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Abstract 

The human brain is a complex, interconnected network par excellence. Accurate and 

informative mapping of this human connectome has become a central goal of neuroscience. At 

the heart of this endeavor is the notion that the brain connectivity data can be abstracted to a 

graph of nodes - representing neural elements (e.g., neurons, brain regions), linked by edges - 

representing some measure of structural, functional or causal interaction between nodes. 

Such a representation brings connectomic data into the realm of graph theory, affording a rich 

repertoire of mathematical tools and concepts that can be used to characterize diverse 

anatomical and dynamical properties of brain networks. Although this approach has 

tremendous potential – and has seen rapid uptake in the neuroimaging community – it also 

has a number of pitfalls and unresolved challenges which can, if not approached with due 

caution, undermine the explanatory potential of the endeavour. We review these pitfalls, the 

prevailing solutions to overcome them, and the challenges at the forefront of the field.  

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 4 

1. Introduction 

The uptake of graph theoretical tools into brain connectivity research has proceeded at such a 

phenomenal rate that one could gain the impression that graph theory was only very recently 

developed. Yet graph theory, as a branch of mathematics, dates back over two hundred years, 

at least as far as Leonhard Euler’s thesis on the ‘bridges of Königsberg’ (Euler 1736). Euler 

introduced the notion of representing an interconnected system as the edges (bridges) and 

nodes (locations) of a graph, and showed how their organization could yield complex 

topological properties with various implications (here, efficiently traversing bridges). Graph 

theory is generally considered to be a branch of combinatorics - that is, concerned with the 

study of discrete structures - and has been used to address a broad range of problems from 

"covering algorithms" (i.e. how to colour maps) to the Travelling Salesman Problem (i.e. in 

which order should a salesman visit a set of multiple cities to minimize his distance traveled). 

Already we encounter two of the basic elements of graph theory: First, it was born from a real 

world problem and remains an extraordinarily pragmatic and empirically useful field. Second, 

it is dependent upon a discretization of the system under study; an important issue when it 

comes to imaging neuroscience. Importantly, graph theory is ideally suited to study complex 

systems of interacting elements, the brain being one example. 

 

Several major advances in the 20th century preceded the rapid uptake of graph theory into 

neuroscience. Chief amongst these was the work on random graphs - pioneered by Erdos and 

Renyi (Erdos and Renyi, 1959) - and its later extension to random scale-free networks 

(Barabási and Albert, 1999) - that is, random networks with a power law degree distribution 

(degree referring to the number of connections possessed by each network node). Another 

seminal discovery concerned the so-called “small-world” phenomenon; the simultaneous 

presence of locally clustered connectivity and short path lengths between nodes in many real-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 5 

world networks (Watts and Strogatz, 1998a; Stephan, et al., 2000a). This organization 

provides a topological foundation for the dual notions of functional integration (short path 

lengths) and functional segregation (high clustering) – key organizational principles of the 

brain (Tononi, et al., 1994; Friston, et al., 2004). The realization that many complex systems 

found in nature, ranging from phylogenies, social interactions, electrical and 

telecommunication grids, transportation systems and metabolic networks, can be 

characterized by one or multiple non-trivial organizational properties, including power-law 

scaling, small-worldness and other features, such as modularity (Fortunato, 2010), hierarchy 

(Ravasz and Barabasi, 2003) and rich-club ordering (Colizza, et al., 2006), pointed to a set of 

similarities ("universalities") in very diverse systems (Strogatz, 2001; Newman, 2003a) 

including the brain (Bullmore, et al., 2009).  

 

The connectome, representing the complete set of neural elements and inter-connections 

comprising the brain (Sporns, Tononi and Kotter, 2005), is a perfect candidate for graph 

theoretic analysis. Indeed, it was seminal work examining the organization of large-scale 

connectivity networks in the Caenorhabditis Elegans (White, et al., 1986), cat (Scannell and 

Young, 1993; Scannell, et al., 1999), and non-human primate nervous systems (Felleman and 

Van Essen, 1991a; Young, 1992; Hilgetag, et al., 1996; Sporns, et al., 2000b), as well as early 

computational analyses of the principles of cortical organization (Tononi, et al., 1999; Stephan, 

et al., 2000a), that illustrated the potential neuroscientific applications of graph theory. This 

research mandated a gold standard in connectivity data and provided an impetus for early 

connectivity databases in non-human primates, such as "CoCoMac" (ww.cocomac.org), which 

can be seen as a prelude to The Human Connectome Project (Stephan, et al., 2000a; Stephan, et 

al., 2001; Kötter, 2004; see also Stephan, 2013 in this issue). The parsimonious nature, 

computational properties and intuitive appeal of small world networks made their uptake 
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into brain connectivity research - via analyses of CoCoMac - almost immediate (Hilgetag, et al., 

2000b; Sporns, et al., 2000d, 2000a, 2000c; Stephan, et al., 2000b; Sporns and Zwi, 2004a) and 

represents a compelling examples of the confluence of computational and empirical 

neuroscience. Though much of this early work focused on structural connectivity data in non-

human species, the rapidly emerging interest in functional connectivity led to the first 

demonstrations, obtained from MEG data (Stam, 2004b) then from fMRI data (Eguiluz, et al., 

2005; Salvador, et al., 2005; Achard, et al., 2006), of small-world and scale-free properties in 

human brain functional networks. These analyses where then extended to the first in vivo 

structural maps of the human connectome generated using diffusion imaging (Hagmann, et al., 

2007; Hagmann, et al., 2008; Skudlarski, et al., 2008; Zalesky and Fornito, 2009) and found 

rapid applications in the clinical neurosciences (Stam, et al., 2007a) (Micheloyannis, et al., 

2006; Rubinov, Knock, et al., 2009) (Liu, et al., 2008) (Bassett, et al., 2008; He, et al., 2009; 

Fornito and Bullmore, 2010; van den Heuvel, et al., 2010; Verstraete, et al., 2011; Xie and He, 

2011; Zalesky, et al., 2011; Fornito and Bullmore, 2012; Fornito, Zalesky, et al., 2012). 

 

The exponential growth in brain connectivity research arguably constitutes something akin to 

a scientific revolution (Kuhn, 1970) either complementing or even subverting the prior 

prominence of functional specialization in the brain (Friston, 2011b). In this context, graph 

theory provides a more compelling framework for the analysis of large-scale brain network 

architecture than traditional, mass univariate neuroimaging and carries the potential to 

revolutionise our understanding of brain organization (Stam and Reijneveld, 2007; Bullmore 

and Sporns, 2009; Sporns, 2011b, 2012). However, the extent to which this promise can be 

realized is critically dependent upon the validity of the graph representation itself. As a 

branch of combinatorics, graph theory is reliant upon an unambiguous discretization of the 

brain into distinct nodes and their interconnecting edges, neither of which are trivial. 
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Moreover, the application of graph theory to neuroscientific data poses several challenges 

with important implications for how results should be interpreted. Our goal in this article is to 

highlight these challenges, draw attention to potential pitfalls and discuss progress towards 

addressing them. Specifically, we do this in relation to the two major steps involved in 

connectomic analysis: (1) building an accurate map of the connectome; and (2) analyzing and 

making sense of the resulting data. We focus principally on in vivo macro-scale connectomics 

with MRI, a field that has rapidly adopted many graph theoretic concepts and techniques and 

which is central to large-scale initiatives such as The Human Connectome Project (Van Essen, 

et al., 2012). We note however, that graph theory can be used to characterize data acquired 

using other modalities, such as EEG/MEG (Stam, 2004a; Bassett, et al., 2006b; Stam, et al., 

2007b; Rubinov, Knock, et al., 2009; Brookes, et al., 2011; Hipp, et al., 2011; Kitzbichler, et al., 

2011; Zalesky, Cocchi, et al., 2012), and that many of the issues discussed here also apply to 

these analyses. Excellent introductions to the basic concepts of graph theory and their 

application to neuroscience have been provided elsewhere (Albert and Barabasi, 2002; 

Newman, 2003b; Sporns, et al., 2004; Stam and Reijneveld, 2007; Bullmore and Sporns, 2009; 

Bullmore and Bassett, 2011; Sporns, 2011b, 2012). 

 

2. Building a connectome 

The validity of any graph-based model of a complex system depends on the extent to which its 

nodes and edges represent true subsystems and their interactions, respectively, of the system 

under investigation. In some applications, this is straightforward. For example, in social 

networks, each node represents a person and edges can represent facebook links (Lewis, et al., 

2008) email traffic (Barabasi, 2005), co-authored publications (5) or some other measure of 

social exchange. Such networks are very well defined. Correct identification of nodes and 

edges in brain networks is more problematic. It could be argued that each node should 
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represent a neuron and each edge a synaptic contact. Indeed, a comprehensive neuron-level 

connectome, comprising 302 neurons (nodes) and ~7000 synapses (edges), has been 

constructed for the nematode worm C Elegans (White, et al., 1986) and similar (albeit 

statistical) approaches are being applied to the fruit fly Drosophila Melanogaster ((Chiang, et 

al., 2011); www.flycircuit.tw) and mouse (www.mouseconnectome.org; see also (Bock, et al., 

2011; Briggman, et al., 2011)) brains. Scaling these analyses to account for the billions of 

neurons and trillions of connections comprising the human brain is likely not feasible in the 

near future, however (Kasthuri and Lichtman, 2010; Alivisatos, et al., 2012). Moreover, there 

is no clear evidence that this level of resolution is the most meaningful for understanding 

brain structure and function, as brain connectivity and its emergent dynamics are organized 

across multiple spatiotemporal scales (Buzsaki and Draguhn, 2004; Breakspear and Stam, 

2005; Bassett, et al., 2006a; Meunier, et al., 2009), each of which can provide information 

relevant to understanding human behavior and disease. In other words, there are no 

‘privileged scales’ (Jirsa, et al., 2010). In imaging connectomics, analyses are typically 

performed at macroscopic spatial resolution (mm-cm), and on the temporal order of 

milliseconds to minutes. These scales render whole-brain connectomics analytically tractable 

but create ambiguities in precisely how nodes and edges should be defined.  

