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Some eighty years after the discovery of the human electroencephalogram (EEG) and its dominant rhythm,
alpha (~10 Hz), the neurophysiological functions and behavioral correlates of alpha oscillations are still
under debate. Similarly, the biological mechanisms contributing to the general factor of intelligence, or g,
have been under scrutiny for decades. Individual alpha frequency (IAF), a trait-like parameter of the EEG,
has been found to correlate with individual differences in cognitive performance and cognitive abilities. In-
formed by large-scale theories of neural organization emphasizing the general functional significance of oscil-
latory activity, the present study replicates and extends these findings by testing the hypothesis that IAF is
related to intelligence at the level of g, rather than at the level of specific cognitive abilities. Structural equation
modeling allowed us to statistically control for measurement error when estimating the association between
IAF and intellectual functioning. In line with our hypothesis, we found a statistically reliable and substantial
correlation between IAF and g (r = .40). Themagnitude of this correlation did not differ significantly between
younger and older adults, and captured all of the covariation between IAF and the cognitive abilities of reason-
ing, memory, and perceptual speed. The observed association between IAF and g provides a parsimonious ex-
planation for the commonly observed diffuse pattern of correlations between IAF and cognitive performance.
We conclude that IAF is a marker of global architectural and functional properties of the human brain.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Understanding the mapping of anatomical and functional proper-
ties of the brain onto individual differences in cognitive functioning is
a major goal of cognitive neuroscience and central to attempts at de-
lineating the neural mechanisms associated with intelligent behavior
(Deary et al., 2010; Jung and Haier, 2007; Kanai and Rees, 2011;
Narr et al., 2007; Toga and Thompson, 2005). The notion that charac-
teristics of the human electroencephalogram (EEG) are related to
measures of intelligence has a long history going back almost as far
as the discovery of the EEG by Hans Berger (1929, 1930), with the
alpha rhythm being one of the first targets for studying the relation-
ship between EEG markers and intelligence. It is easily discerned in
the raw EEG traces at parieto-occipital electrodes when persons are
awake and relaxed with their eyes closed (Adrian and Matthews,
1934; Adrian and Yamagiwa, 1935). The average of alpha frequency
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is around 10 Hz, with a range of approximately 8–12 Hz in healthy
adults (cf. Aurlien et al., 2004; Chiang et al., 2011; Niedermeyer and
Lopes da Silva, 1999). One of the earliest observations relating the
alpha frequency (AF) to individual differences in cognitive function-
ing was the finding of ‘mentally retarded’ patients (Berger, 1933)
exhibiting systematically slower alpha waves. Since then it has
remained an appealing notion that ‘smarter brains are running faster’
(Posthuma et al., 2001), with a long history of findings supporting
this idea but also with inconsistent reports (see below).

From a psychometric perspective, AF is a promising neurophysio-
logical trait marker for investigating the association between brain
and cognitive functioning (Grandy et al., in press). The AF is charac-
terized by a remarkably high relative and mean test–retest stability
in samples of healthy individuals (Deakin and Exley, 1979; Gasser
et al., 1985; Kondacs and Szabó, 1999; Salinsky et al., 1991), with
test–retest intervals ranging up to several years (Kondacs and
Szabó, 1999). Stability coefficients of AF derived from EEG recordings
with closed eyes were found to be typically around .75 to .90, with
higher correlations for shorter test–retest intervals. It follows that AF
shows trait-like characteristics, with substantial and stable differences
between individuals that justify use of the term, individual alpha
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frequency (IAF), to denote the AF of a given person (cf. Doppelmayr
et al., 1998; Klimesch, 1996, 1997). In full agreement with this line
of reasoning, IAF has been found to show considerable heritability
(Lykken et al., 1974; Posthuma et al., 2001; Smit et al., 2006; van Baal
et al., 2001; van Beijsterveldt and Boomsma, 1994; van Beijsterveldt
and van Baal, 2002; Vogel, 1970).

The magnitude and consistency of the association between IAF and
individual differences in intellectual functioning are amatter of ongoing
debate (cf. Anokhin and Vogel, 1996; Ellingson, 1966; Posthuma et al.,
2001; Vogel and Broverman, 1964). Several studies have reported sig-
nificant correlations between IAF and verbal abilities (Angelakis et al.,
2004a; Anokhin and Vogel, 1996; Mundy-Castle, 1958), memory per-
formance (Klimesch et al., 1990, 1993; Lebedev, 1994; Saletu and
Grunberger, 1985), Digit Span performance (Angelakis et al., 2004b;
Clark et al., 2004), performance on the Raven matrices (Anokhin and
Vogel, 1996), response control (Angelakis et al., 2004a), speed of infor-
mation processing (Klimesch et al., 1996; Mundy-Castle, 1958), reac-
tion times (Surwillo, 1961, 1963, 1964), and indicators of general
intelligence (Giannitrapani, 1985; Mundy-Castle, 1958; Mundy-Castle
and Nelson, 1960). Collectively, these reports indicate that IAF is func-
tionally related to various types of cognitive performance. At the same
time, some studies failed to detect any associations between IAF and
cognitive performance (Ellingson, 1966; Posthuma et al., 2001; Vogel
and Broverman, 1964). Moreover, some of the initial findings, such
as correlations between IAF and verbal subtests of the Wechsler Intelli-
gence Test (Angelakis et al., 2004a; Mundy-Castle, 1958), were not
replicated in later work (Posthuma et al., 2001). However, it needs
to be cautioned that many of the studies had small sample sizes. In ad-
dition, associations between IAF and intelligence were often computed
at the level of individual cognitive tests. Generally, such tests are
poor indicators of intelligence because their reliability and validity is
far from perfect. In sum, it is conceivable that combinations of sampling
error, lack of statistical power, measurement error as well as variance
specific to individual cognitive tests have obscured, and potentially
lowered, the observable association between IAF and intelligence.

