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Abstract
The Human Connectome Project (HCP) has developed protocols, standard operating and quality
control procedures, and a suite of informatics tools to enable high throughput data collection, data
sharing, automated data processing and analysis, and data mining and visualization. Quality
control procedures include methods to maintain data collection consistency over time, to measure
head motion, and to establish quantitative modality-specific overall quality assessments. Database
services developed as customizations of the XNAT imaging informatics platform support both
internal daily operations and open access data sharing. The Connectome Workbench visualization
environment enables user interaction with HCP data and is increasingly integrated with the HCP's
database services. Here we describe the current state of these procedures and tools and their
application in the ongoing HCP study.

Introduction
The Human Connectome Project (HCP) is midway through an unprecedented 5-year effort
to obtain high resolution structural, functional (fMRI), and diffusion (dMRI) imaging data
from each of 1200 subjects. After an initial 2-year period of refining the methods for data
acquisition and analysis, a 3-year effort to systematically acquire, process, and share these
data broadly with the research community begin in August, 2010. In this article, we describe
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several informatics-related aspects of the project that are pivotal to its overall success:
quality control (QC) procedures, database services, and data visualization.

The QC procedures used by the HCP build on approaches developed by previous large scale
imaging projects such as the Biomedical Informatics Research Network (BIRN) (Helmer et
al., 2011) and Alzheimer's Disease Neuroimaging Initiative (ADNI) (Jack et al., 2008).
These include the use of documented standard operating procedures, pre-acquisition scanner
monitoring, post-acquisition manual and automated image review, and automated
verification of scan acquisition parameters. Here, we describe the implementation of these
QC procedures in the HCP and demonstrate their utility in executing a high throughput large
scale imaging study.

The database services developed by the HCP focus on supporting the program's daily
operations, including the QC procedures described above, plus its commitment to user-
friendly data sharing. The HCP methods introduce unique challenges unlike those
encountered in previous large-scale neuroimaging projects. The acquisition protocol itself
yields over 200 minutes of high resolution data from each participant, including nearly 9000
frames (image volumes) of 2 mm resolution fMRI data and 576 volumes of 1.25 mm
resolution dMRI data per subject. The processing streams in development by the HCP
produce multiple dense connectomes, each of which exceeds 30 GB in size. In total, the
HCP storage requirements are expected to approach 1 petabyte, or the equivalent of about
220,000 DVDs. The database services being implemented by the HCP are largely aimed at
managing the storage, processing, and distribution of these massive volumes of data. In
addition, we are developing novel informatics capabilities to enable advanced data
exploration, mining, and visualization. Here we describe the work on these fronts that has
been completed to date and provide a preview of additional developments that are
underway.

Overview
The overall HCP workflow from data acquisition to data sharing is managed by a
comprehensive informatics infrastructure schematized in Figure 1. An internal private
database system (IntraDB) - an XNAT-based system (Marcus et al., 2007) that has been
customized to support the HCP's data types and workflows - manages the HCP's daily
operations and quality control procedures. For each of the HCP's different data acquisition
systems, a custom import script transforms the acquired data from system-specific formats
to XNAT-compliant XML and posts the generated XMLs to IntraDB through XNAT's web
service programming interface (API). The manual and automated QC procedures described
below are all conducted within IntraDB. Automated QC procedures are implemented using
the XNAT pipeline service. Once data have passed QC, they are transferred to
ConnectomeDB, a second XNAT-based system that has been highly customized for the
HCP's data sharing and data mining services. Data in ConnectomeDB are organized into
projects that align with the HCP's quarterly data release schedule. Prior to public release the
project for a given quarter are accessible only to internal HCP staff for review and execution
of the HCP's image processing pipelines (Glasser et al., this issue). Once the data have been
released, the project is made accessible to all registered ConnectomeDB users. For more
details on the HCP's data sharing approach and policies, see Van Essen et al (this issue).

Quality Control
The success of the project hinges fundamentally on the quality and consistency of the
collected data. To this end, the HCP has implemented multiple levels of quality control,
ranging from real-time oversight during acquisition to post-acquisition manual and
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automated image review. Each of these procedures is specified in a formal standard
operating procedure and integrated into the internal database system.

Standard operating procedures (SOPs)
An important aspect of our quality planning has been the creation of Standard Operating
Procedures (SOPs). HCP SOPs are step-by-step, written instructions on how to perform each
aspect of HCP data acquisition. Our current SOPs cover the procedures to be followed when
participants first arrive, the behavioral testing sessions and each of the 3T MRI imaging
sessions. Future SOPs will also cover MRI scans at 7T and MEG/EEG scans to be carried
out on a subset of HCP participants.

The primary purpose of the SOPs is to ensure consistency in data acquisition over the course
of the study, since HCP's 1200 subjects are being scanned over a period of 3 years. SOPs are
scheduled for quarterly reviews by research staff to ensure that procedures do not ‘drift’
over time. They also serve as a training aid when new research staff members are hired, and
as a basis for internal HCP auditors’ assessments as to whether research staff members are
administering tests in a consistent manner. In addition to their important role in promoting
consistency, HCP's SOPs have also been posted at www.humanconnectome.org, where they
serve as documentation for the scientific community on how our data are being collected.

Scanner maintenance
It is important that the customized Connectome Skyra scanner provide stable performance
over the 3-year course of the main HCP acquisitions. To ensure that the scanner remains
properly calibrated throughout the study, a Siemens engineer familiar with the
customizations of the Connectome Skyra conducts a preventative maintenance visit every 3
months to ensure that the scanner remains “within specification”. Also, on a frequent (near
daily) basis, the local MR technologist runs the “Head 32 Coil Check” routine of Siemen's
quality assurance (QA) procedures to verify that the signal-to-noise of each coil element
remains within specification. Notably, problems with individual coil elements do not
necessarily manifest visibly in reconstructed structural, fMRI, or dMRI images; on multiple
occasions this coil check has already revealed problems with individual coil elements that
were promptly fixed. On a similarly frequent (near daily) basis, the MR technologist also
scans an Agar phantom, collecting 400 time points (4.8 min) of data using the same
parameters employed for the human fMRI scans (i.e., TR=720 ms, TE=33.1 ms, flip
angle=52°, 2 mm isotropic voxels, multiband acceleration factor of 8). These data are used
to assess scanner stability and are automatically processed within the IntraDB using the
BIRN Agar Phantom QA tool (fmriqa_phantomqa.pl1, using a 30x30 voxel ROI in the
center of the middle slice of the volume) (Friedman and Glover, 2006). The ensuing HTML
report (including various QA-related plots and images) is viewable within IntraDB for
internal review and will be made available for open access review in ConnectomeDB. The
outputs of this BIRN tool include quantitative metrics of temporal SNR (tSNR), static image
SNR, percent signal fluctuation and drift, scanner stability (Weisskoff, 1996), smoothness,
and percent intensity of ghosting, which are aggregated for tracking across time. Figure 2
shows the tSNR, SNR, and ghosting intensity values from the Agar scans over a 7-month
period.

tSNR and SNR in the phantom track each other closely, indicating excellent within-run
scanner stability (i.e., tSNR is determined by the intrinsic static image SNR). There was a
period of increased variability in tSNR and SNR in the phantom in October 2012 (Figure
2a), which the Siemens engineer suspected was caused by variations in room humidity as the

1https://xwiki.nbirn.org:8443/xwiki/bin/view/Function-BIRN/AutomatedQA
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heating/cooling systems fluctuated in the fall weather of St. Louis. However, tSNR in the
human fMRI scans (see below) remained steady over this period (lower line in Figure 2a),
indicating that the effect seen in the Agar phantom scans did not affect the quality of the
human fMRI acquisitions. Figure 2b shows that the ghosting level of the Agar phantom
scans increased slightly in September 2012, which was the consequence of a hardware board
replacement required to implement a gradient smoke detector safety feature. These plots
illustrate the value of the Agar phantom QC in monitoring and ensuring stable scanner
performance over time.

Data acquisition
The design of the HCP study population and the inclusion and exclusion criteria for
prospective participants are described elsewhere (Van Essen et al., 2013, this issue). After
three members of a family have passed screening, each participant is assigned a 6-digit
identifier in which the first four digits are a randomly generated number and the last two
digits are a checksum of the first four digits. This scheme ensures that errant entry of any
single digit of the subject ID in any of the HCP data systems would result in an invalid ID
rather than a match with another subject ID. The subject ID is automatically imported from
the recruitment data system into IntraDB on a nightly basis.

