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Abstract
Several independent studies have demonstrated that small amounts of in-scanner motion
systematically bias estimates of resting-state functional connectivity. This confound is of
particular importance for studies of neurodevelopment in youth because motion is strongly related
to subject age during this period. Critically, the effects of motion on connectivity mimic major
findings in neurodevelopmental research, specifically an age-related strengthening of distant
connections and weakening of short-range connections. Here, in a sample of 780 subjects ages 8–
22, we re-evaluate patterns of change in functional connectivity during adolescent development
after rigorously controlling for the confounding influences of motion at both the subject and group
level. We find that motion artifact inflates both overall estimates of age-related change as well as
specific distance-related changes in connectivity. When motion is more fully accounted for, the
prevalence of age-related change as well as the strength of distance-related effects is substantially
reduced. However, age-related changes remain highly significant. In contrast, motion artifact tends
to obscure age-related changes in connectivity associated with segregation of functional brain
modules; improved preprocessing techniques allow greater sensitivity to detect increased within-
module connectivity occurring with development. Finally, we show that subject’s age can still be
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accurately estimated from the multivariate pattern of functional connectivity even while
controlling for motion. Taken together, these results indicate that while motion artifact has a
marked and heterogeneous impact on estimates of connectivity change during adolescence,
functional connectivity remains a valuable phenotype for the study of neurodevelopment.

Keywords
motion artifact; fMRI; connectivity; development; adolescence; network; connectome; resting-
state

INTRODUCTION
Within the growing field of brain connectomics, substantial attention has focused on how
brain connectivity develops during youth (Supekar et al., 2009; Power et al., 2010; Fair et
al., 2007). This focus is motivated by the marked changes in behavior, emotion, and
cognition that occur during this period (Somerville and Casey, 2010; Luna, 2009; Casey et
al., 2008). Furthermore, major neuropsychiatric illnesses often begin in youth, underscoring
the need to understand how connectivity changes relate to both normal development as well
as vulnerability to disease (Paus et al., 2008; Insel, 2009).

Many studies of brain development in youth have examined resting-state functional
connectivity MRI (rsfc-MRI), which is based on correlations of the blood-oxygen level
dependent (BOLD) signal in different brain regions while subjects are not performing a task
(Biswal et al., 1995; Fox and Raichle, 2007). In particular, three prominent rsfc-MRI
findings have shaped our understanding of how the brain develops during youth. First, long-
range connections tend to strengthen with age, whereas shorter-range connections tend to
weaken with age (Supekar et al., 2009; Fair et al., 2007; Dosenbach et al., 2010). Second,
large-scale functional brain networks tend to become more segregated from each other with
age. As part of this process of segregation, within-network connectivity strengthens while
between-network connectivity weakens (Supekar et al., 2009; Fair et al., 2007; Fair et al.,
2008; Dosenbach et al., 2010; Anderson et al., 2011). For example, Fair et al. (2007) found
that the default mode network (DMN) and the executive system network became more
segregated from each other with development, with greater within-network (e.g., DMN-
DMN) connectivity and less between-network (e.g., executive-DMN) network connectivity.
Third, Dosenbach et al. (2010) demonstrated that this complex pattern of connectivity
change can be summarized using multivariate analyses to derive a functional maturation
index that is highly correlated with subject age (Dosenbach et al., 2010; see also Wang et al.,
2012).

However, since the time that these studies were published, it has been demonstrated in
several independent datasets that even small amounts of in-scanner subject motion can
systematically bias estimates of resting-state functional connectivity (Van Dijk et al., 2011;
Power et al., 2012; Satterthwaite et al., 2012). Notably, the reported effects of motion are
exactly opposite of several reported age effects. Specifically, motion is related to a decrease
in long-range connectivity and increase in short-range connectivity, which is the inverse of
the aforementioned distance-dependent change in connectivity previously observed during
development. As motion is inversely correlated with age (i.e., younger children move more),
this raises the possibility that motion artifact has driven previously published developmental
findings. It is therefore necessary to re-evaluate previous findings in developmental
connectivity while accounting for motion artifact more rigorously.

Satterthwaite et al. Page 2

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Accordingly, in the present study we revisit age-related changes in functional connectivity in
a very large sample of children, adolescents, and young adults (n=780) studied as part of the
Philadelphia Neurodevelopmental Cohort (Gur et al., 2012). Specifically, we re-evaluate:

1. The overall predominance of age-related connectivity change. If motion were to
inflate age-related connectivity changes, we would expect that strategies that
account for motion would diminish apparent age-related changes in connectivity.