Despite these limitations, the predominantly positive correlations
between IAF and a variety of cognitive performance measures point
to an association between IAF and the positively correlated manifold
of intellectual abilities (cf. Deary et al., 2010). Given its high stability
and heritability, it is plausible to assume that IAF is linked to cognitive
performance in a general rather than in a specific manner. Specifically,
wewould like to propose that IAF is a physiologicalmarker of Spearman's
‘general intelligence’ (Spearman, 1904). It has been shown that second-
order factors extracted from a wide range of intelligence test batteries
tend to be highly correlated (Johnson et al., 2004, 2008), suggesting
that the common variance extracted from different intelligence test bat-
teries can be seen as different expressions of a common construct termed
general intelligence, or g. Hence, we predicted that allowing for an asso-
ciation between IAF and intelligence at the level of gwould obliterate the
Table 1
Sample descriptives.

Younger adults

COGITO sample
(n = 145)

EEG sub-sa
(n = 45)

Age 25.5 (2.7) 25.1 (2.8)
Digit symbol 60.1 (9.3) 60.4 (8.9)
Spot-a-Word .66 (.11) .67 (.10)
Raven matrices .52 (.20) .54 (.19)
MMSE – –

IAF EC – 9.8 (0.8)
IAF EO – 10.0 (0.9)

Note. Sample means (SD) at pretest. The EEG sub-sample did not differ statistically signific
Spot-a-Word accuracy in the older adults, P b .05). MMSE = Mini-mental state examinatio
need tomodel the IAF–intelligence link at lower levels of the intelligence
hierarchy.

We tested these predictions using data from the COGITO study
(Schmiedek et al., 2010). The COGITO study was conducted to investi-
gate day-to-day variability of cognitive performance and effects of ex-
tensive cognitive training. Within the COGITO study, a large sample of
145 younger adults (20–31 years) and 142 older adults (65–81 years)
completed 27 subtests of the Berlin Intelligence Structure test (BIS;
Jäger et al., 1997) from the cognitive domains perceptual speed,memory,
and reasoning as part of a large battery of baseline assessments.
Additionally, approximately 30% of the participants – 45 younger and
40 older adults – took part in two EEG sessions, one directly after
the baseline assessments and the other on average 6.6 months later.
Resting state recordings with eyes closed and eyes open were obtained
at each of these two occasions.

The constructs in the BIS test broadly cover the range and type of
cognitive tests that have been shown to correlate with IAF in previous
work (see above). Importantly, by making use of the fairly large full
COGITO parent sample (n = 287), we were able to establish a sound
confirmatory factor model representing the structure of intelligence
by three first-order factors and one second-order latent factor g. Follow-
ing the confirmation of this factor structure, structural equationmodel-
ing (SEM)with full informationmaximum likelihood (FIML) estimation
was used to project a latent IAF factor, which was derived from eyes
closed and eyes open resting state EEG measurements, into the latent
space of intellectual abilities. This procedure allowed us to estimate
the association between IAF and g unbiased by measurement error at
the latent level, and to test whether links of IAF to cognitive perfor-
mance at lower levels of the hierarchy (i.e., first-order factors, specific
tests) are needed after accounting for the link between IAF and g. If
there were no need to estimate such residual associations, this would
be consistentwith the guiding hypothesis that IAF–intelligence associa-
tions reflect general properties of the human brain. To our knowledge,
the association between IAF and intelligence has not been investigated
using SEM techniques.

Methods

Participants

The full sample of the COGITO study involved 145 younger adults
(YA; 72 women, Mage = 25.5, SD = 2.7, range = 20–31 years; inter-
vention group n = 101, control group n = 44) and 142 older adults
(OA; 70 women; Mage = 71.1; SD = 4.0; range = 65–81 years;
intervention group n = 103, control group n = 39); for details, see
Schmiedek et al. (2010). The participants were recruited through
newspaper advertisements, word-of-mouth recommendation, and
flyers circulated in Berlin. Intervention and control groups were
matched on age and cognitive status (see Schmiedek et al., 2010).
Older adults

mple COGITO sample
(n = 142)

EEG sub-sample
(n = 40)

71.1 (4.0) 70.3 (3.9)
43.9 (8.8) 45.8 (7.6)
.80 (.10) .83 (.08)
.25 (.15) .29 (.16)
28.3 (1.3) 28.5 (1.4)
– 9.3 (0.8)
– 9.4 (1.2)

antly from the non-EEG sub-sample (independent samples t-tests, all Ps > .05, except
n; IAF = individual alpha frequency; EC = eyes closed; EO = eyes open.
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Approximately 30% of the parent sample participated in two EEG re-
cordings conducted in the context of pre- and post-test assessments,
respectively, resulting in an effective EEG sub-sample of 45 younger
adults (24 women; Mage = 25.1; SD = 2.8; range = 20–31 years)
and 40 older adults (OA; 16 women; Mage = 70.3; SD = 3.9;
range = 65–80 years). The EEG and non-EEG subsamples were
comparable on age and cognitive status (see Table 1; independent
samples t-tests, all Ps > .05, except Spot-a-Word accuracy in the
older adults, P b .05). All the participants in the EEG sample were
right-handed, had normal or corrected-to-normal vision, and reported
no history of cardiovascular disease (except treated hypertension),
diabetes, neurological or psychiatric conditions, or drug/alcohol abuse.
No use of neuropharmacologically acting drugs like anti-epileptic or
anti-depressant drugs was reported. Older participants were screened
for dementia using the mini-mental state examination (MMSE;
Folstein et al., 1975) with a cut-off score of 26 for the EEG sub-sample.
The ethics committee of the MPIB approved of the study, and all the
participants provided written informed consent.