Participants come to Washington University for the full HCP testing protocol, typically
obtained over a consecutive two-day visit. Behavioral data are collected using the web-based
NIH Toolbox Assessment Center (http://www.nihtoolbox.org) and a modified web-based
Penn computerized battery (Gur et al., 2001; Gur et al., 2010). The data generated by these
systems are automatically imported into IntraDB.

A number of HCP's data acquisition QA measures focus on ensuring that participant head
motion is minimized during MR scans. Prior to the initial acquisition, participants are
positioned in a mock scanner to get acclimated to the scanner bore. While in the mock
scanner (for approximately 10-15 minutes), participants are trained to keep their head still
using motion tracking software. During the actual scan, the head is stabilized using cushions
on the sides and top of the head. During structural and diffusion sessions, participants watch
a movie. The movie pauses for 5 seconds when head motion exceeds a specified threshold,
providing immediate feedback to participants that they have moved too much. To the extent
permitted by the computational demands of multiband image reconstruction, the
technologist visually inspects all images as reconstruction completes and immediately
reacquires the scan if it is not deemed to be of sufficient quality.

Data are transferred to IntraDB at the completion of each imaging session and image
reconstruction process using the standard DICOM transfer protocol. Once the data are
received by IntraDB, several processes are triggered, including automated acquisition
parameter checks, image “defacing,” file format conversion from DICOM to NIfTI, email
notifications, and automated quantitative quality control pipelines. Image defacing
(obscuring of identifying features, including the ears) is executed on all high resolution
structural sequences (Milchenko and Marcus, 2013). The study coordinator conducts a daily
review of these processes to identify missing data, resolve discrepancies, and schedule
additional imaging sessions with the study participants as needed.

Preservation of unreconstructed (‘raw’) image data—Reconstruction of raw
multiband image data is a complex process that undergoes ongoing algorithmic
improvements (Ugurbil et al., 2013, this issue?). The HCP will strive to balance the benefits
of reconstruction improvements against the desirability of reconstruction consistency across
subjects. Following the commencement of HCP Phase II scanning in August 2012, an
improved reconstruction algorithm was developed that reduced spatial blurring in fMRI and

Marcus et al. Page 4

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.nihtoolbox.org


dMRI acquisitions. This improvement was deemed worthy of upgrading the reconstruction
algorithm, which occurred in April 2013. The new reconstruction method will be applied
retrospectively to existing dMRI scans that were saved in a compact but unreconstructed
data format. (These unreconstructed volumes are available for the vast majority of dMRI
sessions before the transition). For fMRI scans prior to April 2013, unreconstructed scans
were not preserved owing to technical considerations related to the time required to
complete reconstruction at the scanner. However, concurrent with the change in
reconstruction algorithm in April 2013, the reconstruction switched to using graphics-
processing-unit (GPU) accelerated reconstruction, which reduces reconstruction times
considerably, thus permitting saving of unreconstructed fMRI data from April 2013 onward.
Details regarding which reconstruction was used will be clearly communicated as part of
HCP quarterly releases. Additionally, for fMRI (for which retrospective reconstruction of
scans prior to April 2013 is not available) the HCP will provide datasets processed using
both reconstruction algorithms for a small subset of subjects.

Parameter extraction and acquisition validation
Numerous DICOM fields are extracted and checked against their expected value as part of a
Protocol Validation pipeline, immediately following transfer of the DICOMs from the Skyra
to the IntraDB. These checks include subject position (i.e., “head-first-supine”), table
position, voxel resolution, image dimensions, acquisition orientation, TR, TE, TI, flip
angles, bandwidth, phase encoding direction and polarity, number of DICOMs received, and
diffusion b-value maximum, as appropriate for each scan type. The pipeline posts a detailed
report to IntraDB (Figure 3). Any parameter mismatches are clearly flagged and an
automatic email is sent to HCP staff for investigation and follow-up. This process provides
protection against any inadvertent protocol changes at the scanner (since there is no
convenient mechanism for “locking” a USER-tree protocol), as well as data corruption
introduced during data transfer, anonymization, and data storage. In practice, no inadvertent
protocol changes or data corruption have been observed to date, and the Protocol Validation
pipeline therefore primarily serves to flag scans which were aborted at the scanner or which
incurred an error during the image reconstruction process. The scanner operators review this
immediate Validation pipeline when a parameter mismatch is reported. When images are
missing from a scan, the scanner operators either indicate in IntraDB that such images are
permanently missing (e.g., in the case of scanner acquisition or image reconstruction
problems), or repeat the reconstruction and re-upload the missing images if possible.
Additionally, other parameters are also extracted from the DICOMs into the database for
informational purposes and possible use in subsequent processing, including echo spacing,
sequence versioning information, a UUID linking each dMRI and fMRI scan to its
associated physiological (heart rate and respiration) data, and the linear and quadratic shim
currents in effect at the time of the scan so that the equivalence of the shim field between
scans can be established.2

QC of structural MRI
Since all other modalities are dependent on high quality structural data, the HCP protocol
was designed to schedule the structural imaging session first, allowing the data to be quickly
reviewed and reacquired if the initial scans are inadequate in quality. Technicians review
image quality during the scan session. Most issues are caught immediately, and problematic
scans can often be reacquired within the same session. Subsequently, QC review personnel
are automatically notified immediately after the structural session is transferred to IntraDB.

2In some of the early Phase II structural sessions, the shim currents in effect during the gradient echo fieldmap acquisition differed
slightly from the main structural (T1w and T2w) scans because of differing FOVs between those scans and the fact that automated
copying of the “Adjust Volume” to the fieldmap scan had not yet been set in the protocol.
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They perform a multi-point review process, within hours of acquisition when feasible. The
review includes inspection for image crispness, blurriness, motion and other artifacts, and
accuracy of defacing. Each T1w or T2w scan is assigned an overall numerical rating on a 4
point scale (1=poor, 2=fair, 3=good, 4=excellent). If the reviewed session does not include
at least one T1w scan and at least one T2w scan with ratings of “good” or higher, the
reviewer informs the study coordinator, who schedules an additional imaging session for the
participant, which is typically obtained on the participant's Day 2 visit. Combining structural
scans across sessions is avoided because it is important that they be linked to the same bias
field and B1 field map during preprocessing. Weekend scans are formally reviewed on the
following Monday, though initial rescan determinations can also be made by the
technologists running the scanner at the time of acquisition.

QC of fMRI
A “FUNCTIONAL_QC” pipeline was implemented to (i) perform rapid quality control
(QC) to identify scans that are potential candidates for re-acquisition (i.e., before the
participant leaves on Day 2), (ii) facilitate retrospective review of large numbers of fMRI
scans within the IntraDB, and (iii) eventually support queries and subject filtering within the
public ConnectomeDB based on scan quality. Immediately after conversion of the raw
DICOMs to NIFTI format, the FUNCTIONAL_QC pipeline is launched for QC of both task
and resting-state fMRI scans. Note that because this pipeline is intended for rapid QC and
feedback, it is appreciably simpler than the full “fMRIVolume” pipeline (Glasser et al, this
issue) that generates the “minimally preprocessed” fMRI data distributed by the HCP. The
FUNCTIONAL_QC pipeline starts with motion correction (using spline interpolation) to the
central time point via FSL's ‘MCFLIRT’, brain extraction via ‘BET’, and intensity
normalization of the entire 4D time series dataset by a single multiplicative factor (to a
grand median of 10000). The voxel-wise temporal standard deviation (tSD) and temporal
SNR (tSNR; mean over time divided by standard deviation over time) (Triantafyllou et al.,
2005) are computed, yielding tSD and tSNR images. Smoothness (FWHM, in mm) is
computed for each frame in the x, y, and z directions, as well as their geometric mean, using
AFNI's ‘3dFWHMx’. Finally DVARS (Power et al., 2012), the root mean squared change in
BOLD signal between succcessive image volumes, is computed for each frame using FSL's
‘fsl_motion_outliers’. Outputs of this pipeline include the images of tSNR and tSD, and
plots of movement rotation and translation, absolute movement (relative to the central
reference frame), relative movement (relative to the preceding frame), smoothness, and
DVARS over the frames (time points) of the run, all of which are easily viewable within the
IntraDB accessible to HCP staff (Figure 4). Various quantitative summary metrics are also
computed for each run and displayed in tabular format in the IntraDB, including mean of the
absolute and relative movement time series; percentage of frames with relative movement
above various thresholds; 90th and 95th percentile values of the relative movement time
series; mean and standard deviation of the DVARS time series; and the median tSD and
tSNR within the brain mask. Additionally, each run is processed through the BIRN Human
QA tool (Glover et al., 2012) and the HTML report it generates is viewable within the
IntraDB as well.