2. Distance-dependence of age-related connectivity changes. Similarly, we expect that
better control of motion artifact would reduce the apparent distance-dependence of
age-related changes, as motion artifact increases short-range connectivity and
diminishes long-range connectivity.

3. Network segregation with age. It is unknown how motion impacts the previously-
reported strengthening of within-module connections and weakening of between-
module connections, which may represent functional segregation of large-scale
brain networks. Here we investigate the impact of motion artifact on the evolution
of these effects.

4. Prediction of subject age using multivariate patterns of connectivity. Finally, we re-
evaluate the degree to which complex patterns of brain connectivity can yield an
accurate prediction of subject age even after accounting for motion.

For each analysis, we compare apparent effects of age when data is processed using standard
methods and following processing using an improved confound regression model that
substantially mitigates the impact of motion on the subject-level timeseries (Satterthwaite et
al., 2013; see also Power et al., 2012; Power et al., 2012b; Carp 2012; and Yan et al., 2013
for further discussion). However, even improved methods do not completely eliminate
motion artifact. Accordingly, we additionally control for motion in group-level analyses by
including it as a confounding covariate. As described below, results reveal that previously
reported patterns of neurodevelopmental changes in functional connectivity are differentially
impacted by motion artifact. While distance-related age effects diminish, changes related to
network segregation are actually enhanced when controlling for motion. Finally, while the
accuracy of age prediction using multivariate patterns of connectivity is somewhat
diminished by controlling for motion, it nonetheless remains relatively robust. Overall, we
demonstrate that while motion may have biased certain aspects of previous findings,
functional connectivity remains a valuable phenotype for studying neurodevelopmental
change during youth.

METHODS
Participants

The present report is based on data acquired as part of by the Philadelphia
Neurodevelopmental Cohort, a collaboration between the Center for Applied Genomics at
Children’s Hospital of Philadelphia (CHOP) and the Brain Behavior Laboratory at the
University of Pennsylvania (Penn). Study procedures were approved by the Institutional
Review Boards of both Penn and CHOP. The target population-based sample is of 10,000
youths who presented to the CHOP network for a pediatric visit and volunteered to
participate in genomic studies of complex pediatric disorders (Gur et al., 2012). A
subsample of 1,445 subjects, stratified by age and sex, were randomly selected for
neuroimaging. Of these, 1,275 had resting-state data acquired; 495 subjects were excluded
for poor data quality or a history that suggested potential abnormalities of brain
development. Specifically, subjects were excluded due to a history of medical problems that
might affect brain function, a history of inpatient psychiatric hospitalization, or current use
of psychotropic medication. Additionally, subjects were excluded if scan mean relative
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displacement (MRD, see below) exceeded 0.2mm, if there were >20 volumes with relative
displacement >0.25mm, or if gross between-run motion resulted in incomplete brain
coverage. These exclusion criteria resulted in a final sample of 780 subjects aged 8–22 years
(mean age 15.6 years, S.D. 3.3 years; 333 males; see Table 1).

Image acquisition
All data were acquired on the same scanner (Siemens Tim Trio 3 Tesla, Erlangen, Germany;
32 channel head coil) using the same imaging sequences. Blood oxygen level dependent
(BOLD) fMRI was acquired using a whole-brain, single-shot, multi-slice, gradient-echo
(GE) echoplanar (EPI) sequence with the following parameters: 124 volumes, TR 3000 ms,
TE 32 ms, flip angle 90°, FOV 192×192 mm, matrix 64X64, slice thickness/gap 3mm/0mm,
effective voxel resolution 3.0×3.0×3.0mm. Prior to functional timeseries acquisition, a
magnetization-prepared, rapid acquisition gradient-echo (MPRAGE) T1-weighted image
was acquired to aid spatial normalization to standard atlas space, using the following
parameters: TR 1810 ms, TE 3.51 ms, FOV 180×240 mm, matrix 256×192, 160 slices, TI
1100 ms, flip angle 9 degrees, effective voxel resolution of 0.9 × 0.9 × 1mm. Additionally, a
B0 field map was acquired for application of distortion correction procedures, using a
double-echo gradient recall echo (GRE) sequence: TR 1000 ms, TE1 2.69 ms, TE2 5.27 ms,
44 slices, slice thickness 4mm, FOV=240mm, effective voxel resolution of 3.8×3.8×4mm.
Prior to scanning, in order to acclimate subjects to the MRI environment and to help subjects
learn to remain still during the actual scanning session, a mock scanning session was
conducted using a decommissioned MRI scanner and head coil. Mock scanning was
accompanied by acoustic recordings of the noise produced by gradient coils for each
scanning pulse sequence. During these sessions, feedback regarding head movement was
provided using the MoTrack motion tracking system (Psychology Software Tools, Inc,
Sharpsburg, PA). Motion feedback was only given during the mock scanning session. In
order to further minimize motion, prior to data acquisition subjects’ heads were stabilized in
the head coil using one foam pad over each ear and a third over the top of the head. During
the resting-state scan, a fixation cross was displayed as images were acquired. Subjects were
instructed to stay awake, keep their eyes open, fixate on the displayed crosshair, and remain
still.