Study design

The overall design of the COGITO study consisted of an initial
extensive assessment (pretest; ten sessions à 2–2.5 h) of a wide range
of cognitive tests and self-report questionnaires (e.g., personality inven-
tories), followed by a longitudinal intervention phase of on average 101
one-hour cognitive training sessions (intervention group) or an equal
time interval with no contact (control group), and a final extensive
assessment identical to the pretest (posttest). During the intervention
phase, six perceptual speed tasks, three working memory tasks and
three episodic memory tasks were administered in every session (see
Schmiedek et al., 2010, for a detailed description of the study design
and cognitive tasks). For the EEG sub-sample, EEG recordings were
acquired at pre- and post-tests shortly after the ten sessions of behav-
ioral pre- and post-tests had been completed.

The Berlin Intelligence Structure (BIS) test data reported here
were acquired in one of the pretest sessions. The BIS was adminis-
tered before the intervention, and experimental and control groups
have been shown not to differ reliably in relation to age and cognitive
status (Schmiedek et al., 2010). Therefore, data from intervention and
control groups were pooled in the analyses reported here.

Berlin Intelligence Structure (BIS-4) battery

The Berlin Intelligence Structure test (BIS; Jäger et al., 1997) has
been constructed on the basis of a hierarchical model of intelligence
distinguishing between content and operation facets (cf. Wilhelm
and Schulze, 2002; p. 543). The content facet refers to the ‘material’
cognition operates on, and differentiates between verbal, numerical,
and figural contents,whereas the operation facet discriminates between
perceptual speed,memory, reasoning, and creativity. In the COGITO study,
the perceptual speed,memory, and reasoning facets of the BIS testwere
assessed, with each of the facets being represented by nine tasks each,
namely, three fromeach content domain. The tasks are briefly described
in the following sections.

BIS perceptual speed tasks
TG (Part-Whole): In a list of 28 words, all words for which the

current word denoted a part of the previousword (e.g., “year”–“month”)
had to be marked with a cross as quickly as possible. UW (Word comple-
tion): In a list of 57 nouns, one missing letter for each noun had to be
filled in as quickly as possible. KW (Plants): In a list of 100 words,
all the words naming a plant had to be marked as quickly as possible.
SI (Division by seven): In a list of 91 numbers, the numbers that can be
divided exactly by seven had to be marked as quickly as possible. XG
(X-Greater): Participants were given a list of 130 numbers and told to
mark those that are 3 integers greater than the preceding number as
quickly as possible. RZ (Arithmetic operator): In a list of 20 equations of
the kind “2_3_1 = 4”, participants had to enter “plus” or “minus” signs
as quickly as possible between the numbers to produce a correct equa-
tion. OE (Old English): In rows of lower case letters, participants had to
mark those printed in a gothic font as quickly as possible. ZS (Digit sym-
bol): Maximally 68 symbols had to be drawn below strings of single
digits (1–9) according to a digit-symbol key provided. BD (Findings xs):
All the xs in a row of lower case letters had to be marked as quickly as
possible.

BIS memory tasks
WM (Word memory): Recall of a list of 20 nouns. PS (Fantasy

language): 20 pairs of German words and words of a nonsense
language had to be memorized. Immediately afterwards the correct
paired nonsense words for given German words had to be recognized
out of 5 alternatives. ST (Story recall): Recall of several facts of a short
story. ZZ (Number memory): Recall of a list of 16 2-digit numbers.
ZP (Number pair memory): Cued recall of 12 number pairs; cues
were 2 digits long, numbers to recall 3 digits long. ZW (Number recog-
nition): Recognition of a list of nine 5-digit numbers out of nine times
six 5-digit numbers. FM (Company logos): A set of 20 company logos
with pictorial figures on different geometric shapes had to be memo-
rized within 60 s. In the recall phase, the correct corresponding
shapes for each figure had to be correctly identified from 4 shapes
shown. WE (Route memory): On a stylized map with shaded areas
denoting blocks of buildings, the marked route from one place to an-
other had to be memorized within 30 s and later reproduced on a
copy of the map. OG (Location memory): On a town map, 27 buildings
were colored in black. After 90 s for memorization, the buildings had
to be marked on a copy of the map.

