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Abstract
Diffusion tensor imaging (DTI) measures water diffusion within white matter, allowing for in vivo
quantification of brain pathways. These pathways often subserve specific functions, and
impairment of those functions is often associated with imaging abnormalities. As a method for
predicting clinical disability from DTI images, we propose a hierarchical Bayesian “scalar-on-
image” regression procedure. Our procedure introduces a latent binary map that estimates the
locations of predictive voxels and penalizes the magnitude of effect sizes in these voxels, thereby
resolving the ill-posed nature of the problem. By inducing a spatial prior structure, the procedure
yields a sparse association map that also maintains spatial continuity of predictive regions. The
method is demonstrated on a simulation study and on a study of association between fractional
anisotropy and cognitive disability in a cross-sectional sample of 135 multiple sclerosis patients.
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Introduction
Diffusion tensor imaging is a technique to quantify white matter pathways in the brain and
spinal cord in vivo. In clinical applications, it opens the possibility to investigate the
relationship between abnormal brain anatomy and neurological diseases [Ciccarelli et al.,
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2008]. For example, several studies show that DTI can produce MRI indices in specific
white matter tracts that may be associated with clinical disability in multiple sclerosis (MS),
a disease that causes severe motor and cognitive deficits [Kern et al., 2010; Lin et al., 2008,
2005; Lowe et al., 2006; Ozturk et al., 2010].

These studies provide important insights into the organization of the brain and the effect of
brain disorders. Results may be used as a tool for the diagnosis and management of patient
care or as surrogate markers in future clinical trials, particularly if they are shown to be
pharmacologically sensitive. However, some clinical researchers question the implications
of these study results, because the correlations between current MRI measures and clinical
disability, although significant, have generally been low [Barkhof, 2002; Goodin, 2006].
Such small correlations may be due to the intrinsic variability in the clinical expression of
MS plaques in various anatomical locations.

Voxel-wise or mass-univariate regression, often referred to as the “general linear model”, is
a standard technique for exploring the relationship between images and scalar measures such
as clinical disability scores. In this approach, one regresses brain structure measurements on
a disability score separately at each voxel [Ashburner and Friston, 2000; Smith et al., 2006]
to produce a statistical parametric map [Friston et al., 1994]. Such maps open the door to
localizing the voxels that are significantly related to disability. Thresholded version of the
resulting maps may also be used to predict disability scores [Efron, 2009; Purcell et al.,
2009]. However, mass-univariate estimation treats each voxel as independent, as opposed to
sharing information across neighboring voxels.

Multivariate or “decoding” models [e.g. Haxby et al., 2001; Haynes and Rees, 2006;
Norman et al., 2006] seek to overcome these limitations. One such model that incorporates
complex spatial structure is scalar-on-function regression [Goldsmith et al., 2011], in which
the outcome is regressed on an entire one-dimensional white matter tract profile at once.
This approach uses a weighted version of the tract profile, where the weights are estimated
from the data. A useful by-product of the fitting algorithm is a tract-specific disability index,
which is easy to understand and analyze. The method was developed for hundreds or
thousands of locations along a neuronal tract, but it is not well suited for: 1) scaling up to
tens or hundreds of thousands of locations; 2) modeling response surfaces that can be sparse
and with abrupt edges; and 3) adapting to 3-D brain geometry, which contains complex
manifold structures that are imperfectly observed.

In this paper we introduce a scalar-on-image regression method for studying the association
between clinical measures and 3D brain maps. The method is computationally efficient, can
be carried out over a large region of the brain, and can be adapted to highly irregular brain
regions using a flexible spatial neighborhood definition. The term “scalar-on-image
regression”, analogous to the nomenclature of Reiss et al. [2011], refers to the fact that
whereas the responses are scalars as in conventional regression, the predictors are entire
images. This method provides a coefficient image that describes the association between
each voxel and the outcome, adjusting for all other voxels in the image. The proposed
approach is Bayesian, adopting a sparsity-inducing prior that exploits both the presumed
sparsity and the spatial smoothness of the coefficient image.

We apply our approach to a simulation dataset and data from a cross-sectional MRI study of
MS, and focus on studying the association between a clinical disability score and voxel-wise
DTI indices in a large pre-specified region of the brain. More specifically, we use the
PASAT score [Fischer et al., 1999] to measure cognitive disability and fractional anisotropy
values to measure tissue viability. The region we consider is a 61×125×26 collection of
voxels including the corpus callosum (see Figure 1). We choose to limit ourselves to this
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relatively restricted region for computational efficiency, and also because, as mentioned
above, damage to the corpus callosum has been linked to cognitive disability in MS. This
known link facilitates the interpretation of the analysis results.

Methods
The core of our approach is to assume that there is an underlying unknown 0/1 map of
voxels indicating non-association or association with the outcome respectively, and place an
Ising prior on this latent binary image. Our model can be implemented through a single-site
Gibbs sampler, where the computation time needed for each sweep over the image space is
linear in the number of locations and does not depend on the number of nonzero
coefficients.