Currently we are establishing normative values for these fMRI QC metrics in the context of
the HCP fMRI acquisitions. Table 1 shows statistics for nine of the measures based on 2207
fMRI runs (from 126 subjects). To achieve full brain coverage with increased spatial and
temporal resolution the HCP acquisition protocol makes use of multiband sequences
(Ugurbil et al., this issue). Due to the smaller voxels (2 mm isotropic) and shorter TR (720
ms) of the HCP fMRI acquisitions compared to most other studies, the tSNR averaged over
the whole brain of the HCP acquisition is smaller than has been reported in other studies3

(Triantafyllou et al., 2005, Greve et al., 2011, Hutton et al., 2011). Our acquisitions operate
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in a regime of higher thermal and system noise relative to most other studies – a regime
where thermal and “physiological” noise are predicted to be roughly equal in gray matter
(Bodurka et al., 2007, Triantafyllou et al., 2011). The increased spatial resolution of the
HCP protocol supports more accurate localization of the fMRI data to the cortical surface
(Glasser et al., this issue), and the increased temporal resolution supports improved methods
of denoising (Smith et al., this issue) and novel analyses of brain activity (Smith et al.,
2012). Importantly, while the tSNR of the HCP acquisitions is lower than other studies with
larger voxels and longer TRs (both of which are associated with increased tSNR), we still
achieve high quality mapping of task and resting-state activity within individual subjects
(Barch et al., Smith et al., this issue).

The HCP fMRI acquisitions also differ in their distribution of relative motion. In Phase I
task-fMRI piloting, using a similar community sample and FSL's ‘MCFLIRT’ for estimating
relative motion, we found a very similar value for the mean of relative motion across runs
(0.095mm versus 0.093 mm), but with a broader distribution – i.e., a standard deviation
(across runs) of the mean relative motion (within runs) of 0.11 mm versus 0.03 mm.
Approximately 7.5% of runs from the Phase I task-fMRI piloting had mean relative motion
values exceeding 0.20 mm, whereas only 0.5% (11 of 2207) have exceeded that level to date
in the Phase II acquisitions. Notably, the Phase I piloting used a conventional acquisition
(3.5 mm voxels, with a 2500 ms TR). The increased temporal resolution of the Phase II
(main study) acquisitions reduces the extent of motion that can occur between consecutive
time points, thus reducing relative motion estimates in motion-prone subject Whether this
increased temporal resolution also confers practical benefits in terms of resistance against
motion-related confounds (Power et al., 2012, Satterthwaite et al., 2012) is a topic of active
investigation.

The DVARS QC metric of the FUNCTIONAL_QC pipeline is appreciably higher than has
been previously reported (Power et al., 2012) because it is calculated on time series acquired
at higher spatial resolution, hence, containing an increased proportion of electronic noise
that have undergone only motion correction – i.e., no spatial smoothing, temporal bandpass
filtering, or multiple regression of nuisance variables. Thus, no steps have been taken to
reduce the amount of thermal noise in the timeseries, which leads to a mean offset of the
DVARS time series from zero. This offset motivated the inclusion of the standard deviation
of the DVARS time series as an additional QC measure. Despite this offset, the DVARS
time series is still quite useful for visually and quantitatively identifying periods of increased
motion during a run.

The nine fMRI QC measures of Table 1 are correlated to varying degrees (Table 2). In
particular, tSNR, FWHM, and absolute motion all correlate with |r| > 0.68, as do mean
relative motion, 95th percentile of relative motion, and percent of frames with relative
motion > 0.15. A common factor analysis (using maximum likelihood factor extraction with
varimax rotation) indicated a four-factor model, with the two aforementioned sets of 3
variables loading strongly on two factors (absolute value of their loadings with their
respective factors > 0.68).4 These two factors explained 32% and 34% of the common factor
variance (after rotation), respectively. The first factor involving tSNR, FWHM, and absolute
motion is interesting. The positive relationship between absolute motion and FWHM is
consistent with interpolation-related smoothing from motion correction (even though spline
interpolation was used). Normally, higher smoothness would be expected to be associated

3Shorter TR reduces static image SNR due to reduced recovery of longitudinal magnetization.
4The third factor included strong loadings (> 0.5) from 95th percentile of relative motion, percent of frames with relative motion >
0.30, and standard deviation of the DVARS time series. The fourth factor was primarily loaded (0.93) by just the mean of the DVARS
time series.
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with higher tSNR. However those two metrics are negatively correlated, as are tSNR and
absolute motion, suggesting that absolute motion has a distinct (non-smoothness related)
impact on tSNR. One possibility is that the temporal standard deviation is increased (and
thus tSNR decreased) in the presence of large absolute motion due to the spatial intensity
variations from the 32-channel receive coil sensitivity profile, which are not accounted for in
the current FUNCTIONAL_QC pipeline. Notably, the full “fMRIVolume” pipeline (Glasser
et al, this issue) does include a step to reduce the spatial inhomogeneity due to the receive
coil bias field.

We investigated the relationship of these rapid fMRI QC metrics to task-fMRI activation in
the subset of subject comprising the 20 unrelated subject of the Q1 HCP data release (Barch
et al., this issue) and processed using the full “fMRIVolume” pipeline (Glasser et al., this
issue). Specifically, we used the group level activation map of the 2-back versus fixation
contrast of the working memory task, and the faces minus shapes contrast of the emotion
task (thresholded at Z>3.29, cluster corrected) to define ROIs for computing the average Z-
statistic from the first-level (i.e., run-level) activation maps for each subject and run
(yielding 80 total first-level z-statistics: 20 subjects × 2 contrasts × 2 runs per contrast).
There was only minimal correlation of the first-level Z-statistics with either the estimated
factor scores (from the factor analysis) or the individual QC metrics (|r's| < 0.26). This
demonstrates that, at least in this group of subject, the Z-statistics of individual subject
activation are not strongly impacted by typical variations in subject movement. However,
these 20 subjects have provided notably high quality data, and thus may not reflect the
effects of more extreme levels of motion or other poor quality metrics in the first-level Z-
statistics. As additional subjects are analyzed using this approach, we will be able to assess
the degree to which task and resting-state output measures are related to the QC metrics in
cases of more extreme subject motion. Importantly, even if the primary utility of these rapid
fMRI QC metrics turns out to be flagging a small number of truly extreme outliers, the
availability of these QC metrics gives us confidence that the HCP acquisitions are not being
adversely affected by inconsistencies in scanner performance.

QC of Minimally Preprocessed Pipelines
The outputs of the HCP structural pipelines are examined for surface reconstruction quality
in the native volume space with the native mesh using Connectome Workbench
visualization software (herein referred to as ‘Workbench’; see below description of
Workbench's capabilities). The efficiency of this process is increased by having a set of
preconfigured Workbench ‘scenes’ that provide standardized views of the surfaces and
volumes of interest. The requisite scene files are adapted to each individual subject by
applying a script to a standard template scene file. An initial step is to inspect the
midthickness and inflated surfaces to note for any fused sulci or missing gyri (i.e., major
surface reconstruction errors). To date, these have not been encountered, suggesting that the
minimal preprocessing pipelines are performing robustly. Next, the white and pial surface
contours are displayed on a volume montage of T1w images to look for smaller surface
segmentation or placement errors. The volume (FNIRT) and surface (FreeSurfer)
registrations are checked for major errors or deformations. For the volume registration, this
involves comparing the registered individual volume with the template. For the surface it
involves comparing the registered “sulc” map of the individual with the atlas “sulc” map.
Additionally, thresholded views of the Jacobian volume and areal distortion surface maps
are viewed to check for regions of distortion that are unusually large in spatial extent.
Finally, the individual myelin maps are compared with the atlas to look for any irregularities
that might suggest errors in segmentation or registration (e.g., misalignment of the central
sulcus to the post-central sulcus). No major errors or irregularities in the output of the
structural pipeline have been identified in the subjects analyzed to date.
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The outputs of the functional pipelines have been examined to ensure that single-band
reference images of both phase encoding directions in MNI space are aligned with the
surfaces and that the pattern of intensities on the surface of the surface-projected timeseries
are reasonable (e.g., no gyral or sulcal pattern suggesting a misalignment). Because of the
large number of functional runs, this QC has only been done for a subset of scans. In an
initial application of these QC procedures several bugs and aspects of non-robust
performance were identified and corrected in the development and early deployment of the
HCP Pipelines.