 

In light of these ambiguities, it is useful to consider the attributes that a macroscopic map 

should ideally possess, setting aside limitations on current imaging methodologies. In Table 1 

we propose some simple criteria for the nodes and edges, respectively, of such a map, and 

overview progress towards their fulfillment. A schematic depiction of a connectomic map 

generated according to these criteria is presented in Figure 1. These criteria are not 

exhaustive, but rather are intended as a list of important properties that are required for a 

connectomic model to meet basic criteria for valid graph theoretical analysis. Quick inspection 
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of these ideal properties reveals that most MRI-derived networks fall short of meeting many 

of these ideal criteria. In part, this reflects a limitation inherent to the resolution of analysis. 

For example, there are no clear macroscopic criteria for delineating the brain into functionally 

meaningful and biologically valid nodes, necessitating the use of heuristic criteria. This 

limitation, in turn, results from the limited spatial and temporal resolution of current imaging 

technologies, as well as the relatively indirect measures provided by MRI of many of the 

phenomena of interest. Consequently, there is a gap between what might constitute an “ideal” 

map of the connectome and what represents best practice within the constraints of available 

neuroimaging techniques. In the following, we consider progress and pitfalls associated with 

attempts to bridge this gap.  

 

-----Table 1 about here------ 

-----Figure 1 about here------ 

 

2.1 Defining nodes 

Valid node identification is critical for accurate mapping of inter-regional connectivity (Smith, 

et al., 2011b; Wig, et al., 2011). Table 1 indicates that an ideal node definition for the human 

connectome should define functionally homogeneous nodes, represent functional 

heterogeneity across nodes, and account for spatial relationships. The last of these is easily 

achieved with standard steretotaxic mapping techniques. The second – accounting for inter-

nodal heterogeneity – is more challenging and depends on understanding how both the 

intrinsic properties of a brain region, and its connectivity with other areas, define its function 

(Passingham, et al., 2002). Recent work suggests that incorporating such information about 

nodal functional specialization can lead to highly flexible and adaptive computational models 
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of the brain (Eliasmith, et al., 2012), though a detailed understanding of functional 

specialization across the entire brain remains an important challenge for cognitive 

neuroscience.  

 

The first characteristic – parcellating the brain into homogeneous nodes – has been the 

subject of considerable attention in neuroimaging. At a cellular level, homogeneity in the 

brain has been defined in terms of function (e.g., common physiological responses) or 

anatomy (e.g., shared cytoarchitectonic, myeloarchitectonic or receptor distribution 

properties) (Brodmann, 1909; Mountcastle, 1997). Though convergent in some areas (Fischl, 

et al., 2008), the borders formed by these microscopic properties often show poor 

correspondence with the macroscopic (e.g., sulcal and gyral) landmarks visible with MRI 

(Rademacher, et al., 1993; Amunts, et al., 2000), necessitating the use of heuristic methods for 

node definition.  

 

The four most common strategies for node definition in imaging connectomics are (1) 

anatomical, (2) random1, (3) functional, and (4) voxel-based. A summary of the strengths and 

limitations of each of these approaches is presented in Table 2. The nodes defined by each of 

these methods remain approximations at best, and represent an intrinsic constraint on the 

accuracy of any resulting connectomic map. Inconsistent or imprecise node definitions can 

have a major impact on subsequent analyses (Wang, et al., 2009; Antiqueira, et al., 2010; 

Fornito, et al., 2010; Hayasaka and Laurienti, 2010; Zalesky, Fornito, Harding, et al., 2010). For 

example, a study of variations in the resolution of random parcellations applied to diffusion-

                                                        
1 A random parcellation scheme typically involves breaking up a prior scheme into smaller 
sub-units using a probabilistic scheme: This random sub-parcellation then remains available 
for repeated use. 
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imaging data found that standard topological measures of anatomical networks such as small-

worldness can vary by ~95% in the same individual when using a low-resolution (90 regions) 

compared to high-resolution (4000 regions) parcellation (Zalesky, Fornito, Harding, et al., 

2010). Similar results have been reported for fMRI data (Fornito, et al., 2010). In the latter 

case, the differences between parcellations at resolutions of ~102 nodes compared to ~103 

nodes were so pronounced that between-subject variations in some topological properties 

actually became negatively correlated; i.e., individuals who showed a higher clustering 

coefficient (a measure of the probability that each node’s neighbours are also connected to 

each other) at low resolutions showed lower clustering at higher resolutions.  

 

One approach to dealing with this parcellation-dependent variability in findings has been to 

repeat analyses using different parcellation schemes and/or different resolutions (Hagmann, 

et al., 2008). Though such approaches provide confidence when results converge, consistency 

is not always guaranteed. As such, the results of any connectomic analysis must be 

interpreted with respect to the strengths and limitations of the approach used to define nodes, 

and some parcellations may be more suitable for addressing certain questions relative to 

others. For example, if the aim is to understand interactions within and between specific sub-

networks of regions, a functional approach to node definition (see Table 2) may provide a 

more valid index of underlying network properties than a random or anatomical parcellation 

strategy. In this case, it does not make sense to try to obtain consistency across techniques as 

long as the results are reproducible across experiments. 

 

-----Table 2 about here----- 
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More recently, methods have been proposed that parcellate the brain according to data-

driven clustering of resting-state or DWI measures (Johansen-Berg, et al., 2005; Anwander, et 

al., 2007; Nelson, et al., 2010; Power, et al., 2011; Yeo, et al., 2011), based on the assumption 

that each brain region has a unique connectional fingerprint (Passingham, et al., 2002). 

Incorporating spatial information can help these algorithms define spatially contiguous 

regions (Cohen, et al., 2008; Craddock, et al., 2012). High-dimensional spatial independent 

component analysis has also been used in this context (Kiviniemi, et al., 2009). Alternative 

methods involve parcellation based on quantitative, biological imaging signals (Glasser and 

Van Essen, 2011) or probabilistic mapping of cytoarchitectonic maps into stereotactic space 

(Eickhoff, Stephan, et al., 2005; Scheperjans, et al., 2008; Caspers, et al., 2013). Preliminary 

atlases derived using the latter approach are currently available (www.fz-

juelich.de/SharedDocs/Downloads/INM/INM-1/DE/Toolbox/Toolbox_18.html) but cover 

only limited regions of cortex. Extending the approach to cover the entire brain represents an 

important goal for the field. Analyses of regional myeloarchitecture or receptor density 

profiles may also provide useful methods for defining nodes (Zilles, et al., 1995; Zilles, et al., 

2002; Eickhoff, Walters, et al., 2005) depending on the question asked of the data. 

 

In summary, there is as yet no widely-accepted means for defining network nodes for 

connectomic analyses. Quantitative analysis of imaging signals (e.g., (Glasser and Van Essen, 

2011)) and multi-modal integration of in and ex vivo data into probabilistic atlases (e.g., 

(Eickhoff, Stephan, et al., 2005)) may offer a more biologically principled approach to cerebral 

parcellation than many of the heuristic techniques currently being used, and will be an 

important avenue of work in coming years. Dealing with individual variability in the location 

of these regions will be a challenge however.  
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2.2 Defining edges 

There are three broad classes of brain connectivity: Structural, functional and effective 

(Friston, 1994, 2011a; Sporns, 2011b). The type of connectivity measured, and method used 

to quantify it, determines the edges of a brain graph. Structural connectivity pertains to the 

anatomical connections between brain regions–the physical (axonal and dendritic) wiring of 

the brain–as reported through tracing studies in animals or inferred from diffusion imaging in 

humans. The connectome was first defined as a “complete description of the structural [italics 

added] connectivity of an organism’s nervous system” (Sporns, Tononi and Kötter, 2005; 

Sporns, 2007, 2011a), though the term has since been adapted to refer to comprehensive 

maps of functional interactions as well (Biswal, et al., 2010; Alivisatos, et al., 2012). Functional 

connectivity refers to statistical dependencies between spatially distinct neurophysiological 

recordings and can be either directed or undirected Effective connectivity denotes the causal 

influence exerted amongst neural systems. It cannot be directly derived, but rather must be 

inferred from multivariate data using an inversion scheme that accounts for the measurement 

function such as neurovascular coupling in fMRI (Friston, et al., 2003). Effective connectivity 

rests on a dynamic model of causal effects posed at the neuronal level and is directed - and 

hence asymmetric (Breakspear, 2004). In contrast, directed, asymmetric (conditional) 

statistical measures of temporal correlations derived directly from imaging data – such as 

directed coherence measures, Granger causality and Bayes nets – are not measures of 

effective connectivity as these do not explicitly model BOLD measurement effects and hence 

remain distant to neuronal causes (David, et al., 2008). They are thus better described as 

measures of directed functional connectivity. An important goal for imaging connectomics is 

to leverage these distinct types of connectivity to define edges that are directed, weighted and 

dynamic, and which represent heterogeneity in the type of connection made (Table 1). We 

consider progress towards reaching this goal for studies of anatomical, functional and 

effective connectivity separately. 
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2.2.1 Structural Connectivity  

Whole brain maps of structural connections derive increasingly from diffusion-weighted 

imaging (DWI). (Cross-subject covariance in regional morphometric parameters, such as grey 

matter volume and cortical thickness, can also be used as an indirect measure of anatomical 

“connectivity” (Lerch, et al., 2006; He, et al., 2007).) Notwithstanding variations in acquisition 

parameters and data quality, the validity of such a map of the connectome will be determined 

in large part by the tractography algorithm and model of the diffusion signal on which it is 

based. These algorithms/models can be broadly classified along three dimensions: (1) 

deterministic or probabilistic; (2) locally greedy or globally optimal; and (3) based on a 

single- or multi-direction diffusion model (Bastiani, et al., 2012). The details of each of these 

properties are summarized in Table 3.  

 

-----Table 3 about here---- 

 

A recent, comprehensive comparison of some of the most commonly used tractography 

algorithms found that network properties vary substantially depending on which approach is 

used (Bastiani, et al., 2012). In general however, globally optimized tracking algorithms out-

performed many of the other approaches according to a range of quality-control criteria, even 

when a relatively simple single-direction diffusion model was fitted to the data. This 

advantage of global algorithms arises because they are better able to cope with voxels affected 

by noise or crossing fibers; a locally greedy algorithm will typically terminate or change 

direction upon encountering such a voxel whereas a global algorithm will be less affected by 
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outlying measurements within a putative fiber trajectory (Zalesky, 2008; Zalesky and Fornito, 

2009). 