Motion metric
As previously (Satterthwaite et al. 2012; Satterthwaite et al., 2013) we evaluated in-scanner
head motion using the re-alignment parameters estimated using FSL’s MCFLIRT routine
(Jenkinson et al., 2002). This estimation derives a motion transformation matrix for each
time point. Each transform is described by six motion parameters consisting of three
translations and three rotations (Jenkinson et al., 2002). This six parameter timeseries can be
condensed to a single vector representing the root mean squared volume-to-volume
displacement of all brain voxels (Jenkinson et al., 2002). This one-dimensional motion
timeseries can be calculated to measure the RMS displacement relative to a single reference
volume (absolute displacement), or relative to the preceding volume (relative displacement).
As prior (Satterthwaite et al. 2012; Satterthwaite et al., 2013), we focus on relative RMS
displacement. In order to provide a summary measure of motion for each subject, the motion
time series was further reduced to a single scalar quantity by computing the mean value of
the relative displacement vector, called the mean relative displacement (MRD).

Study sub-samples
In our complete sample of 780 subjects, subject motion declined with age as expected (r=
−0.19; p<0.001, Figure 1A). Although our main group level analyses in the complete sample
included motion as a confounding covariate (see below), we also conducted supplementary
analyses in two specific sub-samples in which age and motion were uncorrelated (Figure 1).
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As described below we selected a motion-matched subsample (n=729) and a nearly-
motionless, motion-matched sub-sample (n=70). Matching is an alternative to including
motion in the group-level regression model as a confounding covariate (Dosenbach et al.,
2010; Satterthwaite et al., 2012; Satterthwaite et al., 2013). The age-motion uncorrelated
sample was selected using a greedy matching algorithm (Carpenter, 1977) implemented in
MATLAB. In each loop of the algorithm, the correlation between motion and age was
calculated without each individual subject that still remained in the sample. This produced a
distribution of correlation coefficients; the subject whose exclusion resulted in the lowest
correlation between age and motion was removed from the sample. The algorithm stopped
and samples were considered matched when the absolute r value was <0.01. This procedure
produced an age-motion matched sample that included 729 subjects (mean age=15.9 years,
S.D.=3.1, 306 male) where the correlation between age and motion was r=−0.009 (Figure
1B).

As a final step, in order to further bolster confidence in our findings, we examined a second
sub-sample of subjects that was nearly-motionless. This sub-sample included subjects only
if their maximum volume-to-volume displacement was <0.1mm. However, even using this
criterion, age and motion were still significantly related (r=−0.13). Therefore, the matching
algorithm described above was applied in order to ensure that age and motion were
uncorrelated, producing a final sub-sample of n=70 subjects (mean age=16.8 years,
S.D.=3.0, 31 male; mean subject MRD=0.0265mm, SD=0.005mm) where the correlation
between age and motion was r=−0.002 (Figure 1C).