BIS reasoning tasks
WS (Odd-one-out; 9 items): One of four words in a line differed

in meaning from the other words. This had to be crossed out by par-
ticipants. SL (Formal-logic reasoning; 3 × 2 statements and 16 infer-
ences total): Participants were given statements and had to evaluate
whether inferences following from these statements were logically
valid or not. WA (Verbal analogies; 8 items): Participants had to chose
one out of five alternatives to complete a verbal analogy of the type A:
B = C:? ZN (Number series; 9 items): Participants had to complete
sequences of numbers based on certain rules. TL (Climate information
table; 6 items): Participants had to answer multiple-choice questions
based on data provided in a table of summary statistics on temperatures
and rainfall measures. SC (Arithmetic; 7 items): Participants had to cor-
rectly identify the solutions to equations involving large numbers, iden-
tifying one out of 5 possible solutions. Exact arithmetic calculation was
not needed, as the correct answer could be identified by applying
general arithmetic reasoning. AW (Surface development; 5 items):
Participants were given an unfolded representation of a geometrical
shape. They then had to indicate the shape into which this unfolded
representation can be folded by selecting from five given bodies that
varied in form and perspective. FA (Tangram; 6 items): Participants
were given parts of a geometrical figure and had to indicate which
figure out of five alternatives could be assembledwith them.CH (Figural
series; 6 items): Participants had to add the next two members of a
sequence of line drawings composed according to certain rules.

Content facets were represented by following sub-tests, for
perceptual speed: TG, KW, UW (verbal), XG, SI, RZ (numerical), and
BD, OE, ZS (figural); for memory: ST, WM, PS (verbal) ZP, ZZ, ZW (nu-
merical), and OG, FMWE (figural); for reasoning: WA, WS, SL (verbal),
ZN, SC, TL (numerical), and CH, FA, AW (figural). For each operation
facet, the nine sub-tests were z-standardized within age groups and ag-
gregated into three parcels (see Table 2 for inter-correlations) serving
as indicator variables for the latent factors perceptual speed, memory
and reasoning, respectively (cf. Schmiedek et al., 2009; Wilhelm and
Schulze, 2002).



Table 3
Correlation between IAF and aggregated cognitive ability scores.

EC EO

EO .87⁎⁎/.52⁎⁎

Speed .31⁎/.06 .34⁎/.15
Memory .37⁎/.36⁎ .23/.34⁎

Reasoning .25/.06 .21/.06

Note. Correlations are reported as younger adults (n = 45)/older adults (n = 40).
Aggregated scores were calculated by taking the mean over parcels. IAF = individual
alpha frequency; EC = eyes closed; EO = eyes open. ⁎: P b .05; ⁎⁎: P b .01.

Table 2
Positive manifold of aggregated cognitive scores (parcels) from the BIS test.

Speed1 

XG/OE/KW

Speed2

SI/ZS/UW

Speed3

RZ/BD/TG

Memory1 

ZP/ST/OG

Memory2

ZZ/WM/FM

Memory3

ZW/PS/WE

Reasoning1 

FA/ZN/WA

Reasoning2

CH/TL/WS

Speed1 

Speed2 .66 / .66 

Speed3 .68 / .69 .55 / .62

Memory1 .29 / .48 .48 / .41 .26 / .45

Memory2 .28 / .40 .44 / .33 .22 / .34 .62 / .62

Memory3 .30 / .28 .38 / .32 .31 / .25 .60 / .41 .54 / .37

Reasoning1 .35 / .35 .47 / .22 .40 / .31 .37 / .28 .39 / .25 .42 / .18*

Reasoning2 .44 / .38 .48 / .37 .43 / .39 .40 / .34 .27 / .23 .32 / .36 .67 / .54

Reasoning3 .34 / .32 .38 / .30 .40 / .41 .34 / .23 .25 / .22 .39 / .22 .68 / .39 .57 / .50

Note. Correlations are reported as younger adults (n = 145)/older adults (n = 142). Each parcel was aggregated over three cognitive tasks from the same cognitive domain. All
correlations are highly significant [P b .01], except ⁎[P b .05].
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EEG data acquisition

EEG was recorded continuously with BrainAmp amplifiers (Brain
Products GmbH, Gilching, Germany) from 64 Ag/AgCl electrodes.
Sixty scalp electrodes, embedded in an elastic cap (EASYCAP GmbH,
Herrsching, Germany), were organized according to the 10% system
(cf. Oostenveld and Praamstra, 2001). Ground was placed at AFz.
Two electrodes were placed on the outer canthi (horizontal EOG)
and one electrode below the left eye (vertical EOG) in order to mon-
itor eye movements. During recording, all electrodes were referenced
to the right mastoid electrode, while the left mastoid electrode
was recorded as an additional channel. Electrode impedances were
maintained below 5 kΩ before recording. The EEG was recorded
with an analog pass-band of 0.1 to 250 Hz and digitized with a sam-
pling rate of 1 kHz. Resting state EEG data included in this study
stem from the two EEG recording sessions of each participant (pre-
and post-tests). Resting state EEG was assessed from two conditions
in each session: 2 min of recording with eyes closed (EC) and 2 min
of recording with eyes open (EO). The participants were instructed
to sit as relaxed and still as possible and to fixate a fixation cross dur-
ing the eyes open condition.

EEG data preprocessing

Preprocessing and analysis of EEG data were performed using the
EEGLAB (Delorme and Makeig, 2004) and Fieldtrip toolboxes
(Oostenveld et al., 2011) as well as custom-written MATLAB (The
MathWorks Inc., Natick, MA, USA) code. EEG data were re-referenced
tomathematically linkedmastoids, filteredwith a 4th order Butterworth
filter and a pass-band of 0.5 to 100 Hz, and segmented into epochs of
1.024 s. Segments were visually inspected and all segments containing
artifacts other than eye blinks and eye movements were excluded
from further analyses. After manual artifact rejection an independent
component analysis (ICA; Bell and Sejnowski, 1995) was conducted to
correct for eye blinks and movements. Artifact corrected data were
then subjected to a fast Fourier transformation (FFT) within the Fieldtrip
toolbox, using a Hanning-window and zero-padding to 10 s to obtain a
frequency resolution of 0.1 Hz.