 

Once fiber trajectories between regions have been reconstructed, some measure of 

connectivity strength between regions should ideally be computed. Whilst DWI does allow 

estimation of connection weights between regions, it is unclear which weighted measure 

yields the most biologically informative estimate of anatomical connectivity. Historically, two 

measures have been used to determine connection weights using DWI. One involves inferring 

connection strength between two regions from the number of reconstructed trajectories that 

intersect them. The problem with this approach is that such trajectories are an abstraction of 

the tractography algorithm itself and are not tantamount to individual axons. The second 

approach has been to integrate some putative voxel-wise index of fiber integrity (e.g., 

mean/axial/radial diffusivity or fractional anisotropy) over the extent of the reconstructed 

tract. The assumption here is that variations in these measures index the integrity of the fiber 

tract, and thus impact the functional capacity of the connection between regions. A problem 

with this approach is that averaging a measure over an entire fiber trajectory may obscure 

more localized effects that a simpler measure such as trajectory count may be more sensitive 

to. More generally, both trajectory counts and tract-averaged approaches can be affected by a 

low signal-to-noise ratio, crossing fibers, poor fit of the diffusion model and a number of other 

factors that are not directly related to the extent of inter-regional connectivity (Jones, et al., 

2012).  

 

An alternative is to quantify connection weights using multi-modal imaging. For example, 

magnetization transfer imaging can be used to estimate the myelin content of DWI-defined 
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fiber tracts, thus providing a biologically informed measure of the information transfer 

capacity of a tract (van den Heuvel, et al., 2010). Recent developments enabling estimation of 

axon diameter and density using tailored DWI acquisitions (Alexander, et al., 2010) also 

provide attractive solutions. Since important properties such as conduction speed are 

proportional to axon diameter, further development of such methods will provide a 

quantitative, physiologically meaningful framework for estimating the strength and 

conduction delay of anatomical connectivity between regions.  

 

No existing tractography algorithm allows differentiation of afferent and efferent anatomical 

connectivity using diffusion-imaging data; i.e., all DWI-derived edges are undirected. Though 

diffusion signals can be used to provide super-resolution contrast (Calamante, et al., 2010) 

and to estimate various microscopic tissue components of a voxel (Assaf, et al., 2008; 

Alexander, et al., 2010), the ability to pinpoint the origin and termination of an anatomical 

connection will likely require a major advance in imaging technology. Since a large portion of 

anatomical connectivity in the brain, particularly at the macroscopic scale, is thought to be 

reciprocal (Felleman and Van Essen, 1991b), this limitation may not pose a major problem. 

However, modeling an inherently directed network such as the connectome with undirected 

edges will limit the accuracy of any resulting graph-based representation. For example, the 

variety of motifs – small sub-graphs embedded within a larger network – is substantially 

impoverished in the absence of directionality. Furthermore, there is currently no way of 

representing heterogeneity in anatomical connections. For example, it is not yet possible to 

determine whether a given fiber trajectory carries inhibitory projections, excitatory 

projections, or a combination of both, though it is generally accepted that most inhibitory 

projections are local and may thus be primarily contained within the network nodes defined 

with MRI. 
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In summary, current DWI protocols allow reconstruction of weighted and undirected edges. 

These edges are not tantamount to actual fiber pathways. Rather, they represent estimates of 

axonal trajectories that are subject to the limitations of the data acquisition and analysis 

techniques (Jones, et al., 2012). While accurate estimation of directed connections remains a 

long-term prospect, short-term gains can be made through the application of multi-direction 

diffusion models and globally-optimised tractography algorithms to high quality data, in 

combination with methods for measuring connectivity weights using either multi-modal 

imaging (van den Heuvel, et al., 2010) or diffusion-based estimates of axonal structure (Assaf, 

et al., 2008; Alexander, et al., 2010). 

 

2.2.2. Functional connectivity 

Functional connectivity is most commonly computed using the Pearson correlation coefficient 

between regional activity time courses, though alternative measures such as partial 

correlation (Marrelec, et al., 2009), mutual information (Salvador, et al., 2010), coherence 

(Bassett, et al., 2011) and others (Smith, et al., 2011b) have also been used. The resulting edge 

weights are typically scalar, continuous and symmetric and can be used to quantify both 

positive and negative covariations in regional activity. The result is a static, fully connected, 

weighted, undirected and signed connectivity matrix. Prior to graph theoretic analysis, this 

matrix is typically thresholded to remove noisy or spurious associations and emphasise key 

topological features. Signs (positive versus negative) are often ignored. Finally, connection 

weights can be removed by binarizing the network. Thus, from a complete, weighted and 

signed network we end up with a sparse, binary, and unsigned network (e.g., Figure 1). The 

final result therefore represents a map far removed from the ideal criteria for edge definitions 
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proposed above (Table 1). In the following, we discuss some of the issues associated with 

measuring edge weights, directed connections and dynamic variations in functional 

connectivity. 

 

Weights and signs. Despite the popularity and simplicity of analyzing binary graphs, weighted 

generalizations for many commonly used graph theoretic metrics now exist and are being 

used with increasing frequency in imaging connectomics (Brandes and Erlebach, 2005; 

Rubinov and Sporns, 2011a).  Weighted analyses are attractive, as brain network dynamics 

define an intrinsically weighted system– i.e., regional pairs vary in the extent to which they 

functionally interact with each other. Dealing signed edge weights in functional data has been 

more challenging. Many traditional graph theoretic measures assume only positively 

weighted connections. Consequently, it has been customary to either take the absolute 

correlation value as the edge weight, or focus only on positively weighted connections. This 

practice may distort network properties (Figure 2). It also ignores important information 

encoded by the sign of the weight, as a positive correlation between regional activity time 

courses suggests cooperation or integration whereas a negative correlation points to 

competition or segregation (Fox, et al., 2005; Sonuga-Barke and Castellanos, 2007; Rubinov 

and Sporns, 2011b; Fornito, Harrison, et al., 2012). Though the contributions of pre-

processing techniques to the emergence of negative correlations in fMRI data remains a topic 

of debate (Fox, et al., 2009; Murphy, et al., 2009; Saad, et al., 2012), it is probable that not all 

negative correlations are artefacts (Chang and Glover, 2009). Accordingly, anticorrelated 

network dynamics have been shown to play an important role in behaviour (Kelly, et al., 

2008; De Pisapia, et al., 2011). Generalizations of existing formulae for graph theoretic 

measures that can account for signed weights, and which are applicable to unthresholded 

graphs (Rubinov and Sporns, 2010), will be an important goal for the near future.  
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-----Figure 2 about here----- 

 

Directed functional connectivity. Functional interactions in the brain are inherently directed: 

Neuronal populations are subject to inputs from other regions, increasing their firing rate and 

hence their output to other populations. A variety of time series methods exist for measuring 

directed functional connectivity using fMRI. These can be grouped into those that depend 

upon conditional dependences, such as Patel’s τ and Bayes nets, and lag based measures, such 

as Granger causality. It is not uncommon to see these referred to as effective connectivity 

(because of their directionality). However, unless they in the least include deconvolution – 

which is rarely performed (David, et al., 2008; Roebroeck, et al., 2011; Valdes-Sosa, et al., 

2011)- they are more accurately classified as functional connectivity because they deal 

exclusively with the statistical properties of remote neurophysiological signals. A systematic 

analysis using ground-truth established through simulated multi-area BOLD fluctuations 

suggested that conditional measures were reasonably accurate in establishing the existence of 

a functional connection, but were less accurate in detecting the true direction of that 

interaction (Smith, et al., 2011a). Lag-based measures performed poorly, albeit against time 

series constructed from zero-lag interactions. 

 

Measuring dynamic changes. Connections between brain regions change over time. 

Anatomical connections (at the macroscopic level) typically change over weeks, months and 

years, as new connections form, or existing ones strengthen or weaken in accordance with 

experience-dependent plasticity. In comparison, microscopic synaptic plasticity occurs on 

faster time scales: Spike-time-dependent plasticity (STDP) for example, has a time scale on 
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the order of tens of milliseconds (Song and Abbott, 2001). Even in the absence of plasticity, 

neuronal ensembles may rapidly synchronize and desynchronize due to the dynamic 

consequences of their intrinsic nonlinear dynamics (Breakspear, 2002; Breakspear, et al., 

2004). Although the low-pass filtering properties of the haemodynamic response render sub-

second dynamics impervious to measurement with fMRI, recent research has nonetheless 

suggested that such dynamics may lie at the heart of large-scale resting state fMRI networks 

across slower time scales (Deco and Jirsa, 2012).  

 

Characterising functional connectivity in fMRI time series with a single scalar measure (e.g., 

correlation coefficient) ignores such dynamic instabilities, as well as the documented non-

stationarities at temporal scales resolvable with fMRI (Kitzbichler, et al., 2009; Chang and 

Glover, 2010). Recent analyses have shown that it is possible to identify, in a data-driven 

manner, significant change-points in brain functional network architecture (Cribben, et al., 

2012), as well as dynamic reconfigurations of brain network topology that are relevant for 

understanding individual differences in behavior (Bassett, et al., 2011). Developments in this 

area will open new windows into the evolution of brain network dynamics across time. In this 

context, the proliferation of rapid-TR functional imaging protocols (e.g., (Feinberg, et al., 

2010)) will enhance statistical power and enable a wider array of spatiotemporal analyses 

(e.g., (Smith, et al., 2012)). 

 

An alternative approach to studying dynamic changes in brain networks involves studying 

functional interactions during different psychological states–i.e., task-related modulations of 

functional connectivity. This work is directly relevant to informing and extending traditional 

cognitive neuroscientific models and analyses of behavior. As the task drives regional brain 
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activity in specific ways however, several processes may contribute to a correlation between 

regional activity time courses, including: (1) task-unrelated functional connectivity, arising 

from intrinsic or spontaneous dynamics as is putatively captured in resting-state designs; (2) 

task-related connectivity, reflecting task-evoked, context-dependent changes in functional 

interactions between regions; (3) co-activation, caused by common activation to a task in the 

absence of direct communication between regions; and (4) physiological and instrument 

noise. Simply correlating regional time courses will not disentangle these various 

contributions, though their separation has been shown to be critical for recovering 

meaningful associations between network dynamics and behavior as well as for mapping 

dynamic reconfigurations of brain functional network organization (Fornito, Harrison, et al., 

2012). Details of some of the techniques used to examine task-related functional connectivity 

that are scalable to whole-brain networks are summarized in Table 4. 