We first introduce some notation. Assume the data for subject i ∈ {1, 2, …, I} are {yi, Xi,
Zi}, where yi is the scalar outcome (e.g. cognitive score), Xi is a vectorized image of the ith
subject, and Zi consists of other covariates (e.g. gender, age, etc.). In the MS example, every
image Xi is a 3-dimensional array structure of dimension L = L1L2L3 = 61 · 125 · 26 = 198,
250, though in general it can be an arbitrary 3-D manifold. We represent Xi as an L×1
dimensional vector, (xi1, xi2, …, xil, …, xiL)T, where xil is an imaging measure, such as
fractional anisotropy, for subject i at voxel location l.

Scalar-on-image regression: an ill-posed multiple linear regression
In essence, scalar-on-image regression is a multiple linear regression model, with the
clinical outcome as the response and the image voxels as the predictors:

(1)

where β = (β1, β2, …, βL)T is a vector of coefficients for the image predictor Xi. In other
words, each element βl is the coefficient for the image intensity xil at voxel l. The parameter
βl can be interpreted as the change in yi for each unit change in xil adjusting for all other
locations (i.e., xl′ for all l′ ≠ l). The errors εi are independent and identically distributed

normal random variables with mean 0 and variance . See Figure 2 for an illustration.

When the intensities of all locations are mutually independent, solving this model will be
equivalent to fitting separate linear regressions of yi on xil for each l. However, if the voxel-
level measurements are correlated, this multiple linear regression can in principle provide
improved estimation by incorporating information across the brain as a whole.

We note that, whereas most predictive or “decoding” methods in neuroimaging [Haynes and
Rees, 2006; Norman et al., 2006] have focused on pattern classification, Equation (1)
models continuous outcomes [Cohen et al., 2011]. The model can be extended to deal with
classification problems, by assuming a discrete distribution for Yi and using an appropriate
generalized linear model.

Unfortunately, fitting the multiple linear regression model (1) is an ill-posed problem. The
dimension of X (here X is the collection of images across subjects, i.e. X = (X1, X2, …,
XI)T) is I × L and in most neuroimaging application I (the number of subjects) is much
smaller than L (the number of voxels), so that the least-squares solution is not unique. In
order to obtain an estimate of the coefficient, dimension-reducing assumptions are needed to
narrow the solution space. Our algorithm, presented below, narrows the solution space to a
set of coefficient maps which are sparse and spatially continuous.
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Fitting through penalization and its connection to empirical Bayesian linear regression
A standard way to make the solution identifiable is the penalized regression, wherein the
usual least-squares criterion minimized in linear regression is replaced by a penalized least
squares criterion, i.e., the estimate for model (1) is given by

(2)

The penalty P (β) is chosen to yield a solution to Equation (1) with desirable properties such
as smoothness or sparsity.

Penalizing on β has a Bayesian interpretation: (2) is equivalent to enforcing a particular prior
on the coefficients. Indeed, solving Equation (2) is statistically equivalent to the following
model where the β coefficients are treated as random:

(3)

The solution β̂ of model (2) equals the posterior mean E(β|y) in Equation (3). The advantage
of model (3) is that it provides a likelihood-based approach to fitting, which in turn allows
inference on the model parameters. The second line of equation (3) means that β has a
density function f(β) proportional to exp {−P−1(β)/2}, where the normalizing constant is
omitted. For specific forms of the penalty the prior distribution exp {−P−1(β)/2} may be
improper (i.e. its integral may not be finite). But as long as the posterior distribution of β|Y
is proper, model (3) still provides reasonable results.

One of the most popular penalties is the ridge regression or ℓ2 penalty [Hoerl and Kennard,
1970] P(β) = λβT β, where λ is a scalar tuning parameter, with λ = 0 corresponding to no
penalty and λ = ∞ corresponding to β = 0. Using (3), it follows that a ridge penalty is
equivalent to assuming that the β parameters have an independent multivariate normal prior
with constant variance. The lasso or ℓ1 penalty [Tibshirani, 1996; Park and Casella, 2008] P
(β) = λΣ |βl| is equivalent to an independent double exponential prior on β in (1). A similar
connection holds for elastic net penalty [Zou and Hastie, 2005; Carroll et al., 2009; Ryali et
al., 2010; de Brecht and Yamagishi, 2012], whose corresponding prior is a mixture of
normal and double-exponential distribution.

Much recent work has been done to choose suitable spatial priors for neuroimaging data. For
example, Penny et al. [2005] have proposed a fully Bayesian model with spatial priors
defined over the regression coefficients of a general linear model, using Laplacian operators
or a Gaussian Markov Random Field. Flandin and Penny [2007] have proposed a Bayesian
approach using a sparse spatial basis function priors. This model allows for spatial variations
in intensity smoothness. As an alternative, Everitt and Bullmore [1999]; Hartvig and Jensen
[2000]; Woolrich and Behrens [2006] model the spatial distribution of activation maps using
mixture models.