Estimation of individual alpha frequency (IAF)

Individual alpha frequency (IAF) was estimated as peak alpha
frequency from the mean spectrum over 17 posterior electrodes
(Pz, P1/2, P3/4, P5/6, P7/8, POz, PO3/4, PO7/8, Oz and O1/2) by
means of peak detection between 7.5 and 12.5 Hz. IAF was estimated
separately for the EC and EO conditions. We have previously shown
for this dataset (Grandy et al., in press) that reliable IAF values can
be obtained for both conditions and that both conditions share a con-
siderable amount of variance (see also Table 3). Peaks were defined as
those frequency points where the first derivative of the spectrum
changed from positive to negative. Searching explicitly for peaks
assured that we extracted true peaks from the spectrum rather than
arbitrary maximal values at the boundary of the predefined alpha
range. Only in one out of 340 peak estimations (0.3%) no peak was
found in the alpha range.

A common problem in determining IAF is the existence of two peaks
within the alpha-frequency range (cf. Posthuma et al., 2001). For the
present dataset, double peaks in the alpha range were observed in 12
participants (14.1%) with eyes closed and in 20 participants (23.5%)
with eyes open. However, in only three participants (3.5%) with eyes
closed and seven participants (8.2%)with eyes open, differingmaximum
peakswere found across conditions. Since, as described below,we calcu-
lated the mean IAF across two sessions and estimated the relationship
between IAF and intelligence at the latent level, we did not expect
these cases to have a large impact on the results. Control analyses
(not reported here), with exclusion of data points from conditions
with inconsistent double peaks as well as exclusion of all conditions
where double peaks were observed, did not change the results,
underscoring the robustness of our reported findings.

For every participant two IAF values were determined. In previous
work focusing on the stability of IAF within the COGITO study (Grandy
et al., in press), we have shown that IAF was not affected by extensive
cognitive training: repeated measures ANOVA with factors time (pretest
vs. posttest) × group (intervention vs. control) × condition (eyes closed
vs. eyes open) × age (younger adults vs. older adults) did not show any
significantmain effects or interactions (all Fs(1,80) b 2.97; Ps > .05), ex-
cept for the factor age (F(1,80) = 5.07, P b .05), indicating slower IAF in
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older adults on average. Therefore, we aggregated IAF values from pre-
and post-tests separately for the EC and EO conditions.

Data analysis

Sample descriptives were computed using SPSS 15.0 (SPSS Inc.,
Chicago, IL, USA). Structural equation modeling (SEM), including
confirmatory factor analysis (CFA), was conducted with Mplus
(Version 6.1, Muthén and Muthén, 1998–2010). SEM is a multivariate
statistical tool, nowadays routinely used in the behavioral and social
sciences (Bollen, 1989; Kline, 2005) and increasingly gaining atten-
tion in the neurosciences (e.g., Lövdén et al., 2013; Raz et al., 2005;
Ziegler et al., 2012). It allows testing structural hypotheses about
associations and influences among multiple variables by examining
how well a given model is able to reproduce the variance–covariance
matrix of a set of observed variables. A SEM model typically consists
of a measurement model, specifying the relationship of a number of
observed variables to latent (unobserved) variables (cf. Bollen,
2002). Latent variables are comparable to factors in factor analysis,
that is, they are not measured but rather represent the variance
shared by the observed (measured) variables. In our case, the latent
variables are the specific ability factors perceptual speed, memory,
reasoning, as well as IAF, each represented by two to three observed
variables or aggregates of observed variables, respectively. The latent
variables can be assumed to be free of task-specific sources of
variance as well as measurement error. The core of a SEM is the rela-
tionship between latent variables—here, how individual differences
of perceptual speed, memory, and reasoning can be accounted for
by a second order factor g, and the relationship between g and IAF.
Importantly, under the assumption that the latent variables are free
of measurement error, the relationships between latent variables
estimated in a SEM are unbiased estimates of true relations among
the constructs under study. Structural models are evaluated in
terms of their ‘model fit’, that is, howwell a model captures the struc-
ture inherent in the data. Conventionally, models are assumed to
show good fit if the ratio χ2/df is less than 2, the comparative fit
index is larger than .95 (CFI; Bentler, 1990), and root-mean-square
error of approximation (RMSEA) is smaller than .05 (Bentler, 1990;
Browne and Cudeck, 1993). Significance and equivalence of specific
parameters in the model are tested by constraining these parameters
to their values under the null hypothesis, for example, by fixing the
relationship between two latent variables (IAF and g) at zero, and
by testing whether the resulting change in χ2 (Δχ2) is significant,
with the degrees of freedom equal to the number of constrained
parameters (cf. Bollen, 1989; Kline, 2005; see also Lövdén et al.,
2013; Raz et al., 2005).