 

----Table 4 about here----- 

 

2.2.3. Effective connectivity 

A major difficulty associated with inferring directed connectivity from fMRI data is that the 

technique provides an indirect estimate of neuronal activity through measurement of BOLD 

signal variations. Regional differences in vasculature, neurovascular coupling and other 

haemodynamic parameters can alter the temporal relations between regional BOLD signal 

changes relative to those observed at the neuronal level and thus distort measures of directed 

connectivity based on BOLD time series alone (David, et al., 2008; Valdes-Sosa, et al., 2011). A 

solution to this problem mandates the employment of a regionally-specific forward 

hemodynamic model, together with a model inversion framework such as Dynamic Causal 
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Modelling (Friston, et al., 2003). DCM traditionally rested upon a simple, low order and 

deterministic neuronal state equation and was limited to inference on small network motifs: 

However recent modelling developments, which incorporate stochastic effects at the neuronal 

level (Li, et al., 2011; Daunizeau, et al., 2012; Freyer, et al., 2012; Friston, et al., 2012), together 

with model inversion schemes that employ greedy search algorithms (Friston, et al., 2011; 

Seghier and Friston, 2012) have brought effective connectivity into the realm of research into 

large-scale (including resting state) networks. Given that, by definition, effective connectivity 

is dynamic, context specific, directed and weighted, these are very interesting developments, 

though they have not yet been applied to the study of whole-brain graphs. 

 

3. Analysing the connectome 

Once nodes and edges are accurately defined, the tools of graph theory can be used to 

characterize a wide array of network properties. When used judiciously, these methods can 

provide novel insights into brain organization.  When used carelessly, they may lead to 

misleading or incorrect conclusions. In the following, we consider several important issues: 

namely, addressing the multiple comparison problem in connectomics, graph thresholding, 

the interpretation of topological measures, reference graphs, and generative modeling. 

 

3.1 The multiple comparisons problem 

3.1.1. Family-wise error corrections for connectomics 

Connectomics involves the comprehensive mapping of pair-wise interactions between brain 

regions. Given these data, it is often desirable to map various experimental effects (e.g., task or 

drug effects, case-control differences, etc.) on an edge-wise basis. These analyses pose a 
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difficult multiple comparisons problem, which scales as a function of network size. For 

example, most studies investigate networks of ~102 regions. In a symmetric, undirected 

network of 102 regions, there are (N2-N)/2 = 4950 connections. Thus, if these comparisons are 

treated as independent, any experimental effect must be associated with an extremely low 

probability (p < 1.01 × 10-5, after Bonferroni correction) of rejecting the null hypothesis to be 

declared statistically significant. The threshold becomes even more stringent for larger 

networks (e.g., for a network comprising ~103 regions, the threshold would be p < 1.0 × 10-7). 

Though alternative methods for controlling family-wise error rates can boost power (e.g., 

(Benjamini and Hochberg, 1995)), they still often perform poorly, particularly when such 

high-dimensional data are collected in small samples (Zalesky, Fornito and Bullmore, 2010).  

 

One recent approach designed to address this problem uses a graph-based analogue of the 

cluster-based thresholding strategies employed in traditional mass-univariate imaging 

analyses (Zalesky, Fornito and Bullmore, 2010). With this method, the null hypothesis is 

evaluated with respect to the size of interconnected components of edges, rather than 

individually at each connection. In this context, a graph component refers to a collection of 

nodes that can be linked together to via a set of suprathreshold edges (see Figure 3). The size 

of these components is determined following application of a primary, component-forming 

threshold to the data. This network-based statistic (NBS) offers substantially more power 

than the FDR for identifying sub-networks of edges showing a common effect (Zalesky, 

Fornito and Bullmore, 2010)(Figure 3) and has been used to successfully map changes in both 

structural and functional networks of disorders as diverse as schizophrenia (Zalesky, Fornito 

and Bullmore, 2010; Fornito, Yoon, et al., 2011; Zalesky, Fornito, Egan, et al., 2012), 

depression (Zhang, et al., 2011; Bai, et al., 2012), autism (Li, Xue, et al., 2012), attention-deficit 

hyperactivity disorder (Cocchi, et al., 2012), mild cognitive impairment (Wang, et al., 2012), 
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amyotrophic lateral sclerosis (Verstraete, et al., 2011), multiple sclerosis (Li, Jewells, et al., 

2012) and cannabis abuse (Zalesky, Solowij, et al., 2012). It can also be used with other 

clustering techniques to reduce the dimensionality of very large, voxel-based networks 

(Zalesky, Cocchi, et al., 2012; Zalesky, Fornito, Egan, et al., 2012). 

 

----Figure 3 about here---- 

 

A different approach that has been developed to perform statistical inference on connectome 

data is called subnetwork-based analysis (SNBA; (Meskaldji, et al., 2011)). SNBA is a 

hierarchical method, whereby the connectome is first decomposed into a small set of sub-

networks (e.g. cortical lobes or some other coarse subdivision) and a meaningful summary 

statistic is defined to independently test the desired hypothesis for each sub-network as a 

whole. This decomposition reduces the number of multiple comparisons from thousands of 

connections to 10 or so sub-networks, albeit at the cost of reducing the resolution at which an 

effect can be declared to a series of coarse sub-networks. Only sub-networks for which the 

null hypothesis is rejected are then investigated further with a finer-grained connection-level 

inference, using the NBS, for example. The difficulty with SNBA is the lack of a principled 

approach for decomposing the connectome into a meaningful series of sub-networks. The 

power to detect an effect is compromised for decompositions for which the effect is not 

wholly enveloped within a single sub-network, but rather spread across a small portion of 

many sub-networks. In this case, the small portion of connections demonstrating an effect is 

likely to be diluted when averaging is performed over the whole sub-network to generate a 

summary statistic. More recently, the concept of statistical parametric networks (SPN; 

(Ginestet and Simmons, 2011)) was introduced in the context of mapping functional 
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connectivity dynamics during a working memory task. SPN relies on the methods discussed 

above (e.g. NBS, FDR, SNBA) to deal with the multiple comparisons problem.  

 

3.1.2. Machine learning and classification 

An alternative means to deal with the high dimensionality of connectomic data involves the 

application of machine learning algorithms, such as support vector machines (SVMs), to 

identify multivariate feature combinations that best predict an outcome of interest. Though in 

its early stages, the combination of these techniques with connectomic measures has proven 

powerful, having been used to distinguish the brains of healthy individuals from patients with 

an array of distinct disorders, including autism (Anderson, et al., 2011), schizophrenia 

(Bassett, et al., 2012), major depression (Lord, et al., 2012; Zeng, et al., 2012), attention-deficit 

hyperactivity disorder (Colby, et al., 2012; Dai, et al., 2012), Alzheimer’s disease and mild 

cognitive impairment (Chen, et al., 2011; Wang, et al., 2012) and epilepsy (Zhang, et al., 2012). 

In most of these cases, classification accuracy exceeded 75%, with most showing accuracy > 

80%.  

 

A particular strength of the machine learning approach is that it allows inferences at the level 

of individual participants, which has important clinical implications. However, though the 

research published to date provides an important proof-of-principle, many of the 

classification problems investigated thus far, such as distinguishing between a given patient 

group and healthy controls, are practically trivial since most clinicians are able to make this 

distinction without the aid of sophisticated connectomic measures. In this context, the 

practical utility of a connectomic classifier will be determined by three factors. First, it must 

accurately and robustly predict an outcome of interest across different samples and 
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experimental settings. This is a necessary requirement for routine use in clinical practice. 

Second, the outcome predicted should be one that is clinically informative and which cannot 

be predicted using other means. For example, clinicians can typically distinguish a healthy 

from unwell person, but predicting treatment response or illness course is often challenging. 

If connectomic measures assist with the prediction of these outcomes, they will add 

considerable value to clinical decision-making. Finally, the predictive accuracy afforded by 

connectomic measures must surpass the performance of other, simpler and less expensive 

measures (e.g., blood- or plasma-based biomarkers), or even simpler imaging phenotypes 

such as grey matter volume. Given the time and cost involved in generating connectomic data, 

the resulting measures must add something that could not otherwise be obtained through 

simpler and less expensive means. In some cases, connectivity measures have shown greater 

sensitivity than other metrics (Fleisher, et al., 2009). In other cases, it has been found wanting 

(Bohland, et al., 2012). 

 

3.2 Graph thresholding 

The connectome is an intrinsically sparse network. However, many of the imaging measures 

used to map its structural and functional properties are continuous association metrics. As 

noted above, it is often desirable to threshold the data in order to differentiate “true” 

connections from those that are spurious or noisy. Thresholding can be performed either at 

the individual level or across participants to generate group-level representations using a 

range of techniques that vary in their complexity, validity and sophistication (van Wijk, et al., 

2010; Ginestet, et al., 2011; Simpson, et al., 2012; de Reus and van den Heuvel, 2013). 

