vpext of the resulting global spike train546

is described by:547

τn
dvpext(t)

dt
= −(vpext(t)− v0) + σv

2
√
2τnn

p(t), (A.12)

where τn=300ms, v0=2.4kHz, σv is the standard deviation of vpext(t), and np(t)548

is normalized Gaussian white noise. Negative values of vpext(t) that could arise549

due to the noise term are rectified to zero.550
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After applying the mean field reduction to the above spiking model (Deco551

et al., submitted) , the activity is governed by:552

dSi(t)

dt
= −Si

τS
+ (1− Si)γH(xi) + συi(t), (A.13)

553

H(xi) =
axi − b

1− exp(−d(axi − b))
, (A.14)

554

xi = wJNSi +GJN
∑

j

CijSj + I0, (A.15)

where H(xi) and Si denote the population rate and the average synaptic555

gating variable for each local cortical area, Cij is the structural connectivity556

matrix containing the link strengths between brain areas i and j, and local557

excitatory recurrence is w(=0.9). Parameter values for the input output function558

are a=270 (VnC), b=108 (Hz), and d=0.154 (s). The kinetic parameters are559

γ=0.641/1000. (The factor 1000 is for expressing everything in ms), τS=100560

(ms). The synaptic couplings are JN=0.2609 (nA) and the overall effective561

external input is I0=0.3 (nA). In equation (A.13), υi is uncorrelated standard562

Gaussian noise and the effective noise amplitude at each node is σ =0.001(nA).563
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Figure 1: Modeling resting state networks. a) Fiber tract measurements (here depicting
DTI, adopted and modified under a creative commons attribution licence, from Hagmann
et al. (2007), b) parcellated from voxel space to brain areas, are used to build a brain
graph (c, right), with nodes (red) representing brain areas and edges (green) represent edges
between nodes.The coupling matrix (c, left), determining the relative weights of connections
between nodes, allows the network nodes to interact with each other, depending on their local
dynamics. Local model dynamics are exemplarily sketched out for the full spiking model (d)
and its dynamic mean field reduction (e) as described in section 3. Functional connectivity
from simulations (f) and empirical resting-state recordings (g) can then be compared to find
the models working point, as depicted in (f) for the described model (adapted with permission
from the authors, from Deco et al., submitted). The vertical black line shows the location of
the bifurcation at wh the spontaneous stable state loses its stability.
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Figure 2: Methods: a) Construction of matrices representing connectivity decreases found
in aging. A brain graph (second to left) is constructed from DTI fibre estimations between
brain areas. Each node on the graph (red) represents a brain area, and connection strengths
(green) determine the values in the connectivity matrices. To determine if there are differential
effects, short-range and long-range connections are pruned separately, and matrices are then
combined (shown for long-range pruning). b) Simulation and analysis pipeline. Dynamic
mean field simulations are run for different levels of connectivity decrease for both scenarios,
and BOLD time series are simulated for complexity (MSE) analysis.
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Figure 3: Rate MSE: MSE curves calculated from the down-sampled time series of the dynamic
mean field model for time scales from 2.5s to 12.5s.
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Figure 4: BOLD MSE: MSE curves calculated from the simulated BOLD time series of the
model. Top row: BOLD scales 2.5s-12.5s, bottom row: closeup of top row at the slowest
scales. Error bars in lower panels depict standard deviations.
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Figure 5: MSE Boxplots: Boxplots of MSE values from ten trials for all scales, for BOLD
(top row) and for rate (bottom row) MSE. Each panel shows one boxplot for each connectivity
density (100%, 84%, 68%, 52%) for long-range pruning (red, ’l’) and short-range pruning (blue,
’s’). Boxplots are centered on the median and are limited by the quartiles, and whiskers extend
by a factor of 1.5. Outliers are marked by ’+’.

31



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Manuscript title: “Bottom up modeling of the connectome: linking structure and function in the resting 

brain and their changes in aging”

Authors: Tristan T. Nakagawa, Viktor K. Jirsa, Andreas Spiegler, Anthony R. McIntosh, Gustavo Deco 

Highlights 

· Theoretical models link structural connectivity to brain dynamics 

· Resting-state models successfully capture neural spatiotemporal patterns 

· Criticality enables flexibility between network states and dynamics 

· Models can be used to study dynamical markers (e.g. complexity) in disease and aging 

Highlights