QC using FIX-denoised outputs of resting state data
Resting state fMRI uses BOLD signal correlations across the brain as a measure of
functional connectivity. Thus, the signal of interest in a resting state timeseries is correlated
spontaneous (intrinsic) gray matter derived fluctuations. These correlations may be
evaluated using seed-based correlation mapping (Biswal et al., 1995) or Spatial Independent
Component Analysis (sICA, Beckmann et al., 2005). sICA separates spatio-temporal
datasets into spatially independent components, each component associated with a particular
timeseries. The high spatial and temporal resolution of HCP resting state data and the length
of the runs (2mm isotropic, 0.72s TR, 1200 frames: 14.4 minutes) support very high
dimensionality individual subject ICA of 200 components or more (Smith et al., this issue).
Recently, the HCP has made use of an automated classifier of ICA components into brain-
derived BOLD signal components and structured noise components. This classifier is called
FMRIB's ICA-based X-noisifier (FIX). FIX has 99% sensitivity and 99% specificity in HCP
resting state data when compared to human classification by experienced raters (Smith et al.,
this issue). Because each ICA component accounts for some portion of the timeseries
variance, we can use the classifier output to apportion the timeseries variance into different
categories, which can be compared across subjects or across resting state runs. In the
analyses discussed below, we use the “minimally preprocessed” (including motion
realignment) timeseries in grayordinate space (Glasser et al., this issue) of the publicly
released 20 unrelated subjects after the addition of gentle highpass filtering
(FWHM=2355s), which effectively performs a linear detrend on the data.

The simplest variance measure, TotalVariance, is the mean of the temporal variance across
all grayordinates, which is then apportioned into categories according to the following
model:

TotalVariance = MRVariance + MotionVariance, where MRVariance =
UnstructuredNoiseVariance + StructuredNoiseVariance + BOLDSignalVariance.

The FIX cleanup routine regresses out 24 motion parameters from both the timeseries and
the ICA component timeseries (Smith et al., this issue), and the standard deviation after this
operation yields the overall MRVariance. The difference between TotalVariance and
MRVariance is the estimated portion of the timeseries variance attributable to motion-
related artifact captured by the realignment parameters, MotionVariance. Before one can
determine the portion of the variance accounted for by structured noise or brain-derived
BOLD, one needs to estimate the UnstructuredNoiseVariance, by regressing out all of the
ICA components (both structured noise and BOLD signal) from the motion-parameter
cleaned timeseries. An estimate of this variance is available because a Principal Components
Analysis (PCA) dimensionality reduction, which excludes the unstructured noise, is done
prior to sICA. Note that the variance categories described here are not “pure,” as ICA does
not perfectly separate structured noise from Gaussian (thermal) noise (Smith et al., this
issue); however, the category labels do reflect their majority constituents. Once an estimate
of UnstructuredNoiseVariance is available, one can regress from the motion regressed
timeseries the unique variance of the structured noise components, measure the variance,
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and subtract the UnstructuredNoiseVariance, producing an estimate of the
BOLDSignalVariance. Similarly, StructuredNoiseVariance can be estimated by regressing
the BOLD signal components out of the motion regressed timeseries, measure the variance,
and subtract the UnstructuredNoiseVariance. The sum of MotionVariance +
UnstructuredNoiseVariance + BOLDSignalVariance + StructuredNoiseVariance averaged
about 1.26%+/-0.28% higher than the TotalVariance, suggesting that these partitioned
variances are close to, but not completely independent. UnstructuredNoiseVariance is the
largest component of TotalVariance, constituting 67%+/-4%, with StructuredNoiseVariance
next at 16%+/-2%, MotionVariance at 14%+/-3%, and BOLDSignalVariance at 4%+/-1%.
Additional useful metrics include the number of BOLD signal ICA components identified (a
larger number suggests more useful information in the timeseries), the number of structured
noise ICA components identified, and the total number of ICA components identified
(capped at 250), the brain size (the final brain mask in native volume space as generated in
Glasser et al., this issue), and the head size. An estimate of head size is generated by
multiplying the T1w and T2w images in AC/PC aligned native volume space, normalizing
the intensity inside the brain mask to a standard value and thresholding the image at a
standard value. This produces a mask of the head that is robust across subjects.5

One notable feature of the ICA+FIX based QC metrics is their reproducibility across runs in
a given subject. For each of the above metrics (plus relative motion), we performed a
variance components analysis (PROC NESTED, SAS 9.2) to estimate the variability related
to subject, session (nested in subject), and error (i.e., run within session) effects (Table 3).
For each measure, the percent of that measure's variability attributable to subject variance
exceeded 50%. UnstructuredNoiseVariance is particularly reproducible across runs, with a
subject variance component of 87.9% of the total variability in this measure. The high cross-
run reproducibility of the UnstructuredNoiseVariance suggests a systematic, subject-specific
cause. Notably, the correlation between UnstructuredNoiseVariance and head size was
r=0.88 (vs. r=0.64 with brain size). The strong correlation between
UnstructuredNoiseVariance and head size is consistent with a decline in receive coil
sensitivity due to increased coil loading by larger heads and likely more total ionic content
in larger heads leading to increased thermal noise. In addition, UnstructuredNoiseVariance
has a clear negative impact on the sensitivity for detecting resting state networks in FIX, as
the correlation between number of BOLD signal components and
UnstructuredNoiseVariance is r=-0.68. Both MotionVariance and StructuredNoiseVariance
also have negative impacts on sensitivity for resting state networks, as the correlation
between the number of BOLD signal components and these two measures is r=-0.61 and
r=-0.49, respectively. Not surprisingly, MotionVariance and StructuredNoiseVariance are
correlated (r=0.66), because greater subject motion leads to additional structured noise that
cannot be completely regressed out with the 24 motion parameters. In the end, there is
significant variability in the average number of BOLD signal components detected by ICA
+FIX across subjects (mean=23.3+/-6.6 with a range of 13.75 – 38). Subjects on the low end
tend to have larger head sizes and more motion variance, whereas subjects on the high end
tend to have smaller heads and less motion variance.

We also compared these ICA+FIX QC metrics to the FUNCTIONAL_QC measures
discussed earlier for these same 20 subjects (80 resting-state fMRI runs). tSNR was strongly
correlated with the number of BOLD signal components (r=0.73) and TotalVariance
(r=-0.88), and thereby correlated with MotionVariance (r=-0.75),
UnstructuredNoiseVariance (r=-0.74) and StructuredNoiseVariance (r=-0.55) (but not
BOLDSignalVariance, r=0.13). Relative motion was correlated to varying degrees with

5Because the T1w and T2w images have undergone defacing, the head size estimate may be different from the non-defaced images.
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those same variables (# BOLD signal components: -0.51; TotalVariance: 0.71;
MotionVariance: 0.41; UnstructuredNoiseVariance: 0.64; StructuredNoiseVariance: 0.65;
BOLDSignalVar: -0.06).6 Absolute motion was most strongly related to MotionVariance
(r=0.78). As we extend the ICA+FIX approach to more subjects, it will become possible to
analyze the factor structure of a combination of the two sets of QC metrics. Future work will
seek to relate these sets of measures to each other in a larger (more robust) number of scans
and to relate both sets of measures to relevant outcome-based measures of resting-state
analyses, such as the sensitivity for detecting various resting-state networks. We will also
explore the application of the ICA+FIX approach to HCP task-fMRI data.

QC of dMRI
QC measures for diffusion imaging (dMRI) have not yet been implemented. This delay is, in
part, attributable to the complexity of the HCP dMRI processing stream, which accounts for
imaging gradient non-linearities both in diffusion sensitization and spatial encoding, as well
as eddy current effects (Sotiropoulos et al., this issue; Ugurbil et al., this issue). In fact,
GPU-assisted computation is required to achieve practical throughput, and this
implementation is currently nearing completion. We anticipate that QC measures for
diffusion imaging (dMRI) will be available within the next year.

QC of non-imaging data
The HCP protocol includes several non-imaging data types, including two extensive
behavioral batteries, intake questionnaires, and a 7-day retrospective survey of alcohol and
tobacco use that is taken at the end of the participant's visit. The NIH Toolbox and Penn
computerized battery used for behavioral testing include built-in quality control checks to
ensure that consistent data are captured as the batteries are administered. The data generated
by these systems are automatically imported into IntraDB to minimize labor and data entry
errors. The various intake and exit data are entered directly into IntraDB, which includes
field-level value checks that require explicit user overrides to allow out of range entry. The
subject visit details are reviewed daily by the study coordinator to ensure completion of data
entry, and import and consistency of subject identifiers across study domains. The full non-
imaging data is spot checked on a monthly basis to ensure overall completeness and
accuracy.