Enforcing some degree of network sparsity also assists in the computation of many of the 

canonical graph theoretic measures used to characterize network topology. 
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Intuitively, one could apply a threshold, τ, such that only connections surpassing some level of 

statistical significance (or some other criterion) are retained (e.g., retaining only correlations 

with p < some critical value). A problem with this approach is that it will retain different 

numbers of edges across different individuals. Most graph theoretic measures are contingent 

on the number of nodes, N, and connection density 0 < κ < 1, of a graph, where κ represents 

the proportion of supra-threshold connections relative to the total possible number of 

connections. It is therefore essential to compare networks with equivalent N and κ. As such, a 

common approach to graph thresholding has involved adaptively varying the τ threshold for 

each individual to enforce a fixed value of κ across all participants. As the choice of a given 

value of κ is arbitrary, a range of densities is often analysed to examine the κ –sensitivity of 

the findings. However, this approach is still associated with biases (Figure 4) and raises 

questions concerning the appropriate correction for multiple comparisons. In particular, 

network measures are often calculated for each connectivity threshold, giving rise to a curve 

characterizing the measure’s evolution as a function of connection density. The simplest 

approach to statistical inference in this case is to independently test the hypothesis of interest 

at each discrete density along the curve. However, tests conducted at neighboring densities 

are likely to be strongly dependent, and furthermore, the number of multiple comparisons is 

dictated by the granularity of the density range. For these reasons, multiple comparisons 

correction is not typically used across the family of density thresholds. A more principled 

approach is to numerically integrate the network measure over the density range, using 

Euler’s approximation. This yields an estimate of the area under the curve (AUC). Statistical 

inference is then performed on the AUC (He, et al., 2009; Ginestet, et al., 2011; Bassett, et al., 

2012), which represents a single summary measure across the range of densities and averts 

the need for multiple comparisons correction. The disadvantage of the AUC is that significant 

experimental effects present at only a small range of densities can be lost after integrating 
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over a larger range of non-significant densities. The effect that graph thresholding has on 

network fragmentation should also be considered as it can confound network comparisons 

(Fornito, Zalesky, et al., 2012). Specific thresholding methods that ensure connected graphs 

have been proposed (Alexander-Bloch, et al., 2010). 

 

------Figure 4 about here------ 

 

In a systematic analysis, van Wijk et al. (2010) examined the biases associated with a range of 

thresholding techniques, including τ- and κ-based thresholding, normalization by matched 

surrogate data, the use of exponential random graph models (Robins, et al., 2007; Simpson, et 

al., 2011), and less commonly used approaches such as explicit modeling of, and correction for, 

N-  and κ- dependencies in the data. Some methods performed better than others, though all 

were associated with some degree of bias. These biases must be considered when interpreting 

graph theoretic data.  The continued development of measures suited to unthrehsolded, 

weighted and signed graphs (Rubinov and Sporns, 2011a) will assist in alleviating 

dependence on a particular choice of thresholding scheme. If thresholding is used, an 

integrated analysis attempting to understand how connectivity weights relate to topological 

measures can yield important insights into the data (e.g., (Lynall, et al., 2010)). 

 

3.3. Reference networks  

Making inferences about the topological organization of a connectivity map based on the raw 

value of a network measure is problematic because this value is influenced by basic low level 

network properties, such as the number of nodes, connection density and degree distribution. 
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To facilitate a more meaningful inference, network measures are hence typically 

benchmarked against, or normalized to, appropriate null or reference networks that share 

these same basic properties but have other properties destroyed through construction. This is 

important because classes of random graphs nonetheless have a range of non-trivial 

properties - such as robustness and efficiency (Callaway, et al., 2000; Newman, et al., 2001; 

Strogatz, 2001) – that are also found in many complex systems. Understanding random 

networks thus plays an important role - perhaps more so than is widely recognised - in brain 

connectomics, providing a means of bench-marking empirically derived graphs (Hilgetag, et 

al., 2000a; Sporns and Zwi, 2004b) and, possibly, accounting for much of the apparent 

structure in the human connectome.  

 

The simplest and most prevalent null model is a random network generated with a rewiring 

algorithm that preserves degree distribution (Maslov and Sneppen, 2002). The algorithm can 

be generalized to rewire weighted and signed networks (Rubinov and Sporns, 2011a) , but in 

such cases typically works best when the proportion of positive and negative weights in the 

graph is approximately equal.  This Maslov-Sneppen null model has become pervasive among 

neuroscientists in establishing the connectome’s small-world organization. In accordance 

with the Watts and Strogatz small-worldness criteria (Watts and Strogatz, 1998b), 

connectivity maps – structural and functional - have been consistently found to be 

considerably more clustered than degree-matched random networks, yet approximately 

equal in terms of characteristic path length. Exactly how much more clustered the 

connectome should be for it to be declared a small-world network is an inherent ambiguity of 

the Watts and Strogatz definition.  
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For this reason, lattice networks have been suggested as a more appropriate null model for 

the clustering coefficient (Telesford, et al., 2011). Random and lattice networks represent the 

extreme ends of a continuous topological spectrum ranging from high clustering and long 

path lengths (lattice networks) to low clustering and short path lengths (random networks). 

Small-world networks occupy the middle ground. Assuming the extreme ends of this 

spectrum provide inherent reference points, it follows that degree-matched lattice networks 

are the most appropriate null model for the clustering coefficient, while degree-distribution 

matched random networks are most appropriate for the characteristic path length, although 

these normalized measures still vary with network size (van Wijk, et al., 2010). The choice of 

null model therefore depends on the network measure. While several novel measures of 

small-worldness have been developed based on this thinking (Sporns and Zwi, 2004a; 

Telesford, et al., 2011), the Watts and Strogatz definition and the associated -metric 

(Humphries, et al., 2006) remain pervasive.    

 

In choosing an appropriate null model, consideration should also be given to the connectivity 

measure used to derive the connectome’s edge weights. In particular, edge weights derived 

from simple pair-wise measures of statistical association give rise to networks that are 

deficient in their degrees of freedom and thereby exhibit nonrandom topological structure - 

even if obtained from uncorrelated, random time series - when benchmarked against the null 

models described above (Bialonski, et al., 2011; Zalesky, Fornito and Bullmore, 2012). For 

example, edge weights derived from Pearson’s correlation coefficient gives rise to networks 

that are inherently more clustered than degree-matched random networks (Zalesky, Fornito 

and Bullmore, 2012). This is due to the transitive nature of the correlation coefficient. 

Appropriate null models for the clustering coefficient in this case should factor out the 

transitive effect, revealing only the extent of clustering intrinsic to the connectome. On this 
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account, degree-matched random and lattice networks are inappropriate. They spuriously 

inflate the true extent to which the connectome is clustered. This feature can be trivially 

demonstrated by cross-correlating a series of independently generated, random vectors. The 

correlation matrix that results can be treated as a hypothetical connectivity matrix, for which 

the clustering coefficient can be calculated as usual after application of a binarization 

threshold. According to the common literature, this clustering coefficient should be 

benchmarked against the clustering coefficient in a degree-matched random network, which 

would typically be generated with the random rewiring algorithm (Maslov and Sneppen, 

2002). If random rewiring of the original network did indeed yield an appropriate null model, 

the clustering coefficient in the original and randomly rewired network should be 

approximately the same, since they were both generated randomly. However, as shown in 

Figure 5, clustering is invariably greater in the original network (Zalesky, Fornito and 

Bullmore, 2012).  The partial correlation coefficient can also suffer bias, and results in an 

under-estimation of the true extent of network clustering (Figure 5) (Zalesky, Fornito and 

Bullmore, 2012).  

 

-----Figure 5 about here----- 

 

Null models appropriate for the case when edge weights are derived from Pearson’s 

correlation coefficient can be generated with the Hirschberger-Qi-Steuer (H-Q-S) algorithm 

(Hirschberger, et al., 2004) or simply by sampling from an inverse Wishart distribution. The 

advantage of the H-Q-S algorithm is that it matches higher moments of the distribution of 

correlation values. The shortcoming of these approaches is that they do not preserve the node 

degree distribution. Null models can also be generated by randomizing the phase of the BOLD 
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time series in the frequency or wavelet domain (Theiler, et al., 1992; Breakspear, et al., 2003) 

and then cross-correlating the phase randomized time series to yield null correlation matrices. 

Linear properties of the time series are preserved under phase randomization (e.g. power 

spectrum, autocorrelation). However, this approach does not allow for any moments of the 

distribution of correlation values to be matched. Recent work in the network science 

literature has also focused on developing reference networks that preserve high-order 

topological properties such as the extent of transitivity and the clustering coefficient (Bansal, 

et al., 2009; Wang, 2013). This enables better characterization of high-order topological 

properties by isolating them from first (dyadic; e.g. node degree) and second order (triadic; 

e.g. transitivity) effects.      

 

An important yet often overlooked property of the brain concerns its spatial embedding, 

which endows connectivity maps with a distance-dependent effect. An example of the 

dependence of functional connectivity on inter-node distance is provided in Figure 6A. As 

explored below, geometric effects can induce non-trivial organizational properties and, 

depending on the question asked, should arguably be accounted for with appropriate null 

models. In empirical data this relationship is complicated by the fact that many artifacts of 

acquisition (e.g. head motion), preprocessing (e.g. spatial smoothing) and analysis (e.g. the 

accumulation of errors arising from probabilistic tractography) introduce distance dependent 

errors into connectivity maps (Van Dijk, et al., 2012).  

 

Non-trivial topological properties of networks can arise from a distance-dependent random 

wiring rule. Suppose that structural connectivity drops off inversely with inter-node distance 

(Hellwig, 2000; Kaiser and Hilgetag, 2004; Freeman and Breakspear, 2007; Alexander-Bloch, 
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Vertes, et al., 2012), that is        where α indices the strength of this effect ranging from 0 

(no effect) to 1 (a strong effect) or greater. An example connectivity matrix for α=0.2 is shown 

in Figure 6B: The corresponding (edge weight preserving) topologically random graph is 

shown in Figure 6C. If this distance dependent effect is parametrically increased from zero 

(Figure 6D, left to right) the clustering coefficient increases, outstripping the corresponding 

increase in path length so that the small world index also increases. If this simple network 

represented the ground truth in a brain network, then it will have inherited a non-trivial 

topological property from a geometrically constrained random wiring rule. Suppose now that 

the distance effect resulted purely from the accumulation of tractographic errors and/or 

spatial smoothing, thus imparting an exponential decline        where again α 

parameterizes the strength of the effect (Figure 6E). Once more, the increase in clustering 

outstrips the increase in path length, resulting in an increase in the small world index. Here, 

the apparent topological effect is purely an artifact of the measurement process. 