Network construction
We examined the effects of development within a system of 264 nodes described by Power
et al. (2011). In this network, nodes are 5mm radius spheres in MNI space that were drawn
from both meta-analysis of task fMRI studies and resting-state functional connectivity
mapping techniques (Cohen et al., 2008; Nelson et al., 2010). Power et al. (2011) provide a
parcellation scheme for these nodes that delineates 13 functional modules that correspond to
known large-scale brain networks that are coherent during both task activity and at rest
(Smith et al., 2009; Yeo et al., 2011). Within this system of 264 nodes, there are 34,716
unique edges. We selected this node system due to three main advantages. First, the nodes in
the network cover the entire brain, providing a full range of inter-node distances, allowing
us to investigate whether edgewise Euclidean distance is related to observed age effects after
accounting for motion. Second, as the system has already been parsed into functional
networks in a sample of adults (Power et al., 2011), it provides an independent reference to
test the hypothesis that these networks will become more segregated with age, with
increased intra-modular connectivity and diminished inter-modular connectivity. Third, the
relatively high-dimensional nature of the data (34,716 unique edges) facilitates machine-
learning approaches such as support vector regression, allowing us to test if functional
connectivity can accurately predict subject age even after accounting for motion at the
subject and group level.

Image registration
Subject-level BOLD images were co-registered to the T1 image using boundary-based
registration (Greve and Fischl, 2009) with integrated distortion correction as implemented in
FSL 5 (Jenkinson et al., 2012). Whole-head T1 images were registered to the Montreal
Neurologic Institute 152 1mm template using the diffeomorphic SyN registration that is part
of ANTS (Avants et al., 2008; Avants et al., 2011; Klein et al., 2009). All registrations were
inspected manually and also evaluated for accuracy using spatial correlations. Network
nodes were registered to subject space for timeseries extraction by concatenating the
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coregistration, distortion correction, and normalization transformations so that only one
interpolation was performed in the entire process.

Subject-level timeseries processing
A voxel-averaged timeseries was extracted from each of the 264 nodes for every subject. In
order to evaluate the impact of motion, data was preprocessed using both standard confound
regression as well as a validated confound regression procedure that has been optimized to
reduce the influence of subject motion (Satterthwaite et al., 2013). In both cases, the first 4
volumes of the functional timeseries were removed to allow signal stabilization, leaving 120
volumes for subsequent analysis. Functional images were slice-time corrected and re-aligned
using MCFLIRT (Jeknsion et al., 2002). Structural images were skull-stripped using BET
(Smith, 2002) and segmented using FAST (Zhang et al., 2001); mean white matter (WM)
and cerebrospinal fluid (CSF) signals were extracted from the tissue segments generated for
each subject (Reetz et al., 2012; Jakobs et al., 2012). Standard confound regression included
9 parameters: mean global signal, mean WM signal, mean CSF signal, as well as six motion
parameters (9 regressors total). Improved confound regression (Satterthwaite et al., 2013)
included these 9 parameters as well as the temporal derivative, quadratic term, and temporal
derivative of the quadratic of each (i.e., 36 regressors total; see Friston et al., 1996 for a
similar application of quadratic motion regresssors to task-based fMRI). Furthermore, as
described previously (Satterthwaite et al., 2013) motion-related spike regressors were
included in the model whenever a volume-to-volume displacement was greater than
0.25mm. It should be noted that current methods of estimating motion through the use of
timeseries realignment parameters do not allow one to attribute motion to a specific
acquisition volume. Rather, motion can only be detected as a displacement (or change in
relative position) from one volume to the next. Here, we included a single regressor for each
volume bounding the observed displacement (i.e. TR −1 and TR +1); these spike regressors
effectively censor the influence of these volumes in subsequent analysis of residual
timeseries (Lemieux et al., 2007). As two volumes are lost from analysis for each spike,
subjects with >20 spikes were excluded (see “Participants” above), ensuring that each
subject had at least 4 minutes (80 volumes) of timeseries data for analysis (Van Dijk et al.,
2010). Notably, subjects in the nearly-motionless sample had no volumes that were flagged
for spike regression as all volume-to-volume displacements were <0.1mm. Following
confound regression, residual timeseries were band-pass filtered to retain signals between
0.01–0.08 Hz (Satterthwaite et al., 2013). Finally, a symmetric connectivity matrix
(264×264) was defined for each subject using pairwise Pearson’s correlations.

Network visualization
In order to aid visualization of the overall network structure, a mean connectivity matrix was
created by averaging across all subjects. This average connectivity matrix was displayed in
graphical form using a spring-embedded force-based rendering with Gephi (Bastian et al.,
2009). In this representation, nodes that are tightly connected are brought closer together,
whereas nodes that are not connected are pushed farther apart on the graph. As negative
connections cannot be visualized effectively in such a graph, in this representation only
positive values are displayed, with graph edges thresholded to produce a network density of
10% (Figure 2).