ConnectomeDB
Organization of the database

Several organizational aspects of ConnectomeDB are worth noting. First, the data are
grouped into XNAT projects that match the HCP quarterly data release schedule.
Throughout each quarter as data are collected, once they have passed QC the data are
pushed from IntraDB to a “private” project that is accessible only to internal HCP staff.
Maintaining these projects in “private” mode allows processing pipelines and other
preparatory tasks to be executed and reviewed prior to open access public release. When the
release date arrives, the project is switched to “public” mode, which instantaneously makes
the data accessible to all users who have agreed to the HCP open access data use terms. In
addition to facilitating the data preparation process, maintaining separate projects for each
quarterly release provides a user friendly mechanism for highlighting recent data sets and
enables users to download and explore just the new data.

6tSNR and relative motion were themselves correlated (r=-0.58) in this subset of 80 scans (vs. r=-0.37 in the larger set of scans used
for Table 2).
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Second, the imaging data, which have been acquired over four or five individual imaging
sessions for each participant, are merged during the transfer from IntraDB to
ConnectomeDB into a single “mega” session, which simplifies the data structure for end
users. The merge process involves an extensive set of rules for determining which scans to
include, their sequential order, and labeling. Structural scans marked as “fair” or “poor” by
QC reviewers, for example, are excluded, as are fMRI scans that lack 25% or more of the
expected number of frames. The interdependencies between scans by shim value and
associated bias and fieldmap scans are identified and explicitly tagged in the database. These
tags are subsequently used by the processing pipelines and to organize files for distribution.
In addition, a document is generated and written to the structural data packages, both
unprocessed and preprocessed (see below) to assist users in independently processing the
data.

Third, much effort has gone into ensuring that all instrument-generated testing dates have
been redacted from the data, consistent with HIPAA privacy protections. In addition, the
voxels around faces and ears in high resolution structural scans have been blurred
(“defacing”), and subject ages have been binned in 4-5 year bands to reduce their precision.
A number of fields representing particularly sensitive data (e.g., history of drug use) or data
that in combination might be identifying, such as race, body weight, age by year, and/or
family status (e.g., identical twins) are excluded from the open access release. These data are
available only to qualified users who agree to the HCP's Restricted Access Data Use Terms,
which involve important constraints on how this information can be published (Van Essen et
al., this issue). This dual open/restricted access approach has been vetted by the Washington
University Human Research Protection Office and HIPAA Privacy Offices. An independent
consultant with extensive experience in protecting the privacy of family study participants
has also determined that HCP's approach is appropriate to optimizing scientific utility while
ensuring subject privacy.

Automated image processing
All of the image processing routines in use by the HCP are being implemented as automated
pipelines within the HCP infrastructure using the XNAT Pipeline Service (Marcus et al.,
2007) (Table 4). To date, the automated QC for fMRI and “version 1.0” of the minimal
preprocessing procedures for all modalities (Glasser et al., this issue) have been completed
and run on each subject. Pipelines are launched either in batches at the command line or by
operations staff from the database web interface, depending on the particular processing
context. Pipelines execute on one of two computing systems accessible to the HCP. A
cluster with 64 dedicated cores and 140 shared cores is used to execute pipelines that have
modest computing requirements but need to be completed with short latency on demand,
including defacing, protocol validation, and quality control. A high performance computing
system managed by the Washington University Center for High Performance Computing is
used to execute pipelines that are computationally demanding but have flexible scheduling
demands, including all of the preprocessing pipelines. All files generated during pipeline
execution are posted to ConnectomeDB. Subsets of these files are then packaged using the
Packaging Service described below in preparation for sharing. The outputs of the structural
pipelines are mandatory for other modality pipelines that register outputs to MNI and native
structural space (see Glasser et al., this issue).

Data versioning strategies
As advances are made to the HCP's processing and analysis methods, the HCP's pipelines
will be updated. Modified versions of files and derived data generated by the pipelines will
be uploaded to ConnectomeDB. In an ideal world, all previous versions of the files would
continue to be made accessible as in a typical software version control system. However,
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due to the scale of the connectome data, we cannot guarantee that historical versions of the
data will be preserved indefinitely. Several steps are being taken to mitigate the impact of
this process. First, the HCP recommends that investigators preserve on their own any data
they use in analyses they conduct locally. Second, while the data produced by pipelines is
not under version control, the pipeline code and software upon which the pipelines depend is
under full version control. Should a researcher desire to reconstruct a historical version of
the data, the code could be extracted from the version control system and run against the
unprocessed data to generate an effective equivalent of the historical data (though due to
minor differences in compilers and computing platforms, the recreated data is unlikely to be
an exact numeric copy.) Third, the data files in ConnectomeDB and packages downloaded
from it are tagged with the version of the pipeline and execution run used to generate them.
The execution run defines the specific parameter settings that may be varied while
maintaining the same software version. Finally, all services implemented on ConnectomeDB
will produce a “receipt” indicating the version of the service and the version of the data
against which it was run.

Data sharing strategies
The data set generated by the HCP, including the acquired images, minimally preprocessed
data, and full dense connectomes, is expected to approach 1 petabyte. Given this massive
volume, it is unrealistic to expect users to simply download the data from a website. Instead,
we have taken a multi-pronged approach to match a specific data sharing mechanism to the
specific context. For full data sets of a small number of subjects, ConnectomeDB includes
network-based services for data transfers. For data sets of a large number of subjects, the
HCP will ship (at cost) hard drives (“Connectome in a Box”) pre-populated with data
organized by the HCP's quarterly release schedule. The threshold for when a data request is
best met by a network transfer versus a hard drive shipment depends on the bandwidth
capacity of the user and the current demand on ConnectomeDB. This threshold may also
change over time as overall Internet bandwidth expands (see Downloading Data below).
Presently, the HCP recommends that users request no more than 20 full subject data sets at a
time. The details of the ConnectomeDB and Connectome in a Box systems are described
below.

In addition, the HCP is implementing computational services within ConnectomeDB so that
analyses can be conducted without the need for transferring the data. Indeed, bringing
algorithms to the data rather than data to the algorithms is the most efficient option for
connectome-scale data. An initial proof of concept service has been implemented that
calculates average connectivity across an arbitrarily chosen group of subject for an
individual grayordinate. For a connectome of approximately 90,000 ‘grayordinates’ (vertices
and voxels, see below) and a group size of 20 subjects, this calculation executes in less than
1 sec on the ConnectomeDB infrastructure. This proof of concept implementation illustrates
that rich data exploration services can be performed in real time as users navigate the data.
Programmable interfaces to these services will be made available via REST web services
API, which can be accessed by any variety of client applications, including by
ConnectomeDB itself, by Connectome Workbench, as described below, and by tools created
by developers outside the HCP. While the formal API structure for these services if still in
development, we expect each service request will include several standard parameters
including one or more subject groups and one more regions of interest (ROIs) over which
the requested service would operate. Currently, a preliminary list of potential services is
being drafted to help scope the overall requirements and includes services to compute: an n
× n correlation matrix for arbitrary group of n ROIs supplied by the user, server returns n ×
n correlation matrix; summary statistics on behavioral measures over a subject group, with
adjustments for familial structure as required; locations of activation in t-fMRI reported by
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peak coordinates, radius, and size in voxels; locations of activation in t-fMRI, reported by
parcellation region; correlation over a subject group between behavioral measures and t-
fMRI activation.

Data Dictionary
The HCP behavioral battery and study metadata include hundreds of individual data fields.
To communicate the meaning of each of these terms to users, a data dictionary service was
implemented on ConnectomeDB. This service comprises three components: a document
containing the actual terms, their definitions, and an assortment of helper content; an API for
querying the database for dictionary entries; and user interface elements for viewing and
navigating the dictionary. The dictionary document includes a hierarchical structure with
separate levels for categories, assessments, and individual data fields. The dictionary service
enables client tools, such as the web interface, to query ConnectomeDB for project-specific
dictionary details at each level of the dictionary. The service returns the portion of the
dictionary, currently formatted as JSON, that matches the query. The dictionary user
interface (UI) component is primarily manifested on the Data Dashboard (see below), where
it is used to generate filters for searching the data. Ongoing work on the dictionary service
aims to implement links to formal ontologies such as the Cognitive Paradigm Ontology
(Turner and Laird, 2012) and to expand the user interface components to enable review of
the full dictionary and to cover more of the overall ConnectomeDB website.