 

----Figure 6 about here----- 

 

These two cases nuance subtle but important differences, which also differ from the 

artifactual effect that arises when functional networks are measured with the correlation 

coefficient. In the case of the latter, the apparent increase in clustering is purely an artifact of 

the measure applied to the time series and can (and should) be controlled for with suitable 

reference networks as outlined above. Artifactual network properties introduced through 

preprocessing imaging data may be partly under experimental control and ideally should also 

be subject to correction. For example, spatial smoothing with a Gaussian kernel, a 

preprocessing step that is employed to redress misalignment between diffusion and 
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anatomical images, introduces exponentially-declining spatial correlations whose exact form 

can be analytically derived from knowledge of the FWHM of the Gaussian kernel. This 

knowledge could then be used to construct appropriate reference graphs that embody the 

same effect. If tractographic errors accrue voxel-wise, then their cumulative effect along a 

tract will also be an exponential function of distance. This function could (in principle) be 

explored and then controlled for through simulation. However, whilst the effect of head 

motion is also distance dependent (Van Dijk, et al., 2012), its functional form 

(linear/exponential etc) has not yet been determined. 

 

True geometrical effects on topology warrant separate consideration. The effects they impart, 

such as an increase in clustering (shown above) and non-trivial modularity (Henderson and 

Robinson, 2011) compared to topologically random networks are nonetheless real in the 

sense that they are the same as if generated with a purely topological rule independent of any 

geometry - and could hence facilitate functionally segregated information processing in 

neural populations. Non-trivial graph properties passively inherited from a geometric effect 

might hence still enter into the economic trade-off between minimizing wiring cost and 

maximising topological efficiency (Bassett, et al., 2009a; Bassett, et al., 2010a; Fornito, Zalesky, 

et al., 2011; Bullmore and Sporns, 2012). Put alternatively, the evolutionary pressure to 

minimise global wiring length, whilst maximising adaptive network topology, could be partly 

effected through modifying the form of the relationship between connectivity and distance. 

Recent work, discussed below, has begun to examine this issue in more detail (Alexander-

Bloch, Vertes, et al., 2012; Vertes, et al., 2012). 
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The extent to which high order network properties might arise from a geometrically-

constrained probabilistic rule (with no additional topological rule) could be addressed by 

characterising the spatial dependence of connection strength in empirical graphs, and using 

this rule to create appropriate reference graphs that are otherwise random. These then 

represent the null distribution of any graph metric, such as small worldness, efficiency or 

modularity. Rejection of such a null would hence imply that an additional, specific topological 

effect was present in the empirical connectomic data. That is, such an approach would allow 

one to study whether the brain is more or less clustered, or more or less economical, than 

expected by its spatial embedding. Such an approach would also allow one to exclude 

between-group differences in such network properties that might only reflect a very simple 

low order geometrical statistic. 

 

In summary, the choice of null model for benchmarking topological properties of the 

connectome is critical and should be dictated by both the network measure that is being 

benchmarked and the connectivity measure used to derive edge weights. For edge weights 

derived from diffusion tractography, the choice is relatively clear-cut: degree-distribution 

matched random networks are appropriate for path length, while degree-matched lattice 

networks may be more appropriate for the clustering coefficient. For edge weights derived 

from pairwise measures of statistical association, the choice of null model should factor out 

any nonrandom topological structure inherent to the measure of association (e.g. transitivity). 

Null models that preserve the distance-dependence of real, spatially embedded networks 

allow one to characterize additional topological processes that may be superimposed for 

functional purposes. 
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3.4. Interpreting graph theoretic measures 

Many graph theoretic measures were developed to study complex systems other than the 

brain and have since been adapted to suit neuroscientific ends. They should thus be used 

judiciously and interpreted cautiously. For example, many studies summarize the connectome 

using measures computed on a node-wise basis. These measures are then averaged to 

compute a scalar summary characteristic of the network. Naturally, care must be taken when 

using such a coarse description, and it is possible that such averaged metrics may mask more 

subtle or focal effects occurring in specific sub-sets of nodes. In certain cases however, such 

summary metrics have shown behavioural and/or clinical significance (Bassett, et al., 2009b; 

van den Heuvel, et al., 2009; Lynall, et al., 2010; Fornito, Zalesky, et al., 2011; Zalesky, et al., 

2011). 

 

The extent to which each measure provides a meaningful representation of brain function 

should also be considered. A prime example is the use of path-length based measures such as 

the characteristic path length, L, global efficiency, Eg, and betweeness centrality, BC. These 

measures are based on finding the shortest possible path between node pairs, defined as the 

number of connections on the shortest inter-connecting set of edges. Path length is inversely 

related to the global efficiency of the network (Latora and Marchiori, 2001); i.e., low L is 

associated with high Eg. Similarly, nodes that are more frequently located on the shortest path 

between nodes have high BC, based on the assumption that they absorb a heavy proportion of 

network traffic. Though intuitively appealing, these measures assume that information 

propagates throughout the brain along the shortest path between regions. This assumption 

seems unrealistic, as it assumes that each neuron (or collection of neurons) has global 

knowledge of network topology and is able to efficiently find the shortest path to its target. 

The vast number of possible paths in a network as complex as the brain renders this 
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assumption implausible. Rather, alternative routing strategies that require only local 

knowledge may provide more realistic models of information-processing in the brain (Boguna, 

et al., 2009; Telesford, et al., 2011; van den Heuvel, Kahn, et al., 2012; Goni, et al., 2013). 

Despite this ambiguity, path length-based measures have shown replicated associations with 

cognitive performance (Bassett, et al., 2009b; Li, et al., 2009; van den Heuvel, et al., 2009; 

Zalesky, et al., 2011), strong heritability (Fornito, Zalesky, et al., 2011; van den Heuvel, van 

Soelen, et al., 2012), and sensitivity to disease (Rubinov, Knock, et al., 2009; Lynall, et al., 

2010), suggesting that they do index functionally relevant properties of connectomic 

organization. Such measures likely reflect an upper limit on the efficiency with which 

information may be routed throughout the brain, since this limit is determined by the shortest 

path between regions. It is nonetheless interesting that individual differences in this putative 

upper bound show meaningful phenotypic and genetic associations. 

 

The above issues are not unique to path-length based measures. For example, variations in 

the clustering coefficient are often interpreted as indexing the degree of local information-

processing in a network. In spatially embedded networks such as the brain, locality is defined 

by spatial rather than topological relations between nodes. Thus, any putative measure of 

“local” information-processing in the brain must account for spatial constraints on 

connectome architecture. Similarly, many commonly used techniques for mapping the 

modular architecture of the connectome, such as the popular Newman-Girvan algorithm 

(Newman and Girvan, 2004), implement a hard segmentation of nodes into unique modules. 

In reality, brain regions interact with different sub-networks, thus yielding an overlapping 

modular architecture. Methods for dealing with such architectures have been developed 

(Palla, et al., 2005). In combination with techniques for dealing with signed weights (Rubinov 

and Sporns, 2011a) and characterizing multi-scale architecture (Meunier, et al., 2011), these 
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algorithms will provide more realistic representations of the modular character of the human 

connectome. The development of novel, neurobiologically principled measures that more 

accurately capture the dynamics of information propagation throughout the connectome will 

be an important avenue of future work. 

 

3.5. Generative modeling  

Analyses of empirical connectivity data suggest that specific, isolated changes in topological 

properties due to a disease process - or an experimental manipulation - are the exception 

rather than the rule. A straightforward interpretation of this effect is that the disease impacts 

on different topological properties independently. An alternative, more likely proposition is 

that the observed changes are the final outcome of a single underlying, generative mechanism 

that is only partially indexed by any single topological metric. A major strength of graph 

theory is that it is well suited to the generation and evaluation of competing generative 

models designed to explain the pattern of differences observed between groups.  

 

Growth models are a popular class of generative models for explaining complex network 

topology. This approach involves growing networks in silico, via the addition of nodes and 

edges – or the rewiring of existing edges - according to specific rules, and then comparing 

these networks with empirical ones. An examplar of this approach is the preferential 

attachment model of Albert and Barabasi (Barabási and Albert, 1999), whereby preferentially 

adding edges to high degree nodes generates scale-free networks. Similarly, the Watts-

Strogatz model illustrates how a small-world topology can be obtained by randomly rewiring 

a varying number of edges in a lattice (Watts and Strogatz, 1998a). Extensions of this work 

using neurobiologically plausible constraints (Kaiser, et al., 2007; Nisbach and Kaiser, 2007), 
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or an activity-dependent Hebbian rewiring rule (Gong and Leeuwen, 2004; Rubinov, Sporns, 

et al., 2009), have been used to generate networks with properties thought to be important 

for the brain. Recently, it has been demonstrated that growing networks according to 

relatively simple rules, such as penalizing long-distance connections and favouring 

connections between nodes with common neighbours, can reproduce empirically observed 

variations across a range of topological properties of brain functional networks, including 

modularity, global efficiency and clustering (Alexander-Bloch, Vértes, et al., 2012; Vértes, et al., 

2012). Moreover, varying model parameters reproduced the topological disturbances seen in 

people with schizophrenia. These findings accord with the view that non-trivial network 

topology can arise from simple low-level geometric effects, and additionally show how these 

might account for between group differences. 

 

The clinical potential of these models are beginning to be realized. In one study, a biophysical 

diffusion-model of disease progression for neurodegenerative disease was applied to 

anatomical connectomes constructed using DWI-tractography (Raj, et al., 2012). The model 

identified a hypothesized pattern of disease progression that accurately predicted the spatial 

distribution of atrophy observed in Alzheimer’s disease and behavioural variant fronto-

temporal dementia. In a separate experiment graph theoretic measures were used to 

disambiguate competing models of disease progression in neurodegenerative disease (Zhou, 

et al., 2012). Each model made distinct predictions about which nodes would be most 

vulnerable to disease effects based on their topological profile within the network. The data 

supported a model of transneuronal spread, in which nodes with short path lengths to 

putative epicenters of disease-related pathology were most vulnerable to atrophy. These 

studies suggest that model-based connectomics can help test between different models of 

disease pathophysiology and, potentially, predict patterns of illness progression. Dynamical 
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models, involving the simulation of biophysically plausible neural mass models on empirically 

derived anatomical connectivity architectures are also proving useful for understanding the 

relationship between connectome structure and function in health (Honey, et al., 2007; Deco, 

et al., 2009; Breakspear, et al., 2010; Cabral, Hugues, Sporns, et al., 2011; Deco and Jirsa, 2012) 

and disease (Honey and Sporns, 2008; Alstott, et al., 2009; Cabral, Hugues and Deco, 2011; 

van den Berg, et al., 2012). 