For CFA and SEM analyses IAF values were z-standardized within
each age group. Models for the younger and older age group were
fitted simultaneously with full information maximum likelihood esti-
mation (FIML). By implementing estimation techniques originally
developed in the context of pedigree analysis (Lange et al., 1976),
FIML SEM provides the individual −2 log likelihood contributions
to overall misfit. Hence, individuals with missing data can be included
in the model without imputing missing data. In the present case,
inclusion of the full COGITO sample allowed to establish a solid
measurement model for arriving at a hierarchical model of intellectual
abilities. Thereafter, we projected the IAF data from the EEG sub-sample
(n = 85) into the latent space of intellectual abilities. A sound estimation
of the correlation between intelligence factors and IAF would not have
been possible on the latent level with the EEG sub-sample only, due to
small sample size. Given that the EEG sub-samples were representative
of the parent sample (with the exception of Spot-a-Word, older adults;
see above), the parameter estimates reported in this article are unlikely
to bebiased. All raw scoreswere z-standardized before estimation. There-
fore, the intercepts for the indicator variables and latent factors were
constrained to zero to reduce the number of estimated parameters. To
assure metric invariance of the measurement model of younger and
older adults, the factor loadings for the indicator variables and the latent
factors were constrained to be equal across age groups, as were the
loadings for the first-order latent factors and the second-order factor g.
Tests of measurement invariance are reported in the Results section.
Confidence interval (CI) boundaries for the relationship between IAF
and g are represented by those correlation coefficients where the model
fit decreased by Δχ2(1) = 3.65, which takes into account the skewed
distribution of correlation coefficients and is a more conservative esti-
mate for the CI.

Results

Correlations between and within aggregated IAF and cognitive scores

As shown in Table 2, correlations between the parcels of the
BIS constructs were homogeneous and medium to high within con-
structs [YA: rs = .54–.68; OA: rs = .37–.69; all Ps b .01], with smaller
but significant correlations across constructs [YA: rs = .22–.48; OA:
rs = .18–.48; all Ps b .01, except r = .18, P b .05]. Furthermore, a high-
ly significant and substantial correlation between IAF with eyes closed
and eyes open was observed for both age groups (Table 3). Correlations
between IAF and aggregated cognitive scores were all found to be
positive but of small to medium size, with younger adults exhibiting a
tendency towards higher correlations (Table 3). For the younger adults
significant correlations were found between IAF measures and aggre-
gated speed and memory scores, whereas for older adults only a signif-
icant correlation between IAF and thememory score could be observed.
The correlation betweenmean IAF across the eyes closed and eyes open
conditions and an overall composite score across the three ability mea-
sures was found to be .38 [P b .01] for the younger and .19 [P > .05]
for the older adults. Overall, the correlation coefficients did not differ
significantly between the two age groups [all zs b 1.16; Ps > .05]. To
estimate the association between mean IAF and the overall composite
BIS score, we conducted a regression analysis with consecutively enter-
ing β1, β2, and β3 into the following model: overall composite BIS
score = constant + β1 × age + β2 × mean IAF + β3 × (age × mean
IAF). IAF explained a significant amount of variance of the overall
composite BIS scores beyond age [β1: F(1,83) = 84.55, P b .01; β2:
Fchange(1,82) = 7.67, P b .01], but no significant interaction between
IAF and agewas found [β3: Fchange(1,81) = 0.87, P > .05]. Taken togeth-
er, this indicates that the association between IAF and intelligence did
not differ significantly across our age groups; the partial correlation
between IAF and g after controlling for age was .29 (P b .01; see Fig. 1).



Table 4
Standardized factor loadings in the g-factor model.

Younger adults Older adults

g: speed .84 [.72–.96] .79 [.65–.93]
g: memory .68 [.55–.81] .76 [.62–.89]
g: reasoning .73 [.59–.87] .78 [.65–.90]
Speed: spd1 .85 [.78–.91] .83 [.76–.90]
Speed: spd2 .80 [.72–.87] .77 [.69–.84]
Speed: spd3 .76 [.68–.84] .81 [.74–.88]
Memory: mem1 .85 [.77–.92] .81 [.72–.90]
Memory: mem2 .75 [.67–.84] .71 [.61–.80]
Memory: mem3 .69 [.59–.79] .60 [.50–.69]
Reasoning: rsn1 .84 [.76–.92] .71 [.62–.80]
Reasoning: rsn2 .80 [.72–.87] .74 [.64–.84]
Reasoning: rsn3 .73 [.64–.81] .70 [.60–.78]

Note. CFA second-order factor (g) model for the full COGITO sample (YA: n = 145; OA:
n = 142). Unstandardized factor loadings were constrained to be equal across age
groups. spdi = perceptual speed parcels, memi = memory parcels, rsni = reasoning
parcels.
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Correlation between IAF and g

To examine the factor structure of the BIS test, a CFA with the
full COGITO sample data was conducted, with the three first-order
latent factors of perceptual speed, memory and reasoning, and a
second-order latent factor g. The unrestricted model fitted the data well
[χ2(66) = 68.782 (YA: χ2 = 47.02; OA: χ2 = 21.76), RMSEA = .017,
CFI = .997, SRMR = .040], as did the model when specifying measure-
ment invariance by constraining factor loadings to be equal across
age groups [see Table 4; χ2(74) = 84.28 (YA: χ2 = 53.43; OA:
χ2 = 30.84), RMSEA = .038, CFI = .990, SRMR = .056]. Specification
of metric invariance of the measurement models for younger and older
adults did not significantly reduce the fit of themodel [Δχ2(8) = 15.49,
P > .05]. Second-order standardized factor loadings on g resulted in
spd1 spd2 spd3

speed

mem1 mem2

memo

.85/.83 .79/.77 .76/.81

g

.83 / .78 .69 / .7

.84/.81 .76/.71

IAF

EC

.98/.75

.40

Fig. 2. SEM, testing the correlation between IAF and g. Reported are standardized loadings (
IAF = individual alpha frequency; g = second-order factor general intelligence; spdi = pe
.84/.79 (YA/OA) for perceptual speed, .68/.76 for memory and .73/.78
for reasoning [all Ps b .001]. The results are consistent with the
assumption that a considerable amount of variance in the three cogni-
tive abilities reflects individual differences in g. Standardized factor
loadings for the first-order latent factors ranged between .60 and .85
[all Ps b .001; see Table 4].