Group-level analyses: effect of age
As a first step, we investigated whether significant age effects on resting-state functional
connectivity remain after rigorously accounting for motion at the subject and group level.
Here and in subsequent analyses, we examined the effects of age on functional connectivity
using four models in the complete sample (n=780):
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M1 Standard (9-parameter) confound regression; motion (MRD) not included as a
confounding covariate in the group-level analysis.

M2 Standard (9-parameter) confound regression; motion included as a confounding
covariate in the group-level analysis.

M3 Improved (36-parameter + spike regression) confound regression; motion not
included as a confounding covariate in the group-level analysis.

M4 Improved (36-parameter + spike regression) confound regression; motion
included as a confounding covariate in the group-level analysis.

Furthermore, as an alternative to including motion as a confound regressor in the group level
model, supplementary analyses were conducted in the age-motion matched sample (n=729)
following both standard (M5) and improved confound regression (M6). For each condition,
an across-subjects partial correlations were run at each of the 34,716 unique connections in
the network, where functional connectivity was the dependent variable and age was the
independent variable. Sex was a covariate included in all models; MRD was included as a
confounding covariate only in models M2 and M4 as specified above. To provide a
summary of the overall predominance of age-related connectivity change for a given
approach, we report the number of connections with a significant age effect after controlling
for multiple comparisons using a threshold determined by the false-discovery rate (Q<0.05;
Genovese et al., 2002).

While the total number of connections that change with age provides an easily interpretable
measure of the age effect, it does not provide an estimate of the overall magnitude of the
age-connectivity relationship. Accordingly, as in our previous work (Satterthwaite et al.,
2013), we also report the median absolute correlation between age and connectivity across
all 34,716 unique graph edges. Individual models were compared with a Wilcoxon sign-rank
test of the distributions of age-connectivity correlations. As described below in the results,
substantial age effects persisted in all approaches; because visualizing the large number of
significant edges present using an FDR (Q<0.05) threshold was impractical, only age effects
that survived Bonferroni correction (corrected p<0.05; uncorrected p<1.4×10−6) are
displayed. Network nodes and connections were visualized in three dimensions using
custom software written in-house with Mayavi (Ramachandran and Varoquaux, 2011).

Evaluation of impact of global signal regression
It should be noted that the preprocessing steps outlined above include global signal
regression (GSR). Prior work has shown that GSR may potentially bias results (Murphy et
al. 2009; Saad et al., 2012; but also see Fox et al., 2009 and Yan et al., 2013). However, in
our previous work we have shown that even small amounts of in-scanner motion results in
large drops in the BOLD signal across the brain parenchyma (Satterthwaite et al., 2013; see
Figure 3) that is well-modeled by the global signal. In order to demonstrate the effect of
inclusion of the global signal (and related WM and CSF signals) in this sample, we re-
processed the data under two additional conditions:

M7 Standard confound regression with 6 motion parameters, but without inclusion
of global, WM, or CSF signals in the regression; motion (MRD) was not
included as a confounding covariate in the group-level analysis.

M8 Improved confound regression with 24 motion parameters and spike regressors,
but again without global, WM, or CSF signals included. As above motion was
not included as a confounding covariate in the group-level analysis.

For each of these models, as in our prior work (Satterthwaite et al., 2013) in order to provide
a summary of the impact of motion on connectivity, we calculated the median absolute

Satterthwaite et al. Page 7

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



correlation between MRD and connectivity across all network connections. For comparison,
we also calculated this metric for the matching models M1 and M3, which included the
global signal (as well as WM / CSF). As displayed in Supplementary Figure 1 and predicted
by prior results (Satterthwaite et al., 2013; see also Yan et al., 2013), without GSR the
relationship between motion and connectivity was markedly higher: nearly all network
connections had a significant relationship between connectivity and motion without GSR,
and the median absolute correlation between motion and connectivity was substantially
elevated (r=0.28 with 6-parameter confound regression, r=0.20 with 24-parameter confound
regression). The correlation with motion in models that included the global signal was
substantially lower (r=0.06 and 0.04, respectively). Accordingly, GSR was retained for all
subsequent analyses.