 

Discussion 

The accumulation of large connectomic datasets across spatial scales, data modalities and 

clinical populations has ushered in an exciting era of neuroimaging science, while also 

challenging the field to find meaningful summary statistics of system organization. A graph 

theoretical approach provides the opportunity to address this challenge, providing a rich 

repertoire of summary metrics, new means of constructing and testing specific hypotheses, 

and a conceptual approach that positions brain network science within the broader context of 

complex systems (Sporns, 2010). Following tremendous progress and interest, we were 

invited to retrace some of the unresolved challenges that pervade this approach for this 

Special Issue on the human connectome. 

 

We have reviewed the graph theoretical approach to connectomics from two perspectives, 

those of constructing and those of analyzing the resulting network. Key challenges related to 

constructing a graph involve developing methods for measuring nodes and edges that 

represent adequate representations of biological reality (e.g., Table 1 and Figure 1). These 

challenges arise from the need to represent the brain as a set of spatially discrete, internally 

homogenous nodes, and of unambiguously assigning edge weights to the connections or 
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interactions between these. Misspecification of either is a known limitation on inferences that 

can be hence drawn (Smith, et al., 2011a). Attempts to define valid nodes will no-doubt 

benefit from developments in quantitative ex vivo and in vivo techniques, ideally integrating 

anatomical and functional properties. However, a single universally accepted definition of 

nodes – valid across functional and anatomical studies, and invariant to context or question – 

seems unlikely to be achieved in the near future. Edges are typically quantified using grossly 

simplified measures. For anatomical networks, it is often unclear which DWI-derived measure 

represents an appropriate, biologically informative index of connection weight, though 

developments in using more quantitative indices may soon help resolve this problem. 

Challenges in the definition of functional connectivity include dealing with non-stationarities, 

incorporating task-dependent changes, and mapping directionality. Advances in effective 

connectivity centre on methodological challenges associated with inverting models of 

networks that are sufficiently large to warrant a graph theoretical approach.  

 

Key challenges associated with analysing connectomic graphs include developing a rigorous 

statistical framework for thresholding networks, comparing graphs, and generating group-

level representations; defining novel measures of network topology and dynamics that 

represent appropriate models of brain structure and function; formulating an array of 

appropriate null models and guidelines for their judicious use; and developing a systematic 

framework for the development and validation of novel generative models of network growth, 

dynamics and disease processes. Recent progress has been made on several fronts, 

particularly as related to dealing with the multiple comparison problem; developing 

multivariate classifiers with potential clinical relevance; computational modeling of 

pathophysiological mechanisms causing connectomic disturbances in different brain 

disorders; specific null models suitable for particular analyses; appropriate interpretation of 
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graph theoretic metrics; and the development of measures for dealing with unthresholded, 

weighted and signed graphs (Rubinov and Sporns, 2011a). In the absence of other 

methodological innovations, care must be taken to understand how variations in connectivity 

weights impact network topology, and to characterize the effect of different thresholding 

strategies on study findings. 

 

An interesting remaining question concerns the value of reducing a complex network such as 

the brain to a small number of summary statistics such as, for example, the small-worldness 

index (Humphries, et al., 2006). Such measures have played an influential role in brain 

network science and the characterization of myriad other complex systems. Whilst 

conceptually enticing however, single summary metrics may be limited in many settings as 

they do not permit localization of an effect to specific circuits or regions should they occur. 

Furthermore, group differences in relatively complex topological metrics might be better 

explained by basic effects involving the integrity of certain connections. In these cases, greater 

insight may be revealed by identifying the more basic underlying effect, rather than using a 

higher-order, whole-brain summary measure. However, care should also operate here, as the 

notion of functional integration in the brain is an important one so that even such simple, low-

level effects may be subsequently compensated for by large-scale network reconfiguration. A 

pragmatic approach is to test hypotheses in a hierarchical manner, starting with low-level 

features, such as connectivity strength, degree distribution and geometry, before progressing 

to investigate higher order topological features such as modularity or small-worldness. This 

can be achieved using suitably constructed reference graphs, where the choice of which 

properties to preserve and which ones to randomize can be tailored to each specific 

hypothesis.  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 43 

In parallel, generative models, preserving important geometrical features of real brain 

networks may here again play an important role in testing specific hypotheses (Henderson 

and Robinson, 2011). By simulating the effect of "virtual lesions", generative models also 

allow the exploration of putative disease mechanisms that impinge upon network structure 

and function, particularly those that move away from purely theoretical models of network 

generation towards biophysically derived models of network dynamics and rewiring (Jirsa, et 

al., 2010). Such an approach could also be used to determine whether different generative 

models predict distinctly different network properties and hence different data features. This 

could be exploited, subject to constrained assumptions about the nature of measurement 

effects, to specify the posterior likelihood of a specific generative network model given an 

empirical network.  Using a variational Bayes approach, such an approach would then permit 

inversion of generative network models from empirical data and allow investigators to 

disambiguate between competing hypotheses that each embody - an approach that has been 

very successfully employed in other neuroimaging areas (Penny, et al., 2003; Kiebel, et al., 

2008; Woolrich, et al., 2009). Whilst this approach already underlies the estimation of 

effective connectivity in DCM (Friston, et al., 2003), the same inferential framework could be 

employed to study structural networks, for example disambiguating true geometric influences 

on network topology (by embodying those in a generative model of structural connectivity) 

from those due to measurement artifacts (by incorporating these into an observation 

function). This is an intriguing possibility that would herald the maturation of the field from 

the question "Is the brain a complex network?" to "What kind of complex network best 

describes the brain?" 
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Figure legends 

Figure 1. Illustration of desirable attributes of an ideal connectomic map in comparison to the 

maps currently generated in typical neuroimaging experiments. A: Schematic of an “ideal” 

connectomic map. Node role heterogeneity is represented by different colours. The edges are 

directed (arrows), weighted (edge thickness) and encode different forms of inter-regional 

interaction (solid vs broken lines). The maps also vary over time. B-D: illustration of the 

connectomic maps currently generated with functional MRI (fMRI) and diffusion-weighted 

imaging (DWI). Node heterogeneity is not represented using any approach. Most studies 

examine static properties of the connectome, focusing on cross-sectional assessment only. 

fMRI techniques such as DCM allow representation of directed, weighted and heterogeneous 

(e.g., modulatory) edge types, though only for small networks (B). An increasing number of 

fMRI studies are examining undirected, weighted and heterogeneous edges, where 

heterogeneity is modeled simply as a distinction between positive and negative functional 

connectivity (C). A large number of both fMRI and DWI studies analyse undirected and 

weighted edges (D). A substantial number of studies focus on undirected and binary networks 

(E).  

 

Figure 2. Illustration of how neglect of signs on edge weights can distort topological 

inferences. Shown here is an example graph in which the width of each edge is proportional to 

its weight, positively weighted edges are represented by solid lines and negatively weighted 

edges are represented by dotted lines. Colours represent the modular identity of each node, as 

would be revealed using a decomposition algorithm that only uses the absolute values of edge 

weights (i.e., ignores the signs of the weights). In this case, intra-modular connectivity is 

stronger that inter-modular connectivity. However, note that edge 3 is negatively weighted. 

An algorithm that accounts for signed weights would place node B in the red module, as the 
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total contribution of negative edge weights within a module should be minimized (i.e., 

negative functional connectivity implies segregation or competition) (Rubinov and Sporns, 

2011b). Signs can also affect estimation of shortest paths. Taking only absolute values, the 

shortest path between nodes A and B involves edges 1, 2 and 3. Accounting for the fact that 

edge 3 is negative however, and assuming that information should propagate along positively 

weighted connections, the shortest path would involve edges 1, 2, 4 and 5. 

 

Figure 3. Illustration of the network-based statistic (NBS). A: the NBS is analogous to cluster-

based thresholding in traditional fMRI activation mapping studies. In this work, a cluster is 

defined as a set of supra-threshold, spatially contiguous voxels. The statistical significance of 

the size (or mass) of each cluster is then determined with reference to an appropriate null 

distribution. B: With the NBS, the size (or mass) of graph components–sets of nodes that can 

be linked via a set of supra-threshold edges–is computed, and its significance is evaluated 

with reference to an empirically generated null distribution (e.g., via permutation testing). C-

D: illustration of the superior power of the NBS over traditional thresholding techniques, such 

as the false discovery rate (FDR) (Benjamini and Hochberg, 1995). Shown here are results for 

a comparison of resting-state functional connectivity between healthy controls (n = 15) and 

patients with schizophrenia (n = 12). White elements represent edges in the connectivity 

matrix showing significant group differences. Even at a lenient FDR threshold of q = .10, only 

one edge is declared as showing a significant difference (C, two non-black elements are shown 

because the matrix is symmetric). In contrast, the NBS reveals a distributed sub-network 

showing significantly reduced functional connectivity in patients (D), as illustrated using the 

anatomical overlay in E. Images reproduced, with permission, from Zalesky et al. (2010) 
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Figure 4. Illustration of the relationship between thresholding and connectivity weight. A: a 

representative functional connectivity matrix taken from a single schizophrenia patient (left) 

and control (right) from the sample analysed in Fornito, et al. (2011). The network comprised 

78 anatomical nodes interconnected by 3003 edges, defined using a beta series correlation 

technique. B: the distribution of connectivity weights is shifted towards lower values in the 

patient (red) relative to the control (blue); the area shaded in red highlights the excess 

number of low weighted values in the patient’s connectivity matrix. C: the differences 

between using a weight-based threshold, , and a connection density-based threshold, ; 

applying the same  threshold (solid lines) to the patient and control (e.g.,  = .20) results in 

different connection densities whereas applying the same  threshold (e.g., ; broken lines) 

results in a different minimum correlation weight threshold, . D: the correlation matrices 

after -matched thresholding. The minimum weight in the matrix for the patient and control is 

the same and the mean weight is approximately equal, but the connection density is very 

different. E: the connectivity matrices after -matched thresholding. The connection densities 

are equivalent, but the minimum and mean weight for the patient is lower than for the control. 

Thus, the patient’s connectivity matrix will contain more low-value, potentially spurious 

weights, giving rise to a more random topology. Figure reproduced with permission from 

Fornito et al. (2012). 