Next, we projected the IAF latent factor, defined by the variables, IAF
with eyes closed (EC) and IAF with eyes open (EO), into intellectual
ability space established for the full COGITO sample by correlating it
with g (see Fig. 2). This model fitted the data well [χ2(112) = 121.81
(YA: χ2 = 70.77; OA: χ2 = 51.04), RMSEA = .025, CFI = .991,
SRMR = .076]. Specification of metric invariance of the measurement
model for IAF of younger and older adults did not significantly change
the fit of the model [Δχ2(1) = 0.203, P > .05]. The point estimate
for the correlation between IAF and g was r = .40 [confidence
interval (CI) = .14–.62]. Fixing the covariance between IAF and g to
be zero led to significant reduction in model fit [χ2(113) = 130.05;
Δχ2(1) = 8.34, P b .01]. Thus, we established a reliable and substantial
correlation between IAF and g for both age groups.

Estimating the correlation between IAF and g freely for both age
groups did not change the model fit significantly [χ2(111) = 121.30;
Δχ2(1) = 0.51, P > .05]. When IAF–g correlations were estimated
separately, the correlation was estimated at .47 [CI = .14–.72] for the
younger sample, and at .29 [CI = − .12–.64] for the older sample.
The non-significant IAF–g correlation in the older sample as well as
the lack of significant age group differences in correlations are likely
to reflect a lack of statistical power associated with the small sample
underlying the IAF measurement model.

After establishing a substantial correlation between IAF and intel-
ligence at the level of second-order g, we examined whether there
was any evidence within our data for specific associations between
IAF and first-order factors of perceptual speed, memory, or reasoning.
Importantly, estimating residual associations between the IAF latent
mem3

ry

rsn1 rsn2 rsn3

reasoning

7 .72 / .77

.69/.60 .84/.71 .80/.74 .73/.69

EO

.88/.69

younger adults/older adults; all loadings: P b .01). EC = eyes closed; EO = eyes open;
rceptual speed parcels; memi = memory parcels; rsni = reasoning parcels.



16 T.H. Grandy et al. / NeuroImage 79 (2013) 10–18
factor and each of the three first-order latent factors in the presence
of the correlation between IAF and g did not indicate any significant
correlation between IAF and cognitive abilities beyond the correlation
between IAF and g. None of the three introduced residual correlations
significantly improved the fit of the model [IAF—speed: Δχ2(1) =
0.62; IAF—memory: Δχ2(1) = 3.62; IAF—reasoning: Δχ2(1) = 1.10;
all Ps > .05]. Taken together, the correlation between IAF and g sub-
stantially captures the covariation between IAF and reasoning, memory,
and perceptual speed and our results are consistentwith the hypothesis
that IAF is associated to intelligence in a general, rather than specific,
manner.

Discussion

Using structural equation modeling, we tested the hypothesis that
individual alpha frequency (IAF) is related to cognitive performance
at the level of the general factor of intelligence, or g. This hypothesis
was based on the observation that IAF has been found to correlate
with a broad range and variety of cognitive tasks (see Angelakis
et al., 2004a, 2004b; Anokhin and Vogel, 1996; Clark et al., 2004;
Giannitrapani, 1985; Klimesch et al., 1990, 1993, 1996; Lebedev,
1994; Mundy-Castle, 1958; Mundy-Castle and Nelson, 1960; Saletu
and Grunberger, 1985; Surwillo, 1961, 1963, 1964). As predicted,
we found a significant and substantial correlation (r = .40) between
IAF and g that did not differ reliably between samples of younger and
older adults. It is worth noting that a link between IAF and cognitive
performance at the level of g, as modeled in this study, provides a
parsimonious explanation for the diffuse pattern of correlations
between IAF and cognitive performance that is found in the literature.

Our hypothesis of a substantial association between IAF and g was
informed by large-scale theories of neural organization that emphasize
the functional significance of oscillatory activity (David and Friston,
2003; Jensen and Mazaheri, 2010; Klimesch, 2012; Klimesch et al.,
2007; Sotero et al., 2007; Valdes-Hernandez et al., 2010). From the
perspective of these theories, IAF qualifies as a candidate marker vari-
able of individual differences in general aspects of neural organization
that behaviorally manifest themselves as ‘general intelligence’. In the
following, we will elaborate on this line of reasoning.

Neural mechanisms contributing to the association between IAF and g

Mounting evidence suggests that intelligence cannot be attributed
to a single brain region. For example, the parieto-frontal integration
theory (P-FIT) by Jung and Haier (2007) suggests that individual
differences found in intelligence and reasoning are best predicted by
variations in a distributed network comprising interactions among
several brain regions. A critical aspect of distributed networks is
efficient communication among its elements. From this perspective,
individual differences in intelligence also depend on differences in the
efficiency of communication between widely distributed brain regions
(cf. Anokhin et al., 1999; Jausovec and Jausovec, 2000; Lee et al., 2012;
Neubauer and Fink, 2009a,b; Thatcher et al., 2005). Oscillatory neural
activity together with the notion of the ‘small-world’ architecture of
neural systems (cf. Sporns et al., 2004; Yu et al., 2008) complement
neuroanatomy-based concepts of the biological basis of individual
differences in cognitive functioning and intelligence (cf. Deary et al.,
2006; Penke et al., 2010).