Follow-up analysis in nearly-motionless sub-sample
As a final step, in order to verify that un-modeled motion was not driving apparent age-
related effects, we examined age effects within the nearly-motionless sub- sample of
subjects (n=70). Specifically, we compared the correlation between connectivity and age in
the nearly-motionless sub-sample within the 725 connections identified as having a
significant (FDR Q<0.05) age effect in the sample that had been analyzed using improved
preprocessing and a motion covariate in the group level analyses (i.e., M4). The mean
absolute value of the correlation with age in these edges was calculated in both the full
sample and the nearly-motionless subsample using descriptive statistics. As described
below, given the large number of multiple comparisons and the small effect sizes of the age-
connectivity relationship, this sub-sample was underpowered to detect substantial age-
connectivity effects when all connections were evaluated in this sub-sample alone.

Follow-up analysis of degree to which motion inflates estimates of age-related
connectivity change

As described below (see Results) the above analyses demonstrate that subject- and group-
level strategies used to mitigate the influence of motion artifact also reduce the apparent
magnitude and significance of age-related changes in connectivity. However, these analyses
do not directly establish that motion itself inflates estimates of age-related connectivity
change. In order to illustrate this more directly, we compared the age-connectivity
relationship in the nearly-motionless, motion-matched sub-sample of subjects (n=70) to
1,000 randomly selected sub-samples of 70 subjects where the total amount of motion and
the age-motion relationship was not controlled. For each randomly selected sub-sample, we
calculated the total number of individual connections that had a significant (FDR Q<0.05)
relationship with age, as well as the median absolute correlation between age and
connectivity across all unique connections. We compared the number of significant
connections found in the nearly-motionless, motion-matched sub-sample to this distribution
of 1,000 randomly chosen groups of subjects with a Wilcoxon signed-rank test. The median
absolute correlation between age and motion in the nearly-motionless, motion-matched sub-
sample was similarly compared using a one-sample t-test.

Analyses of sample size necessary to detect age-related connectivity changes
Analyses of the nearly-motionless, age-matched subsample of 70 subjects revealed that this
sample was underpowered to detect widespread age-related change in connectivity. As
typical studies of development are generally of a much smaller scale than the PNC, we
conducted follow-up analyses using random sub-samples of our own data to ascertain what
sample size was necessary to detect age-related changes in connectivity. First, in order to
determine the relationship between sample size and the number of connections that would be
expected to have an FDR-significant effect of age in a network of this size, we conducted a
series of analyses using random sub-samples (without replacement) over a range of sample
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sizes. Specifically, we evaluated sample sizes between 25 and 400 subjects at intervals of 25
subjects (e.g., n=25, n=50, etc.). For each sample size n, we selected n subjects 100 times
from the available pool of 780 subjects. For each randomly selected sample, the number of
FDR-corrected connections that exhibited a significant relationship with age was calculated
for both model M1 (standard processing, no group-level motion covariate) and model M4
(improved preprocessing + group level motion covariate). At each sample size considered,
the average number of FDR-significant connections was calculated over the 100 random
samples evaluated. Lowess curves were constructed from the data or each processing
approach; these curves summarize the extent of age-related connectivity change that can be
expected to be found with a given sample size in a relatively high-dimensional whole-brain
network.

Second, given the large number of multiple comparisons that require correction, smaller
studies are less likely to conduct whole-brain exploratory analyses using a high-dimensional
networks such as the one utilized here. Accordingly, we repeated the procedure outlined
above but only examined a single connection between the posterior cingulate (PCC; MNI
coordinates: −7, −55, 27) and the ventromedial prefrontal cortex (vMPFC; −7, 51, −1). The
PCC and vMPFC are both major hubs of the default mode network (Andrews-Hannah et al.,
2010, Schilbach et al., 2012; Van Dijk et al., 2010) and connectivity has previously been
found to increase during development (Fair et al., 2008). Note that the age-connectivity
relationship for this connection in the complete sample using model M4 was quite
significant: r=−0.15, p=3.02×10−5. For this analysis, in each sub-sample considered, instead
of calculating the number of FDR-corrected significant connections present within the entire
network, we simply recorded whether this single PCC-vMPFC connection was significant at
an uncorrected threshold of p<0.05. Because of the lower dimensionality of the data, we
evaluated samples of 10–400 subjects at an interval of 1 subject. As 100 random sub-
samples were evaluated for every sample size, the final outcome reported was the proportion
of times that a significant effect was detected. As above, this analysis was completed for
both models M1 and M4; lowess curves were again fit to the data. Finally, we report the
number of subjects needed to find a significant age-related change in vMPFC-PCC
connectivity 80% of the time.