 

Figure 5. Biases associated with using correlation and partial correlation coefficients to 

estimate functional connectivity. A: Schematic illustrating the distinction between direct and 

indirect connections between regions u and v, with respect to a third region, i. B: Black line 

illustrates the association between the correlation value on the direct and indirect path for a 

correlation network generated using completely random time series comprising 10 values 

(similar results were obtained for 64, 128, 256 and 512 time points). Blue line illustrates the 
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association for a corresponding network that has been topologically randomized using a 

rewiring algorithm (Maslov and Sneppen, 2002). Red line illustrates the theoretical lower 

bound. C: The association between correlation values on the direct and indirect path for 

random networks generated using partial correlations. D: Normalized clustering (blue line) 

and path length (red line) for random networks generated using the Pearson correlation 

coefficient. The values have been normalized relative to the same properties computed in 

topologically rewired networks. A topologically unbiased connectivity estimate should yield 

values equal to 1. In this case, the extent of clustering is much greater than expected by 

chance. E: The same topological properties computed for partial correlation networks. In this 

case, the extent of clustering is much less than expected by chance. Images reproduced, with 

permission, from Zalesky et al. (2012). 

 

Figure 6. Illustration of the influence of spatial embedding on topological measures. A: 

Examplar single subject of the dependence of functional connectivity on inter-node distance. 

Red crosses show homologous inter-hemispheric correlations. Blue crosses show all other 

pair-wise correlations. Black line shows best fitting exponential function. B: Random 

connectivity matrix with hyperbolic distant dependent strength and density with a 15% 

sparsity. C: Corresponding topologically (weight-preserving) random matrix. D: Clustering, 

path length and small world index of random matrix with hyperbolic distance penalty, 

normalised to a corresponding topologically random matrix. E: Same as panel D, but with 

exponential distance penalty. 
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Table 1. Ideal characteristics of nodes and edges and current progress in meeting these goals. 

 Ideal characteristics Progress 

Nodes Comprised of functionally/anatomically 

homogeneous units (intra-nodal homogeneity) 

The constituent units comprising a given node 

(e.g., voxels) should be homogeneous according 

to the anatomical and/or functional criterion 

used for node definition.  

There are no valid macroscopic criteria for 

aggregating voxels into functionally/anatomically 

homogeneous nodes, necessitating the use of 

heuristic criteria. Recent work suggests that 

definitions based on quantitative analysis of 

imaging signals (Glasser and Van Essen, 2011) or 

multi-modal data integration (Eickhoff, Stephan, et 

al., 2005) are possible. 

 Functionally diverse (inter-nodal heterogeneity) 

Different brain regions are specialized for 

different types of information-processing and 

these diverse roles (e.g., sensory, motor, 

polymodal, etc.)  should ideally be represented 

in a connectomic map. 

Accurately modeling functional specialization of 

the entire brain is difficult in practice and is a 

major goal of neuroscience. To some extent, such 

specialization may be contingent on each region’s 

connectivity profile with other areas (Passingham, 

et al., 2002). 

Edges Directed 

Each anatomical connection emanates from a 

source region and links to a target; each 

interaction represents the causal influence of the 

activity in one region on the activity in another. 

It is not currently possible to differentiate afferent 

from efferent anatomical connections with DWI. 

Accurately estimating directed and/or effective 

functional interactions across the entire brain with 

fMRI is a challenging and burgeoning area of 

research. Most studies currently use undirected 

measures.  

 Weighted 

Connections between regions vary (i.e., are 

weighted) according to the strength of their 

interaction. 

Both fMRI and DWI provide weighted estimates of 

inter-regional connectivity, though the appropriate 

weighting scheme is often unclear. Weights are 

often ignored for analytic simplicity. 

 Heterogeneous 

Regions make different kinds of connections 

(e.g., excitatory, inhibitory, modulatory) with 

other parts of the brain. 

It is not possible to distinguish different anatomical 

connection types with DWI. fMRI allows distinction 

between positive and negative covariations in 

regional activity (Fox, et al., 2005). Effective 

connectivity further allows modeling of 

modulatory connections (Stephan, et al., 2008).  

These distinctions are often ignored however. 

Both Spatially embedded 

The brain is spatially embedded and its 

connection topology is to a large extent 

constrained by spatial relations between nodes 

(Kaiser and Hilgetag, 2006; Bassett, et al., 2010b; 

Vertes, et al., 2012).  

Spatial relationships between nodes are readily 

accounted for by standard stereotaxic mapping 

techniques. In DWI studies, special care must be 

taken to exclude spurious connections (e.g., 

trajectories crossing the intra-hemispheric fissure).  
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 Dynamic 

Both regional boundaries and inter-regional 

interactions change across multiple time-scales, 

from transient, stimulus-evoked perturbations 

of functional dynamics to changes in anatomical 

pathways associated with development, ageing 

and experience-dependent plasticity. 

Long-term (i.e., days-to-years) changes in 

anatomical and functional networks can be mapped 

through longitudinal imaging. fMRI methods for 

assessing dynamic network changes over tens of 

seconds, or in response to varying task conditions, 

are emerging. Resolving sub-second changes is only 

presently possible with EEG and MEG.  
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Table 2. Summary of different approaches to node definition in imaging connectomicsa 

Parcellation Description Strengths Limitations 

Anatomical Node definitions based on a 

priori anatomical information, 

such as sulcal and gyral 

landmarks (e.g., (Tzourio-

Mazoyer, et al., 2002; Desikan, et 

al., 2006)) 

Rapid & intuitive 

parcellation; low 

computational 

burden; high 

reliability 

Low resolution; likely low 

validity; large variations in node 

size 

Random Randomly parcellates brain into 

discrete nodes of similar size, 

and at varying resolutions (e.g., 

(Hagmann, et al., 2007; Zalesky, 

Fornito, Harding, et al., 2010)) 

Minimizes node size 

variations; multi-

resolution 

 

Unclear validity/reliability 

Functional Node definitions based on a 

priori functional information, 

such as coordinates of peak 

activations or meta-analytic 

results (e.g., (Dosenbach, et al., 

2010)) 

Strong validity, 

given research 

hypotheses; good 

reliability; equal 

node sizes 

Definitions are data-specific; 

difficult to apply to diffusion data; 

may miss some regions; 

definitions based on activation 

criteria may be unrelated to 

connectivity  

Voxel-based Each image voxel represents a 

distinct node (e.g., (van den 

Heuvel, et al., 2008)) 

Data-driven; good 

reliability; high 

resolution 

 

Unclear validity; computationally 

intensive; risk of spurious short-

range connectivity due to partial 

volume/smoothing effects 

a References to reliability concern the anatomical consistency of node definitions, not the consistency of 

measures computed using these approaches over time (e.g., inter-session reliability of specific topological 

properties). 
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Table 3. Summary of three major dimensions along which most tractography algorithms can 

be classified  

Dimension Approach Description 

Probabilistic vs 

deterministic 

Deterministic Propagates single trajectories in accordance with the 

principal direction of water diffusion (e.g., (Basser, et al., 

2000)). Does not estimate the spatial uncertainty of the 

trajectory. 

Probabilistic Samples a direction distribution function at each step to 

determine the propagation direction. Allows estimation of 

a probability density of the most likely location of the tract, 

and thus its spatial uncertainty (e.g., (Behrens, et al., 

2003)). 

Local vs global Locally greedy Trajectories propagate incrementally using a near-sighted, 

voxel-by-voxel approach (Basser, et al., 2000; Behrens, et 

al., 2003). Can be affected by noisy voxels. 

Globally optimal Estimates the globally optimal path between two regions, 

typically by representing voxel-wise water diffusion as a 

connected graph and finding the shortest path between 

seed and target voxels (Iturria-Medina, et al., 2007; Iturria-

Medina, et al., 2008; Zalesky, 2008; Zalesky and Fornito, 

2009). More robust to noise. 

Single vs multi-

direction  

Single direction The direction of water diffusion in each voxel is 

represented using the primary eignvector of the diffusion 

tensor (Basser, et al., 2000; Behrens, et al., 2003). Does not 

distinguish crossing fibers. 

Multi-direction The direction of water diffusion in each voxel is 

represented using an orientation distribution function 

(Tournier, et al., 2004; Behrens, et al., 2007). Allows 

resolution of crossing fibers, but requires good quality, 

high angular resolution data. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 66 

Table 4. Summary of main approaches used to examine task-related functional connectivity 

in fMRI studies 

Approach Description 

Beta series 

correlation 

Estimates inter-regional correlations of trial-to-trial variations in evoked activity 

to each task event, as modeled using event-specific regressors in a traditional GLM 

(Rissman, et al., 2004; Fornito, Yoon, et al., 2011). Yields condition-specific 

measures of functional connectivity but does not completely separate regional co-

activation. Standard errors of beta estimates should be accounted for Applicable to 

event-related designs only. 

Mean amplitude 

correlation 

Estimates inter-regional correlations of trial-to-trial variations of event-specific 

evoked activity as quantified using mean signal amplitude changes time-locked to 

each event. Yields a condition-specific functional connectivity measure, but does 

not completely separate regional co-activation and makes strong assumptions 

concerning haemodynamic delays (Anticevic, et al., 2010). Better suited to event-

related designs. 

Psychophysiological 

interaction (PPI) 

Regression-based approach to estimate directed, task-related modulations of 

inter-regional functional connectivity. Isolates task-related interactions as distinct 

from task-unrelated connectivity and co-activation. Directional inferences are 

based on a priori designation of regions as either sources or targets (Friston, et al., 

1997; Minati, et al., 2012). Applicable to block- and event-related designs. 

Correlational 

psychophysiological 

interaction (cPPI) 

Estimates correlations in task-related modulations of regional activity. Isolates 

task-related undirected functional connectivity as distinct from task-unrelated 

connectivity and co-activation (Fornito, Harrison, et al., 2012). Applicable to block- 

and event-related designs. 
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Fig. 1 
  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 68 

 

 
Fig. 2 
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Fig. 3 
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Fig. 4  
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Fig. 5 
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Fig. 6 
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Highlights 

 Reviews progress and pitfalls associated with graph analysis of connectomic data 
 Focuses on issues associated with building an analyzing such graphs 
 Discusses characteristics of ideal connectomic map 
 Considers issue associated with accurate node and edge definition 
 Discusses key issues associated with analyzing and interpreting graph models 
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