Neural oscillations have been postulated as a core mechanism
in orchestrating the activity of the central nervous system, bridging
the gaps from single neurons to cell assemblies and cortical networks
(Wang, 2010). Synchronization of oscillatory activity offers an effi-
cient mechanism for temporal coordination of neural activity in
distributed networks (cf. Buzsáki and Draguhn, 2004). While faster
oscillations in the gamma range most likely reflect local processing
(cf. von Stein et al., 2000), slower oscillations, for example, in the
alpha range, are well suited for long-range information integration
(Hummel and Gerloff, 2005; Mima et al., 2001). This line of reasoning
would be consistent with the ‘small-world’ network characteristics of
neural systems (cf. Sporns et al., 2004; Yu et al., 2008) in the sense
that well connected local neural networks (‘fast oscillations’) are
supplemented by a small fraction of long-range connections (‘slow
oscillations’) involved in the coordination of local and distant net-
works, effectively reducing the number of explicit connections need-
ed between distant cell assemblies (Buzsáki et al., 2004).

Specifically, it has been proposed that alpha oscillationsmay contrib-
ute to higher-order integration of information and top-down control by
providing temporal frames for neural interactions via the timing of func-
tional inhibition (cf. Jensen and Mazaheri, 2010; Jensen et al., 2002;
Jokisch and Jensen, 2007; Klimesch, 2012; Klimesch et al., 2007;
Tuladhar et al., 2007). According to this notion, faster IAF allows for
faster alternations between ‘open’ and ‘closed’ states for information
transfer, which in turn permits more efficient integration of information
across brain regions. From a functional point of view, this proposition
would explain why IAF accounts for some part of the between-person
variance in g.

This line of reasoning ultimately leads to the question which brain
properties co-determine the IAF of a given brain. According to neural
mass models (cf. Jansen and Rit, 1995; Lopes da Silva et al., 1974),
three global features of neuronal networks influence the frequency
of oscillations: (a) local connectivity strength, that is, the number of
synaptic contacts; (b) membrane time constants; and (c) propagation
delays between distant cortical areas (David and Friston, 2003; Sotero
et al., 2007). In line with the latter, a recent study demonstrated that
white matter density is correlated with IAF in several distinct fiber
tracts (Valdes-Hernandez et al., 2010). Thus, faster IAF, probably
resulting from shorter propagation delays as a consequence of higher
white matter density, would indeed be an expression of faster infor-
mation transfer and synchronization between distant cortical areas.
This is also in line with recent reports of an association of g and
white matter integrity (Deary et al., 2006; Penke et al., 2010).

IAF and g as trait markers

As we have previously shown (Grandy et al., in press), IAF is an
extraordinarily stable characteristic of individuals, even in the light
of extensive cognitive training. This observation supports the idea
that IAF is a neurophysiological trait marker, representing fundamen-
tal properties of individual brains that are not easily modifiable by
experience. This notion would parallel the notion of g as a highly sta-
ble person characteristic. Similar to g (Deary et al., 2009; McGue et al.,
1993), IAF exhibits high heritability (Lykken et al., 1974; Posthuma
et al., 2001; Smit et al., 2006; van Baal et al., 2001; van Beijsterveldt
and Boomsma, 1994; van Beijsterveldt and van Baal, 2002; Vogel,
1970), indicating that IAF is under strong genetic influence. Based
on the preceding considerations, we consider it likely that a substan-
tial portion of the variance shared between IAF and g reflects individ-
ual differences that are genetic in origin.

Age differences in the association between IAF and g?

In this study, the correlation between IAF and g did not differ reliably
between younger and older adults. At the same time, when estimated
for old adults alone, the correlation between IAF and g observed did
not differ reliably from zero. Statistical power may have been insuffi-
cient for detecting a reliable correlation between IAF and g among
older adults, and for picking up reliable age group differences in the
association between IAF and g. Despite this inconclusive evidence, it is
worthwhile to consider mechanisms that may lower IAF–g correlations
with advancing adult age.

Groups of older adults tend to be more heterogeneous than groups
of younger adults in relation to brain structure, chemistry, and function
as well as behavior (Baltes et al., 2006; Lindenberger et al., 2013;
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Nyberg et al., 2012), presumably reflecting the accumulation of life
experiences, genetic differences, the admixture of pathological con-
ditions, and combinations thereof. It is conceivable that IAF may lose
some of its association to general cognitive abilities across the life
course, as other factors come into play. Research designs relying
on the longitudinal assessment of multivariate changes within indi-
viduals are required to substantiate these speculations (Raz and
Lindenberger, 2011).

Summary and conclusions

In this study, we made use of structural equation modeling to
uncover an association between IAF and cognitive performance at the
level of a second-order factor of general intelligence, or g. The observed
correlation between IAF and g offers a parsimonious explanation for
previously reported IAF–cognition associations, which tended to escape
explanations in terms of specific mechanisms or abilities. The present
results support the hypothesis that individual differences in general
intelligence are associatedwith individual differences in general oscilla-
tory properties of the brain.
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