Group-level analyses: impact of inter-node distance on effects of age
A commonly reported finding regarding the development of functional connectivity in
childhood and adolescence is that long-range connectivity strengthens and short-range
connectivity diminishes (Supekar et al., 2009; Dosenbach et al., 2010; Fair et al., 2007; Fair
et al., 2009). However, as motion artifact can mimic this same pattern, we investigated the
degree to which a distance-dependent effect remains after accounting for motion at the
subject and group level. Data was analyzed in the four main model conditions outlined
above (M1–M4) that used the entire sample (n=780); supplementary analyses considered the
age-motion matched sub-samples (n=729; M5 & M6). Next, for each model condition the
mean Euclidean distance of connections that showed a significant (FDR Q<0.05) age effect
was calculated separately for connections that strengthened with age (age-positive) and
those that weakened with age (age-negative). Within each model condition, the Euclidean
distance of age-positive and age-negative connections were compared using a t-test. In order
to directly compare models, the distance of age-positive connections for the improved
preprocessing + group-level regression approach (M4) were compared to the other main
models (M1–M3) using t-tests. This was repeated separately for significant age-negative
connections. Finally, in order to provide an estimate of the degree to which inter-node
distance modulated the effect of age on connectivity, we calculated the correlation between
the z-transformed age-connectivity correlation and the inter-node Euclidean distance. This
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analysis is quite analogous to our prior work examining the modulating effect of inter-node
distance and the appearance of motion artifact itself (Satterthwaite et al., 2013).

Group-level analyses: age-related network segregation
A prominent finding in studies of developmental connectivity is that large-scale functional
brain networks become more segregated from each other, with enhanced within-network
connectivity and diminished between-network connectivity (Anderson et al., 2011; Fair et
al., 2007; Fair et al., 2008; Fair et al., 2009; Supekar et al., 2009). We next evaluated the
degree to which accounting for in-scanner motion impacts this effect. As above, data was
evaluated following processing under the four main model conditions in the entire sample
(n=780; M1–M4), as well as within the age-motion matched subsample (n=729, M5–M6).
In order to provide an easily-interpretable measure of the degree to which connectivity
within and between functional network modules relate to the effects of age, we calculated
the percentage of connections that grow stronger with age that were within-network or
between-network. This was also done separately for connections that grow weaker with age.
(For reference, only 11% of the unique connections are within-module connections, whereas
89% are between-module connections.) In order to provide a statistical summary of the
degree to which within-module connections and between-module connections differed
among models, we compared the improved preprocessing + group-level regression (M4)
approach to the other main models (M1–3) using a chi-square test. Specifically, we
compared the proportion of significant age-positive connections that were within-module,
and repeated this procedure to evaluate the proportion of within-module age-negative
connections.

Prediction of subject age using multivariate pattern analysis
Finally, we tested whether the complex multivariate pattern of resting-state functional
connectivity can be used to derive a “functional maturation index” that correlates highly
with subject age (Dosenbach et al., 2010). To do this, the 34,716 unique edges for each
subject were entered as features into a linear support vector regression (SVR) algorithm
(Chang and Lin, 2011) and used to predict subject age. No feature selection was
implemented prior to SVR. Predictions were generated using a 10-fold cross validation
procedure with random subsampling where the multivariate model was trained on 90% of
the data, and then tested on 10% of the data. This procedure provides an unbiased estimate
of model predictive accuracy and prevents model over-fitting. Unlike multiple regression,
SVR does not allow the inclusion of a covariate; accordingly, we examined age-matched
and unmatched samples using both improved and standard confound preprocessing (i.e. M1,
M3, M5, M6). Predictive abilities of models were summarized using a Pearson’s correlation,
and compared via a Fisher’s r to z transformation.

As described below (see Results), SVR revealed that improved preprocessing and group-
level matching resulted in significantly poorer predictive accurate than standard
preprocessing and an unmatched group. In order to understand what drove this difference in
predictive accuracy, we conducted 1,000 permutations for each model to identify
significantly weighted model features. Overall permutation-based model significance is
reported as well. As in the mass-univariate analysis, the mean Euclidean distance of
significantly weighted features was calculated separately for age-positive and age-negative
connections. The distance of age-positive and age-negative features was compared among
models using two-sample t-tests.