Data Packages
The HCP preprocessing pipelines generate a large number of files, many of which are not
essential for typical analyses but are retained in the database for quality control and review
purposes. To streamline distribution of the high interest files, a file package generation
service was developed that allows specific subsets of the files hosted in ConnectomeDB to
be compiled into Zip-formatted distributable file archives. The service uses specification
documents to define the contents of a particular package based on file naming patterns along
with other metadata. Packages are typically defined to include contents for a single subject,
but group level data can also be packaged. Currently, a script external to ConnectomeDB
itself is used to pre-generate and store packages. The next generation of this service, which
is currently in development, will dynamically assemble and stream the packages on demand,
eliminating the inefficient storage of the pre-generated packages and allowing a larger
number of package configurations, including user-defined custom packages.

Along with the data contained in the download packages, the download service creates a
checksum of the generated download package. This provides validation that the download
was completed successfully without errors during the transfer process. In addition, the
download package itself contains a download manifest, which has information about each of
the resources within the download package, including a checksum for each file. Along with
dynamically generated download packages, future releases will include a transfer manager
application that can be used to manage local file repositories. The download manifest in
these generated packages can be imported into the transfer manager, which will allow users
to update only those files that are new or have changed since a previous download.

User Interface
Basic Navigation—ConnectomeDB includes a modified version of the standard XNAT
navigation structure. A landing page details the available data and guides the user through
accepting data set-specific data use terms (Figure 5). The page is designed to highlight
recent releases, such as the initial open access “Q1” HCP data release in March, 2013. Once
the user agrees to the open access terms for a data set, s/he is automatically granted access to
the open access components of the data. For the Q1 release, links are provided to pre-

Marcus et al. Page 14

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



selected groups of 1, 5, and 20 unrelated subjects that are known to have full high quality
data acquisitions and that have been used extensively within the HCP consortium in early
analyses and thus serve as good reference data. This view also helps manage network
bandwidth limitations by encouraging users to download only as much data as they need to
accomplish their current goals. For each of these groups, as well as for the full data set, the
user can follow links to the Data Dashboard screen, which provides a searchable view of all
subject metadata, and the Package Download screen, which provides a streamlined interface
for selecting and downloading pre-packaged file archives for one or more modalities. Users
can also access the standard XNAT reports and navigation elements to explore individual
subjects. These pages have also been customized to reflect the specific metadata and data
organization of the HCP.

Data Dashboard—ConnectomeDB's Data Dashboard provides an interface for dynamic
exploration of the HCP dataset (Figure 6). Interactions on the dashboard are built around the
concept of subject groups – subsets of the HCP data set who match some specified criteria.
The dashboard includes several components for interacting with subject groups: a tool
ribbon provides access to various actions, including saving subject groups, opening
previously saved groups, and downloading data for the current subject group; data filters for
defining the subject group criteria; and a tabular display of demographics, behavioral
measures, subject data and metadata for the currently selected group. The dashboard
components use the data dictionary, with the filter selectors and tabular data displays
mapping directly to the dictionary hierarchy elements and the data tables drawing from the
dictionary categories. Future versions of the dashboard will enable execution of the various
computational services described above for the selected subject group and direct
visualization of the results on an interactive 3D surface model.

Downloading data—ConnectomeDB's Download Packages interface utilizes the Data
Package service described above to enable users to download individual subject or subject
group data selected generated through the Data Dashboard (Figure 7). The interface
presents users with a filterable list of packages for unprocessed and preprocessed version of
each of the modalities included in the HCP protocol, including the structural, diffusion,
fMRI resting state, and each fMRI task. The unprocessed data packages include NIfTI-
formatted files both the left-to-right and right-to-left phase encoded acquisitions for the
selected modality and repeat acquisitions when relevant. For each package type, details of
the package contents, including number of files and total size, are displayed along with
information about the availability of the files for each subject in the selected subject group.

Once the set of packages has been selected, the user is directed to a download interface that
uses the commercial Aspera fasp[TM] high speed data transfer technology(Aspera, 2013).
The connection-based Internet standard protocol TCP is notoriously inefficient over high-
bandwidth, high-latency routes (“long fat networks” or LFNs; Lakshman and Madhow,
1997). This inefficiency limits the usefulness of TCP-based protocols such as FTP and
HTTP for moving big data across LFNs. A variety of techniques have been used to
compensate for TCP's LFN problem, including extensions to the TCP protocol and multiple
simultaneous TCP connections (Hacker and Athey, 2001). Aspera's fasp[TM] is a
proprietary transport built on the datagram-oriented Internet standard protocol UDP and
designed to maximize throughput across LFNs.

Aspera's fasp supported 100 Mbit/s transfers to multiple simultaneous users within a
university network. Single download testing from remote sites yielded steady transfer rates
of 70-85 Mbit/s between university networks in the US and UK. For comparison, over
standard FTP, these same sites obtained transfer speeds of 4-12 Mbit/s. Based on these tests,
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downloading a typical 10 GB single subject unprocessed HCP data set to a typical US
university should take less than 15 minutes over fasp compared to nearly 3 hours over FTP.

Connectome in a Box
Owing to the massive size of the HCP data set, downloading large portions of the data over
the Internet is at the limits of current network bandwidth and latency constraints, particularly
for international locales. As an alternative to network-based downloads, we have developed
a physical data transport mechanism that we refer to as Connectome in a Box (CBox). CBox
is based on high capacity (currently 3 TB) consumer grade hard drives on which the HCP
unprocessed and preprocessed data are loaded. Copies of CBox formatted for Linux,
Windows, and Mac systems can be ordered via the HCP website along with an optional
external drive enclosure. The CBox copies are generated on a custom-built duplication
system that is capable of generating up to 15 simultaneous copies of a master instance using
the open source Clonezilla package. The initial data release, which has a capacity of 2.0 TB,
requires 10 hours to duplicate on the system, with an additional 10 hours to verify
replication accuracy. The drives are delivered at cost to customers via FedEx. Users can
attach the drive directly to their laptop or workstation via a USB or eSATA connector and
work directly from the shipped drive or transfer the data to alternative storage, such as
communal network storage hosted by a department or an imaging center. Communal storage
has the advantage of serving as a single access point for multiple investigators at a center;
but all investigators accessing the data are expected to sign and abide by the HCPs data user
terms. CBox data are organized in the same directory structure as data downloaded directly
from ConnectomeDB, but is pre-extracted for the end user's convenience.

Connectome Workbench
Connectome Workbench (henceforth “Workbench”) is a surface and volume visualization
platform developed by the HCP for viewing the many modalities of MRI-based data
generated by the HCP minimal preprocessing and analysis pipelines. It is freely available
(http://www.humanconnectome.org/connectome/connectome-workbench); the beta 0.8
version (March, 2013, release) is accompanied by a tutorial and associated dataset.

Workbench supports standard neuroimaging NIfTI and GIFTI data formats plus the recently
introduced CIFTI format for ‘grayordinate’ representation of surfaces and volumes
compactly in a single file (http://www.nitrc.org/projects/cifti/; see below). Workbench also
includes many command-line utilities (“wb_command) that perform a wide variety of
algorithmic tasks using volume, surface, and grayordinate data; these utilities are extensively
used in the HCP minimal preprocessing pipelines (Glasser et al., this issue). Workbench and
wb_command are freely available C++ binaries that are compiled to run on Windows 64-bit,
Windows 32-bit, Mac OS X 64-bit, and Linux 64-bit operating systems. Workbench is a
successor to Caret5 (Van Essen et al., 2001), with extensive revisions to increase
performance, improve interface design, and enable easier and more flexible viewing of
multi-modal imaging data.

Workbench enables viewing cortical surface data on individual hemispheres or in “montage”
views that concurrently display left and right hemispheres with 180-degree opposing views
(e.g., medial and lateral, see Fig. 8, left). Volume data can be viewed as individual slices, as
a montage (or “lightbox”) of many slices (Fig. 8, right), or as three orthogonal slice places.
An oblique slice viewing mode is also planned. Additionally, surface and volume data can
be viewed simultaneously in a Whole Brain viewing mode that allows concurrent display of
surface models, volume slices, and 3D volume voxels. In any of the volume views, cortical
surfaces can be viewed on volume slices as surface contours (with or without scalar data
mapped onto the contour), as shown in Fig. 8 (right). The major forms of data that can be
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viewed on the surface or volume are scalar maps (containing real-valued data mapped to a
color palette, such as a cortical myelin map) and label maps (containing specific colors and
names for integer values, such as a parcellation of cortical areas and subcortical nuclei).
Multiple maps can be overlaid as layers, each with its own color palette and threshold
settings. Maps can be easily turned on and off, added, removed, or reordered, or have their
opacities modified to facilitate quick comparisons. Additionally, Workbench can be used to
create and display borders (boundaries projected onto the cortical surface, such as the
outline of an ROI) or foci (points, such as the centers of gravity of a task activation cluster).