Connection with scalar-on-function regression
Equation (1) can be viewed as a discretized version of a functional linear regression model
with scalar response. The functional regression model is written as
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where the integral is over a region of 3D Euclidean space. Ramsay and Silverman [2005]
discuss models of this form for one-dimensional t, and many papers have been written on
similar models for both continuous and categorical responses [James, 2002; Cardot et al.,
2003; Müller and Stadtmüller, 2005; James and Silverman, 2005; Reiss and Ogden, 2007].
In equation (1), Xi is a discretization of Xi(t) on a three-dimensional lattice, which
transforms the integral into a sum. In these scalar-on-function models, dimension reduction
is achieved by imposing some structure on the coefficient function β(t)—for example, by
assuming that it lies in the span of the leading functional principal components, and/or
imposing a smooth estimate by means of penalized B-splines [Cardot et al., 2003; Müller
and Stadtmüller, 2005; Reiss and Ogden, 2010]. However, it is unclear that such approaches
would be effective and computationally feasible for multi-dimensional images containing
tens or hundreds of thousands of voxels. In this setting it is natural to require the coefficient
image to be both smooth and sparse. The prior that we describe next leads to estimates that
meet these requirements.

Our proposal: Imposing an Ising prior on a latent 0/1 map
We are interested in priors ensuring that 1) neighboring voxels have similar coefficient
values and 2) non-zero coefficients form contiguous patches in large areas of zero effects.
Such local constraints are difficult to impose through ridge or lasso penalties, as they assume
that the β parameters are exchangeable and do not incorporate spatial dependence. Thus, we
focus on finding an appropriate prior distribution in the family of Markov random field
spatial distributions. More precisely, we propose to use a neighborhood-based Ising prior
[Cipra, 1987].

First, we introduce an L-dimensional binary random image γ such that βl = 0 if γl = 0 and βl
≠ 0 if γl = 1; the binary map γ is a map that indicates which locations in the image
coefficient are zero and do not impact the outcome. One can view γ as an unknown brain
mask that defines regions of interest. Here we are interested in estimating this mask. An
Ising prior is used for γ, so that

where δl is the set of locations which are in the neighbourhood of location l and φ(a, b) is a
normalizing constant. The parameters of the Ising distribution a and b control the overall
sparsity and interaction between neighbouring points, respectively. Thus two assumptions
are addressed: 1) sparsity controlled by a — most voxels have coefficient βl = 0, which
means there is no association with the measurement yi; and 2) spatial contiguity controlled
by b —a voxel is more likely to have a nonzero coefficient if its neighbours do. The
parameters a and b could be allowed to vary spatially; for simplicity we assume that they are
the same across locations.

Next, we assume that for those locations where the image is correlated with the outcome

(i.e. γl = 1), βl has a normal prior with an unknown variance . If , then no

shrinkage will be placed on the estimated β̂l. We estimate  by cross-validation, and in
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practice have found that a small  achieves low prediction error in noisy data sets. More

precisely , which leads to the posterior conditional distribution

where  are the location-
specific posterior mean and variance. Following the above equations, the location-specific
posterior distribution comparing (γl, βl) = (0, 0) to (1, β*) is

 where

Here, β0 is the coefficient image corresponding to (γl, βl) = (0, 0) while β1 is the coefficient
image corresponding to (γl, βl) = (1, β*), and β* is sampled from the posterior distribution [βl|
y, γl = 1, β−l, α, η].

Thus, at each image location the joint posterior distribution of the binary image and
coefficient map is a Bernoulli choice that accounts for prior information through the Ising
distribution as well as the relative impact of a zero and nonzero coefficient on the outcome
likelihood.

Smith and Fahrmeir [2007] and Li and Zhang [2010] proposed similar Ising priors to select
coefficients, but there are two important differences from our setting. Smith and Fahrmeir
[2007] looked at a linear model at each voxel in an fMRI analysis. The Ising prior is placed
across models. By contrast, we are placing Ising model on a single model and our aim is to
predict an outcome from one single whole map. In both papers, the regression coefficients
are calculated marginally. This method requires the inversion of matrix of size p × p, where
p is the dimension of predictive coefficients. When p is large, this inversion is
computationally infeasible. Instead, our method calculates the βl by conditioning on other
voxels during each sweep of the Gibbs sampler, which avoids the problem of large matrix
inversion.

Advantages of the Ising prior
The Ising prior has some important properties that are useful for conducting computations.
Most importantly, the Ising distribution admits the single-site conditional distribution

 where γ−l is the vector of γl′ where l′ ≠ l and
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This indicates that the probability for voxel l to be predictive knowing the status of all other
voxels in the brain depends only on the status of the voxels in a defined neighborhood of the
voxel (Here and below, we use “predictive” as shorthand for voxels with nonzero
coefficients). This is intuitive and extremely helpful when one is interested in simulating
from the posterior distribution of the latent 0/1 surface γ indicating whether a voxel is
predictive or not. Indeed, instead of updating the entire image at once, one needs only
update it one voxel at a time. This is why the algorithm is linear in the number of locations
and remains relatively fast, even when the number of predictive locations is very large. Here
we consider only contiguous, cubic neighbourhoods, though other definitions are also
possible.