Workbench makes extensive use of CIFTI files (Glasser et al., this issue) to represent both
cortical surfaces (vertices, with topological relationships encoded) and subcortical grey
volume data (voxels) in a single data structure. Workbench determines from the CIFTI
header which brain structure and location on which to display the data (e.g. left cortical
surface vertex 1000 or right thalamus voxel coordinates 3.9, -1.4, 10.6). Workbench
supports multiple CIFTI file formats that represent complementary data types. A dense
timeseries CIFTI file (grayordinates × time) can be viewed as a series of maps displayed on
cortical surfaces and subcortical volume slices or as a timecourse for a selected
grayordinate, using the timecourse graph window (and as an average timecourse for all
grayordinates within a selected ROI). A dense scalar file (grayordinates × scalar maps) can
be viewed using the same options, but differs insofar as it contains a series of spatial maps
(e.g. tfMRI contrast maps or ICA component spatial maps) that can have distinct labels for
each frame. Dense label files (grayordinates × label maps) based on combined cortical and
subcortical parcellations are also supported. A dense connectome file (grayordinates ×
grayordinates) contains a connectivity value between every grayordinate and every other
grayordinate. Because dense connectivity files can be very large (~32.5 GB for HCP-
generated dense connectomes), it is noteworthy that they can be accessed interactively by
reading out only one row at a time or an average across a user-selected subset of rows from
a file that is stored remotely (e.g., in the ConnectomeDB database, as described above). This
enables the user to click on a grayordinate (or draw an ROI of grayordinates) and
instantaneously view the map that corresponds to those grayordinates’ connectivity with
every other grayordinate. These maps can either represent functional connectivity (based on
Pearson correlation of resting-state timeseries data) or structural connectivity (based on
tractography).

Dense connectomes need not be square matrices of the same dimensions. For example, a
grayordinates × “whiteordinates” (white matter voxels) map can display the spatial
probability distributions of tractography results associated with each grayordinate. Taking
this idea a step further, a dense trajectory file stores not only the number of tractography
samples in each white matter voxel, but also up to three modeled fiber orientations. This
enables visualization of fiber trajectories similar to deterministic streamlines, while
preserving the probabilistic nature of the tractography data by weighting the opacity of the
fiber orientations according to the probability that they are associated with a selected seed
location (Sotiropoulos et al., this issue). These trajectories can be visualized in Workbench
either in volume slices or in the whole brain view, together with cortical surfaces that can be
opaque or translucent.

Workbench also supports visualization of parcellated connectomes. A parcellated
Connectome contains connectivity relationships between each cortical or subcortical parcel
and every other parcel. This large dimensionality reduction greatly reduces file sizes.
Parcellated connectomes can also contain a dense dimension (e.g. parcels × dense or dense ×
parcels), which may be useful for certain applications. In the future, parcellated timeseries
may be useful for ROI-based tfMRI, rfMRI, or EEG/MEG analyses (see Larson-Prior et al.,
this issue). In general, the utility of parcellated connectome datasets depends on the quality
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of the parcellations, which is a domain of active investigation both within and outside the
HCP consortium.

The following example illustrates key aspects of the wide range of visualization options
available in Workbench, with its multiple viewing windows and multiple browser-like tabs
within each window. Suppose a user is interested in the relationship of data pertaining to
major HCP modalities in and around the heavily myelinated visual area complex known as
MT+. One window can be used to display myelin maps (Fig. 9A), and another window (or
tab) to display resting-state functional connectivity maps whose surfaces are yoked to
present identical views (Fig. 9B, C). Clicking in the center of MT+ based on heavy myelin
content (vertex 1 in Fig. 9A) reveals functional connectivity for that vertex in the both left
and right hemispheres (Fig. 9B). The additional highlighted vertices facilitate comparisons
of correspondences between hotspots of functional connectivity and heavy myelination in
both the left (black vertices) and right (white vertices) hemispheres. Clicking on a vertex just
dorsal to MT+ (vertex 2 in Fig. 9A) reveals a very different map of functional connectivity
(Fig. 9C) whose hotspots lie mainly in regions of low or moderate myelination. Additional
windows or tabs could be used to display task-fMRI (tMRI) contrasts, tractography-based
connectivity maps, and the differing 3D trajectories taken by probabilistic tractography
streamlines emanating from inside and outside MT+. Finally, the user might in each window
include layers representing multiple individuals for each modality as well as a group
average, taking advantage of the one to one correspondence established across subjects
using the standard grayordinates space (Glasser et al., this issue).

Complicated sets of windows and layers of the type illustrated in Fig. 9 generally take
considerable time to set up. However, this need only be done once, because Workbench
supports saving of “scenes” that store all the information needed to regenerate complex
scenes in their entirety, even when such scenes access data that are a mixture of files stored
locally and in ConnectomeDB. Not only does this greatly reduce setup time when returning
to an analysis later, but it also can facilitate collaborations among investigators by
transmitting appropriate scene files along with the associated datasets.

Workbench remains under active development by the HCP, and many additional capabilities
are anticipated in the next several years. One such feature will be web-enabled specification
(‘spec’) files. A spec file is a standard set of data files that the user wants to open together. It
is similar to a scene file, except it does not specify how the loaded data are to be displayed.
If a user accessed a spec file located in ConnectomeDB (via Workbench using the
appropriate URL), Workbench could then download all of the data and display them locally
for the user. A similar process will also be implemented for scene files, so that the database
can generate a spec or scene file based on a user query. The file could then be downloaded
and explored by the user in Connectome Workbench. Thus scene files and spec files will
serve as an integral link between ConnectomeDB and Connectome Workbench for data
visualization and data mining.

Discussion
The primary data acquisition and first order quality control procedures for the HCP are
stable. However, the many second order quality control procedures, informatics tools, and
data mining capabilities described here reflect a project still in very active development and
evolution. For example, as more subjects are studied, we expect to develop a better
understanding of the various quality metrics and to potentially establish cutoff points for
acceptance in analyses. Much of the current focus pairs with ongoing development of image
processing and analysis methods by other components of the HCP. As these reach a reach a
level of readiness, they will be incorporated into ConnectomeDB's automated pipelines and
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computational services infrastructure. Specific pipelines likely to be impacted soon include
diffusion quality control, MEG preprocessing, and dense connectome generation.

IntraDB and ConnectomeDB include a variety of customizations on the XNAT system,
many of which are general and reusable in nature. These include project-specific data user
agreements, the dictionary service, the data dashboard, the package service, the download
interface and API, the IntraDB to ConnectomeDB transfer service, the integration of Aspera
fasp, the various QC and preprocessing pipelines, and the data models for the various
behavioral assessments used by the HCP. These custom features are being extracted as
pluggable modules that can be downloaded from XNAT Marketplace and deployed on
independent XNAT systems. Several additional informatics components are not reusable per
se but provide novel approaches to data sharing, including the Connectome in a Box
distribution mechanism and data organization strategies.

In addition to these specific modules, the overall code for the HCP databases is open source
and available on the Bitbucket version control system (https://bitbucket.org/hcp). The
software may be used by projects conducting similar research as the HCP, though significant
modifications to the code would likely be necessary to meet each project's specific
requirements.

The HCP has promoted the co-evolution of a database (ConnectomeDB) and a visualization
platform (Workbench) that each has extensive free-standing capabilities. Currently, they are
linked by entry-level capabilities that involve Workbench's ability to remotely access dense
connectome datasets in ConnectomeDB. We consider this a valuable toehold into a much
more intricately intertwined set of data mining capabilities envisioned for the future. This
will enable interactive exploration and visualization of a wide variety of complex
relationships between brain circuits, brain function, behavior, heritability, and their genetic
underpinnings, based on the rich and systematically acquired and analyzed datasets made
available through the HCP.
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Highlights

• Quality control procedures of the HCP have enabled high throughout data
acquisition.

• IntraDB and ConnectomeDB database services enable operations and open
access data sharing.

• Connectome Workbench enables cross-modal data visualization and
exploration.

Marcus et al. Page 22

Neuroimage. Author manuscript; available in PMC 2014 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. The HCP data flow
HCP data are acquired on a dedicated scanner and immediately sent to IntraDB, where a
series of manual and automated quality and anonymization processes are executed. Data that
pass quality control are re-organized and exported to ConnectomeDB for public sharing.
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Figure 2. Selected measures from the BIRN Agar phantom QA over a 7-month period
Panel (A) shows temporal SNR [tSNR; also called the summary signal-to-fluctuation-noise
value in Friedman and Glover (2006)] and static image SNR in the Agar phantom. tSNR
from one resting-state scan of each human participant over this time window is also shown.
Panel (B) shows the percent ghost intensity, calculated by shifting an original phantom mask
by N/2 voxels in the appropriate axis to create a “ghost mask” and then computing the mean
intensity in that mask relative to the non-ghost voxels.
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Figure 3. Protocol validation reports
Reports are generated immediately after acquisition to detail whether each series with the
session was acquired according to the HCP protocol. Here, the series 30 scan failed owing to
an insufficient number of frames, likely due to scan being aborted prior to completion.
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Figure 4. Quality control reports
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IntraDB includes detailed reports for reviewing data and quality control information. A
session-level report (top) provides modality-specific summary statistics for each scan. For
fMRI, this includes the output of the FUNCTIONAL_QC pipeline (temporal SNR, DVARS,
FWHW, etc). Detailed plots of these measures across time (bottom) can be viewed by
clicking on a link within the report. The full report generated by the BIRN QA pipeline can
also be accessed.
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Figure 5. Basic navigation in ConnectomeDB
The landing page guides users to different pre-selected data sets and to the full Q1 open
access data release. The pre-selected groups were specifically identified to provide user
friendly access to various subject group sizes, all containing high quality data from unrelated
subjects.
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Figure 6. Data Dashboard
The Data Dashboard allows users to filter the data set by any of the metadata and data fields
in the database. Here, the user has selected all male subjects with an agreeableness score on
the Neuroticism-Extraversion-Openness Inventory greater than 30. The results set of 9
subjects is displayed in the data tables, with tabs for the each of the data categories. The user
can then choose an action (download a spreadsheet, download images) for the subject group
they have generated.
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Figure 7. Download Packages
The Download Packages interface allows users to filter the set of packages to download by
format and modality and to review the data that will be downloaded. The interface
automatically uses the subject group previously selected by the user, in this case the 9
subjects generated in the search illustrated in Figure 6. After queuing the packages of
interest, clicking the “Download Packages” launches the Aspera Connect client to execute
the actual download.
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Figure 8. Example of surface and volume visualization in Connectome Workbench
Left: A montage view of a population-average inflated surface showing the FreeSurfer-
generated average ‘sulc’ map displayed on medial and lateral views of left and right
hemispheres. Right. A montage volume-slice view of the population-average T1w volume.
The population-average midthickness surface (black contour) does not perfectly overlay the
average T1w gray-matter pattern, because there are significant differences in the inter-
subject alignment achieved by nonlinear volume-based vs surface-based registration.
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Figure 9. Multi-modal comparisons in Connectome Workbench
A. Group-average myelin map, with 5 surface vertices highlighted on the left hemisphere
(black) and geographically corresponding vertices displayed on the right hemisphere
(white). B. Functional connectivity map for vertex 1, centered on MT+ in the left
hemisphere. Many hotspots of functional connectivity are centered on regions of heavy
myelination. C. Functional connectivity map for vertex 2, situated just dorsal to MT+. The
pattern of functional connectivity is very different and is largely centered in regions of low
or moderate myelination. To reduce complexity, the medial views of each hemisphere
visible in Workbench montage view are not illustrated here.
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Table 1

Distribution of Functional QC measures.

Measure Mean
a Std Dev 5th percentile 95th percentile

tSNR
b 24.41 2.39 20.37 28.04

FWHM: mean (mm) 1.66 0.080 1.56 1.82

AbsMotion: mean (mm) 0.31 0.21 0.13 0.72

RelMotion: mean (mm)
c 0.093 0.029 0.06 0.15

RelMotion: 95th percentile (mm) 0.19 0.070 0.12 0.30

RelMotion > 0.15 (%)
d 15.55 13.97 1.14 44.69

RelMotion > 0.30 (%)
e 1.00 2.42 0.00 5.20

DVARS: mean (Δ% BOLD × 10)
f 52.86 3.95 47.17 59.93

DVARS: std dev 2.98 2.50 1.01 6.85

a
N = 2207 task and resting-state fMRI runs (126 subjects)

b
temporal signal-to-noise ratio (mean divided by temporal standard deviation), computed voxelwise, then averaged over a whole brain mask

c
Relative motion as returned by FSL's MCFLIRT is approximately 1/2 of the “Framewise displacement” (FD) measure defined in Power et al.

(2012).

d
Percentage of frames in the time series with relative motion > 0.15

e
Percentage of frames in the time series with relative motion > 0.30

f
DVARS returned by ‘fsl_motion_outliers’ is scaled to match the definition used in Power et al. (2012).
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Table 3

Variance Components Analysis of FIX-ICA resting-state fMRI metrics.

MeasureMeasure Subject (%) Session (%) Error (%)

TotalVariance 73.4 6.2 20.4

MotionVariance 56.1 7.1 36.9

UnstructuredNoiseVariance 87.9 9.1 3.0

StructuredNoiseVariance 69.7 6.0 24.2

BOLDSignalVariance 52.3 5.1 42.5

# Total ICA Components 84.6 7.1 8.4

# Structured Noise Components 85.0 6.9 8.1

# BOLD Signal Components 76.5 5.0 18.5

RelMotion 70.4 9.3 20.4

N = 80 resting-state fMRI runs (20 subjects × 2 sessions on different days × 2 runs per session). The Session effect (df=20) was nested in the
Subject effect (df=19). The Error effect (df=40) represents the variability related to repeated runs within a session. For each measure, the Subject
effect was significant (p<0.0004). The Session effect was significant for UnstructuredNoiseVariance (p<0.0001), # of Total ICA Components
(p=0.004), # of Structured Noise Components (p=0.004), and RelMotion (p=0.04).
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Table 4

Automated image processing pipelines.

Name Description Products Core Methods Run Time

Protocol validation Inspects DICOM headers
to verify image acquisition

Validation Report XNAT 1m

Defacing Blurs areas of structural
images containing facial
features.

DICOM w/ modified voxels Milchenko & Marcus 1m/series

NIFTI conversion Generates NIfTI-formatted
versions of acquired
images

NIFTI dcmtonii 5m/series

Phantom QC Calculates RMS stability,
drift, mean value, and SNR

QC Report BIRN 15m

fMRI QC Calculates mean, variance,
skewnewss and kurtosis of
DVAR

QC Report FSL 15m

Structural MR QC Detects blurring, edge
coherence, and SNR

QC Report python 5m

Pre-surface generation Removes spatial artifacts
and distortions from
structural scans, co-
registers them to common
atlas space.

Undistorted native and MNI volumes FSL/python 8h

Surface generation Generates cortical surfaces
and segmentations.

Native Surfaces, Segmentations Freesurfer, FSL 24h

Post-surface generation Generates Workbench-
ready data files and myelin
maps.

Workbench spec files Workbench,FSL 4h

fMRI volumetric processing Removes spatial distortion,
motion correction, and co-
registers structural scans to
common atlas space.

MNI registered fMRI volumes Freesurfer, FSL, python 4h

fMRI surface processing Maps fMRI volume
timeseries to surfaces and
creates standard
grayordinates space.

CIFTI dense timeseries in
grayordinates

Workbench, FSL 4h

Diffusion* Intensity normalization,
EPI distortion removal,
eddy-current distortion
removal, motion/gradient-
nonlinearity correction,
structural registration

Diffusion Data in Structural Space FSL, Freesurfer, python 36h

Fiber Orientation Modeling* Bayesian estimation of
diffusion parameters
obtained using sampling
techniques

Probabilistic diffusion orientations FSL TBD

MEG/EEG* TBD TBD Fieldtrip TBD

Connectivity* TBD TBD Workbench/FSL TBD

FIX* Run ICA and classify ICA
components with removal
of noise-based components

rfMRI Denoising FSL/matlab/R 14h

Task fMRI Subject Analysis* Single subject task fMRI
level 1 and 2 GLM
analysis

Workbench/FSL 20m

The HCP's pipelines are implemented using XNAT's Pipeline Service. Run time is shown in minutes based on execution on a XXX system.
Pipelines denoted with an asterisk are currently in development and run times are estimated
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