Estimation
Our full model is

where δ(0) is a point-mass at zero. The Ising prior controls the number of nonzero
coefficients and favors contiguity of localized effects. The Bernoulli choice between zero
and nonzero coefficients at each location depends the posterior probability of whether a
voxel is predictive or not. Goldsmith et al. [2013] used a similar model but imposed a
conditional autoregressive (CAR) prior on βl whose indicator variable γl equals 1 and used a
much smaller number of predictor voxels (30K). Here we use an exchangeable prior on the
size of effects at those locations that are found to be associated with the outcome.

We implement a single-site Gibbs sampler to generate iterates from the posterior distribution
of (γ, β). At the tth step, we proceed through the following steps for each location l ∈ {1, 2,
…, L}:

1. Calculate μl,  from 

2. Generate 

3. Calculate the posterior probability g from  and β1

4. Generate 

5. If ; otherwise .
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Tuning parameters

The parameters a, b,  and  control the estimation of the coefficient map and are referred

to as tuning parameters. Here  determines the impact of the change in the outcome
likelihood on the overall probability whether a voxel is predictive or not. Similarly, in the

posterior distribution of predictive regression coefficients, the parameter  is important in
determining the posterior mean and variance. Finally, a controls the overall sparsity, while b
determines the overall degree of smoothness among the γ parameters.

To select these tuning parameters we use five-fold cross validation. Our data are divided into
five randomly selected groups. Each time, we obtain the training model from four groups
and calculate the prediction error from the rest group. The procedure is repeated 5 times and
the average of the prediction errors is calculated; the tuning parameter estimators (a, b,

) minimize this average prediction error. The choice of grid for tuning parameter is
crucial – a grid range that is too narrow may miss the optimal parameters while a range that
is too broad increases the computational burden. In the following simulation study, we
provide some practical advices about the choice of the grid.

The model provides an excellent exploratory and sensitivity analysis tool where results can
be inspected by simply changing the tuning parameters. We find this multi-resolution
approach to be very helpful in the context where one is interested in further exploring results
beyond simply using the cross validated values. Such an exploratory analysis could be based
on modifications of the estimated tuning parameters.

An alternative is through a fully Bayesian model that imposes a hyperprior on the tuning
parameters. Unfortunately, for the levels of signal-to-noise observed in brain imaging our
fully Bayesian implementation was quite slow, strongly dependent on the prior on the Ising
distribution parameters, and not particularly robust. Therefore, the full Bayesian model is
feasible, but will require some non-trivial computational developments. For example, the
posterior distributions of a and b are hard to obtain, and one must implement an empirical
approximation to the normalizing constant to enable generation of a, b [Gelman and Meng,
1998].

Simulation
To further investigate the effect of choices of the tuning parameters as well as the
performance of our method, we conducted a simulation study with two-dimensional
predictors.

First, we generate the true coefficient map β on a 30×30 rectangle. All the coefficients are
zero except that, in a 5×5 square, the coefficients are set to 1 (Figure 3). Then the predictors

( ) with the same dimension as the coefficient map are generated from a standard normal

distribution. Simulated outcomes  are given by  where α = 0 and

. We consider two levels for the variance : letting  be the

sample variance of the simulated outcomes, we choose  such that the signal-to-noise ratio

 is either 1 or 10.

For each signal-to-noise ratio, we generate 499 datasets in the manner described above with
I = 100 (number of the subjects). In the first dataset only we use five-fold cross validation to

select the tuning parameters a, b, . We then fix these tuning parameter values, we fit a
scalar-on-image regression on each simulated dataset. On the one hand, because the tuning
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parameters are chosen based on the first simulated dataset, the results may not be fully
representative of the proposed method. On the other hand, we can use this information to
investigate the sensitivity of the model fits to possibly non-optimal tuning parameters. For
each fit, the coefficient image β̂ is initialized to zero. We use 250 iterations of the Gibbs
sampler and discard the first 100 as burn-in.

To evaluate the estimated coefficient images, we use the mean squared error (MSE)
separately for regions in which β = 0 (“non-predictive”) and the remaining (“predictive”)
regions, to provide insight into the method’s ability to accurately detect features while

inducing sparsity elsewhere. Thus we define  and

 where L1, L0 are the numbers of predictive and non-
predictive image locations. Table 1 displays the mean and standard deviation of both MSE
components for each signal-to-noise ratio and its standard deviation.

For perspective on Table 1, in Figure 3 we display coefficient image estimates for
simulations with the median MSE1 scores. Although we used the tuning parameters from the
first simulated data set rather than choosing them for each individual data set, the estimated
coefficients are still reasonable, picking up the predictive region in the true coefficient map.
Next, we fit the same simulated datasets again with other sets of tuning parameters whose
CV scores are at most 40% higher than the optimal value. The estimated coefficients (the
middle two columns of Figure 3) are worse than the optimal one (the first column of Figure
3), especially when the signal-to-noise ratio is low. However, the estimated coefficients still
capture the key features of the true map.

As noted by a referee, using five-fold cross-validation to choose four tuning parameters is a
hard problem. In practice, if one has some background knowledge about the data, it would
help the choice. For example, Li and Zhang [2010] said if there is a priori belief in a sparse
model, one can constrain the range of a, b in a small region. Or if the data is very noisy, one

should choose a very small  as illustrated in our simulation study.

However, if there is no background knowledge, we employ a step-by-step procedure. We
start with a sparse grid in a broad range and gradually refine the grid at each iteration. For
example, in this simulation study, we first looked at the grid of tuning parameters in the log

scale, i.e. ,b are selected from exp(−5) to exp(3) and a is selected from −exp(−5) to
−exp(3). If the CV-optimizing tuning parameters lie on the boundary of the grid, we extend
the grid and repeat the above cross validation. We then take out a 3 × 3 × 3 × 3 sub-grid of
which the set of tuning parameters with the optimal CV score is in the middle. Last, we
refine the above sub-grid into a 7 ×7 ×7 ×7 grid using the natural scale, with boundary and
the middle point unchanged. In the end, the optimal tuning parameters are obtained based on
the cross-validation.

DTI study
As discussed in the Introduction, our motivating application is to investigate the relationship
between cognitive disability in MS patients and their diffusion tensor images. MS is an
immune-mediated disease that affects the brain and spinal cord (central nervous system). It
results in damage to the myelin sheath, the protective covering that surrounds axons in white
matter. Damage caused by MS can disrupt the transmission of signals in affected tracts.

Study participants with MS were recruited from an outpatient neurology clinic and healthy
volunteers from the community. All disability scores were measured within 30 days of the
MRI scan. Prior to MRI scanning and disability testing, all participants gave signed,
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informed consent. All procedures were approved by the institutional review board, and
previous results on this dataset have been reported [Goldsmith et al., 2011; Reich et al.,
2010; Ozturk et al., 2010].

We used the Paced Auditory Serial Addition Test (PASAT) as a proxy measurement for
cognitive disability. This score assesses mental capacity, rate of information processing, and
sustained and divided attention. The range of PASAT is from 0 to 60, with higher scores
indicating better cognition ability [Fischer et al., 1999].

All DTI scans were performed on a 3T scanner (Intera; Philips, Best, The Netherlands) over
a 4.6 year period, using the body coil for transmission and either a 6-channel head coil or the
8 head elements of a 16-channel neurovascular coil for reception (both coils are made by
Philips). Each session included two sequential DTI scans using a conventional spin-echo
sequence and a single-shot EPI readout. Whole-brain data were acquired in nominal 2.2 mm
isotropic voxels and with the following parameters: TE, 69 ms; TR, automatically calculated
(“shortest”); slices, 60 or 70; parallel imaging factor, 2.5; non-collinear diffusion directions,
32 (Philips “overplus high” scheme); high b-value, 700 s/mm2; low b-value (“b0”),
approximately 33 s/mm2; repetitions, 2; reconstructed in-plane resolution, 0.82 × 0.82 mm.
We coregistered the diffusion-weighted scans to the minimally diffusion-weighted scan
from the first DTI sequence using a rigid-body transformation implemented in the
Automatic Image Registration program [Woods et al., 1998]. Prior to further analysis, data
were adjusted to account for changes in average tract-specific MRI indices that resulted
from scanner upgrades, by a procedure previously described by Harrison et al. [2011].

Here we focus on fractional anisotropy (FA) [Cercignani et al., 2001; Hasan et al., 2005].
The diffusion-weighted scans were processed using CATNAP [Landman et al., 2007] to
create maps of FA. The whole-brain FAs were calculated by slice-wise averaging of all
diffusion-weighted images, removal of the low-intensity voxels that are characteristic of
extracerebral tissues on these images, and final removal of voxels with MD > 1.7 μm2/ms to
exclude cerebrospinal fluid [Ozturk et al., 2010]. The resulting brain mask was applied to all
DTI maps.

In summary, our study consists of data from 135 MS patients. Each has one PASAT score
and one FA image with dimension 61 × 125 × 26, registered to ensure major structures (e.g.,
the corpus callosum) are aligned across subjects.

Results

After choosing the tuning parameters a, b,  by cross-validation, we run the image
regression model through the Gibbs sampling algorithm. We use a chain of length 500 and
discard the first 100 samples as burn-in. All the regression coefficients and latent binary
indicators are initialized at 0.

Figure 4 shows the overall distribution of estimated regression coefficients in β, and Figure
5 shows the estimated coefficients overlaid on an anatomical reference from Slice 7 to Slice
22. The first thing to notice is that most of coefficients are zero (426 of the 197842 voxels
had βl ≠ 0), due to the sparsity-inducing effect of the Ising prior. Figure 4 indicates that the
number of coefficients with positive coefficient estimates (red lines) is larger than the
number of negative estimates (blue lines). Thus, in most of the predictive voxels, lower FA
values correspond to lower PASAT scores. This agrees with the scientific hypothesis that
degradation of white matter is associated with diminished cognitive ability. Moreover, in
Figure 5 the “visible” predictive regions, though extremely sparse, are located in the corpus
callosum — the largest white matter structure in the brain, which has been related to
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cognitive ability [Ozturk et al., 2010] rather than nearby structures such as the internal
capsule and thalamus.

In Figure 6, we investigate the mixing and convergence properties of our Gibbs sampler.
The coefficient map has a dimension equal to the number of voxels, and we use the norm of

the coefficients (i.e. ) to illustrate the performance of the chain. The black line
used the initial value 0, which is implemented in this paper. It converges very quickly, far
before the end of the burn-in period. The red line is using the random generated initial value.
It began to converge around step 150. We also compared two posterior means of the
estimated coefficient images, and there is no major disparities of the results. Therefore both
chains appear to converge to the same distribution.

Up to this point, we have used cross-validation to select tuning parameters and have
provided estimated coefficient images that satisfy the sparsity and spatial continuity
assumptions. However, one might be interested in exploring results as one moves away from
the optimal cross-validated values of parameters. In fact, only 426 out of 198,250 voxels
have nonzero coefficients, probably because data are noisy and cross validation heavily
penalizes coefficients. This helps prediction but may be too restrictive when one is
interested in exploratory data analysis and hypothesis generation. For exploratory purposes,
one may be interested in obtaining less conservative coefficient images.

To guide an exploratory consideration of alternative tuning parameter values, the profile
cross-validation plots (Figure 7) can provide insight into the effect of each tuning parameter
on the performance of the model. In each of the four panels, three of the tuning parameters
are fixed at the optimal values chosen by cross-validation, while the remaining tuning
parameter varies in the x-axis. As shown in the figure, tuning parameters a, b have relatively
small influence on the prediction performance. Thus, the empirical choice of those two

parameters can be more flexible. Also, as  increases, the proportion of variance explained
in left-out data drops dramatically, which indicates the shrinkage of β’s is necessary.

Figures 8 and 9 present the coefficient images that result from two combinations of tuning
parameters. Starting from the cross-validation setting (Figure 5), we select the tuning

parameters (i.e. increase a, decrease b, decrease  and decrease ) so that the estimation
becomes less conservative. While a higher number of predictive regions are revealed from
Figure 8 and Figure 9, the prediction power of the corresponding models is decreased. Table
3 shows the estimated mean of squared prediction errors and the proportion of variance
explained for predicted data corresponding to Figures 5, 8 and 9. From this we can see that a
range of coefficient images can provide similar results in terms of prediction power, and the
choice of final model depends on both prediction accuracy and interpretation of the
estimated coefficient image.

Balancing between prediction accuracy and result interpretation, in Figure 8, we choose a =

−2, b = 0.5, . In the estimated coefficient image, 41455 out of 198250 voxels
have nonzero coefficients. Although significant effects tend to be located in the upper-left
region comparing to a scattered pattern in the right side (e.g. marked with a purple
rectangle), the coefficients on both sides maintain spatial contiguity. Most positive
coefficients are located in the corpus callosum, which indicates that cognitive ability may be
positively associated with integrity of the white matter in that region. We also found
negative coefficients outside corpus callosum (e.g., in the lower-right region of Slice 21
marked with a yellow circle). This might be due to the undersmoothed estimation caused by
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a small b value, though further investigation is necessary. Several predictive regions
(marked with a green circle) are located on the edge of the white matter, possibly due to
registration error.

As noted by a referee, it can be difficult to understand the effect of tuning the four
parameters on the estimated coefficient image. In practice we recommend using only the
CV-optimizing tuning parameter values to form a final estimate, while noting that this
method (like any method for regression with dimension far exceeding the sample size) is
inherently exploratory. It may be useful to consider other tuning parameter values as a
sensitivity analysis. In particular we recommend focusing only on tuning a, b. Both of these
parameters have clear interpretations — controlling sparsity and heterogeneity of
neighbourhood voxels, respectively — which makes easier to understand the effect of
empirical tuning on the coefficient estimates.

For comparison, we first performed voxel-wise regressions, with PASAT score regressed on
the FA values for each voxel in 198,250 separate linear regressions. (Note that in standard
mass-univariate regression, the roles of PASAT and FA would be reversed.) In Figure 10,
we plot the uncorrected p-values of the slope coefficients from Slice 7 to Slice 22. Most
voxels with small p-values are located in the corpus callosum, as expected. Moreover, the
regions with small p-values in the voxel-wise regressions tend to have large coefficients in
our scalar-on-image regression.

Comparing the results in Figure 8 with Figure 10, the voxels with small p-values in Figure
10 spread symmetrically to the left and right part of the brain while our method shows an
asymmetric pattern of predictive coefficients. For example, in Slice 18 there are predictive
coefficients located in the upper-left region while in the right part, the significant
coefficients are more evenly distributed across the corpus callosum (marked with purple
rectangle). This difference is due to the fact that the scalar-on-image regression model fits
the entire brain region at the same time. It estimates the effect of one voxel, adjusting for
associations at other voxels. The voxelwise regressions do not have such adjustment.

For comparison with a method that is not spatially informed, we performed lasso regression
on the same brain region, with the optimal shrinking parameter chosen by five-fold cross
validation. The resulting MSE is 157.12, somewhat higher than the value for our proposed
algorithm in Table 3. Due to the low signal-to-noise ratio, the lasso estimate is very
conservative. Only 33 voxels are estimated to have non-zero coefficients, which are
displayed in Figure 11. Most of the predictive voxels from lasso regression also appear in
Figure 5. However, since there is no spatial constraint for the coefficients, those predictive
voxels are scattered and do not form clusters (Figure 11).

An alternative non-spatially-informed method is to prescreen the voxels based on the
standardized coefficients (i.e. βl/σl) from separate voxelwise regressions, and then perform
linear ridge regression using the selected voxels. In this study, we investigated 10, 100,
1000, 10000 voxels with the largest absolute standardized coefficients. The tuning
parameters in the ridge regressions are selected by 5-fold cross validation and the estimated
MSEs are 128.91, 107.92, 106.91, 101.00. The coefficient images for the top 100 and top
1000 voxels are presented in Figure 12. Since there is no spatial structure incorporated in the
screening stage and regression stage, comparing to Figure 5, we can see two voxels with
different signs in the adjacent voxels in Figure 12. Moreover, in the case of top 1000 voxels,
we can identify some clear negative coefficients along the white matter in slice 18, which
may not be scientifically meaningful [Ozturk et al., 2010]. However, this method does have
a better prediction performance than either our proposed method or lasso regression. This
indicates that the screening stage helps prediction performance. In future work, it may be
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worthwhile to incorporate a prescreening step, which does not ignore the spatial structure in
the image, into our proposed method.

Discussion
We have proposed a novel linear regression approach for analyzing the relationship between
cognitive disability and white matter microstructure in three-dimensional images. Noting the
connection between penalized linear regression and Bayesian modeling, we proposed a
Bayesian regression model with a latent binary indicator. We take advantage of an Ising
prior to impose the assumption of sparsity and spatial continuity in the analysis. A
distinctive merit of our method is that the regression model can be established on any
manifold. By contrast, most scalar-on-image regression approaches [e.g. Reiss and Ogden,
2010; Reiss et al., 2013] require a regular grid. For simplicity, in our application we focused
on a rectangular region, but the method is easy to extend to any irregularly shaped region,
including the entire brain.

We applied our model to a multiple sclerosis study. The results show most of the predictive
regions are located at the corpus callosum, as expected from existing work, not just in MS
[Kern et al., 2010; Lin et al., 2008, 2005; Lowe et al., 2006; Ozturk et al., 2010] but in other
diseases, including autism [Barnea-Goraly et al., 2004; Keller et al., 2007]. The corpus
callosum connects the two cerebral hemispheres and thus mediates functions that require
integration across multiple brain regions. Reflecting the overall increase in white matter in
higher mammals, its thickness is substantially greater in humans than in rodents. Thus, it is
not surprising that it plays a role in cognitive function, and that damage to the corpus
callosum is associated with cognitive dysfunction in disease states. In interpreting the maps
of Figures 5, 8 and 9, it is important to keep in mind that MS is a disease that affects the
whole brain, not just the corpus callosum, and that the salient pathologies are perivenular
inflammation and demyelination with axonal transections. At the same time, MS can also
affect the brain in a tract-specific manner through processes such as Wallerian degeneration
and dying-back axonopathy, which involve proximal and distal degeneration related to
axonal transection anywhere along a fiber bundle. For these reasons, damage to portions of
the corpus callosum that mediate cognition is very likely to be coupled to damage to nearby
portions with other functions. It is therefore not surprising to us that the nonzero voxels
identified by our method are distributed in space across our region of interest. It would be
interesting to further develop these results by examining whether the specific voxels
identified are spatially related to areas of focal white matter damage in this population, and
whether, in other more homogeneous diseases, the voxels uncovered by the analysis are
more localized in space. One example might be the so-called reversible splenium lesion
[Takanashi et al., 2006].

There are a few limitations in the presented methodology. 1) If we choose the hyper-
parameters via cross-validation, the computation time is high; this can be partially alleviated
by parallel computing. Alternatively, a pilot cross-validation study can be done on part of
the image region and the estimated parameters can then be applied to the entire image. 2) In
addition to computation considerations, special attention must be paid to the stability of the
results as both cross-validation and the Gibbs sampler are inherently stochastic methods. To
examine this issue, we repeated cross-validation and cross validation distributions of tuning
parameters are now plotted in Figure 13. From these plots we conclude that there is sizeable
variability in both the a and b parameter estimates (the upper right and the lower left panels),
which agrees with our profile cross validation plots. 3) Our approach is a hybrid between a
Bayesian and a frequentist approach, where the hyper-parameter and coefficient estimation
proceeds in parallel. A fully Bayesian approach might provide a more integrated and
philosophically satisfying alternative. 4) We emphasize the sparsity of the coefficient image.
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In some analyses, one may be interested in borrowing strength from the immediate
neighbours, as done via the CAR prior in Goldsmith et al. [2013]. Also, our current model
only incorporates the neighbourhood information and emphasize on the sparsity of the
predictive regions. We can also consider putting extra constraints on the coefficients to force
the regions in white matter to have higher probabilities to be predictive. 5) We note that our
method, when applied to FA maps, does not take registration error into account. Concerns
about registration have motivated the development of tract-based analyses for DTI data
[Smith et al., 2006]. Zhu et al. [2010, 2011] developed a functional linear model framework
approach to tract-based data in which the DTI-derived functions are treated as the responses,
unlike our method which uses the image data as the predictors.

Avenues for further work include the following. (1) Instead of a continuous response
variable, we can extend our model to cope with categorical variable for classification
problems. A Metropolis-Hastings algorithm will be implemented to sample from the
conditional posterior distribution during Gibbs sampling. (2) We will develop inferential
tools for statistical testing for image regression. As an analogy to the confidence band in
frequentist inference [Reiss and Ogden, 2010], we can construct credible interval (or
Bayesian posterior interval) from the Gibbs samples. (3) In terms of application, we may
consider extending the analysis to the entire brain or to using other imaging-based
measurements within our current region of interest. It is also fairly straightforward to extend
our method to single-subject fMRI data. For multiple-subject fMRI data, one possible
solution is to incorporate a spatio-temporal process into the prior of the scalar-on-image
regression model [Woolrich et al., 2004].
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Highlights

• We analyze the relationship between cognitive outcomes and DTI predictors.

• We jointly model the predictive status and the regression coefficient.

• We induce the sparsity and promote spatial continuity in the model.

• The model is esimated through a Gibbs sampler, which is computational
efficient.

• The model can be carried out over a large and irregular brain region.

Huang et al. Page 18

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Red region contains the rectangular region we use as a predictor of cognitive function.
Background 3D brain is rendered from a T1 template image.
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Figure 2.
Illustration of the multiple linear regression model, with cognitive disability measure as the
scalar response and fractional anisotropy maps as the image predictor.
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Figure 3.
Estimated coefficient maps separated by signal-to-noise ratios, choices of tuning parameters.
The first row corresponds to the case when signal-to-noise ratio is 10 while the second row
corresponds to the case when the ratio is 1. The first column shows the estimates when the
optimal tuning parameters are used. For the second and third columns, we used two sets of
randomly-picked tuning parameters whose CV score are at most 40% higher than the
optimal value.
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Figure 4.
Histogram of the estimated coefficients with tuning parameter values a = −3, b = 6,

, which were chosen by five-fold cross-validation. The middle bar refers
to coefficients whose magnitude is exactly 0. The blue bars denote the coefficients which are
less than 0 while the red ones denote the coefficients that are positive.
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Figure 5.
The estimated coefficient images from Slice 7 to Slice 22. The estimation is overlaid on one
single subject’s FA scan image for anatomical reference. The tuning parameters are selected

via cross validation, a = −3, b = 6, . Positive coefficients are shown in red,
while blue denotes negative coefficients. The estimated mean square prediction error is
146.43 and the proportion of variance explained for predicted data is 22.00%.
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Figure 6.
The chain of the norm of coefficient map from step 2 to step 500 of the Gibbs sampler. The
black line gives the result when the initial values for coefficients are zero. The red line gives
the result when the initial values are generated from a Normal(0,1) distribution.
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Figure 7.
Profile cross validation plot: in each panels three of the tuning parameters are fixed at the
values chosen by cross-validation while the remaining tuning parameter varies in the x-axis.
The y-axis is the proportion of variance explained in the left-out data.
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Figure 8.
The estimated coefficient images from Slice 7 to Slice 22 using tuning parameters a = −2, b

= 0.5, . The estimation is overlaid on one single subject’s FA scan image for
anatomical reference. The estimated mean square prediction error is 150.25 and the
proportion of variance explained for predicted data is 20.34%.

Huang et al. Page 26

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
The estimated coefficient images from Slice 7 to Slice 22 using tuning parameters a = −1, b

= 0.5, . The estimation is overlaid on one single subject’s FA scan image
for anatomical reference. The estimated mean square prediction error is 164.6 and the
proportion of variance explained for predicted data is 19.22%.
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Figure 10.
p-value map for voxel-wise linear regression fitting from Slice 7 to Slice 22.
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Figure 11.
Coefficient map for the linear lasso regression fitting from Slice 7 to Slice 22.
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Figure 12.
Coefficient map for the linear ridge regressions using top 100 and top 1000 voxel predictors.
Slice 15 to Slice 22 are presented.
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Figure 13.
Histograms for each selected tuning parameters in 10 repeats of 5-fold cross validation. The

upper left panel is for , the upper right panel is for a, the lower left is for b and the lower

right is for .

Huang et al. Page 31

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Huang et al. Page 32

Table 1

Average mean square error separated by true predictive and non-predictive location, signal-to-noise ratios. In
the brackets are the standard deviations of MSE across simulated datasets.

signal-to-noise ratio MSE1 MSE0

10 1.602 × 10−1(3.444 × 10−2) 5.032 × 10−3(1.242 × 10−3)

1 6.662 × 10−1(8.485 × 10−2) 5.951 × 10−3(1.628 × 10−3)
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Table 2

MS patient characteristics. Disability data were obtained within 30 days of the MRI scan.

No. of participants (% women) 135 (35%)

Mean age, years (SD; range) 44 (12; 20–69)

Mean PASAT (SD; max=60) 44 (13)
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