Because Dosenbach et al. (2010) reported a non-linear relationship between the functional
maturation index and age, we tested for non-linear effects using a flexible non-parametric
multivariate adaptive regression spline model (Friedman, 1991) implemented in STATA
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(StataCorp; College Station, TX). In this model actual age was regressed versus predicted
age, using a procedure that directly compares a linear fit to higher-order spline models that
do not assume a parametric function. As detailed by Royston and Sauerbrei (2007), the
MVRS algorithm is an adaptation of the fractional polynomial approach and uses a similar
closed-test procedure for evaluating model complexity. For all data, linear models are
considered the default; the significance of the additional variance explained by splines was
compared to the linear model using a likelihood ratio test.

RESULTS
Motion inflates estimates of age-related connectivity change, but these effects persist after
controlling for motion

As a first step, we examined the degree to which procedures that account for motion artifact
impact the presence of age-related connectivity change. Strategies that account for motion
artifact on both the subject- and group-level clearly reduced the amount of apparent age-
related changes in connectivity (Figure 3A, Figure S2). Following improved preprocessing
and group-level covariation (M4), age effects were significantly reduced compared to all
models. The distribution of absolute age-connectivity correlations in M4 was less than the
next most-similar model (M3), z=10.8, p <1.0×10−10 (Figure 3B). Nonetheless, age effects
remain prominent after modeling motion at the subject- and group-level, even after stringent
type-I error control with the Bonferroni correction (Figure 3C).

Furthermore, when the connections that were found to have a significant age effect in the
most conservative model (M4) were examined in in the nearly-motionless, age-matched
subsample of subjects (n=70), the absolute magnitude of the age-connectivity correlation
was quite similar (i.e., r=0.16 in nearly-motionless sample versus r=0.13 in full sample),
suggesting that un-modeled motion did not drive observed results. However, it should be
noted that the effect size of the observed age-related changes in fact is small. As a result,
analyses examining age-related changes across all unique edges in the nearly-motionless
sub-sample revealed only a single connection that survived corrections for multiple
comparisons. Thus, this sub-sample was not considered in the subsequent analyses that seek
to parse the influence of motion on the significant age-related changes that were observed in
the complete sample.

While the above results demonstrate that the relationship between motion and age is reduced
by both improved preprocessing and accounting for motion in the group-level analysis, it
does not directly demonstrate that motion itself inflates the age-connectivity relationship.
Accordingly, we next compared the significance and magnitude of the relationship between
connectivity and age in the nearly-motionless sub-sample of subjects (n=70) to 1,000
randomly selected sub-samples of 70 subjects where the total amount of motion and the age-
motion relationship was not controlled. Notably, the number of unique graph edges where
there was a significant age-connectivity relationship was lower in the nearly-motionless,
sub-sample than the distribution of sub-samples where motion was not controlled (z=4.6,
p=4.13×10−6). The median absolute correlation between age and connectivity was also
significantly lower (t=28.5, p<1×10−10). Taken together, results show that while motion
inflates apparent age-related changes in connectivity, such effects nonetheless remain
widespread even after carefully accounting for subject motion.

Large samples are needed to detect significant age-related connectivity change
Notably, analysis of the nearly-motionless subsample of 70 subjects revealed only one
connection that survived multiple comparison corrections using FDR (Q<0.05). This
suggests that such a sample size may be underpowered to detect significant age-related
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changes in connectivity. As typical studies of development are generally of a smaller scale
than the PNC, we conducted additional analyses using random sub-samples of our own data
to ascertain what sample size would be necessary to detect age-related changes in
connectivity. This analysis revealed that after accounting for motion with improved
preprocessing and group-level covariation (model M4) 275 subjects would be needed to on
average detect 10 network edges that survive FDR correction. In contrast, only 100 subjects
analyzed using model M1 would reveal a similar number of significant connections. As seen
in Supplementary Figure 3A, the prevalence of age-related findings produced by the two
approaches diverges sharply as sample sizes increase.

Next, given the large number of multiple comparisons that require correction in this
network, we conducted a second analysis of a single PCC-vMPFC connection. This analysis
indicated that a sample size of 182 subjects would be necessary to detect significant age-
related strengthening of these two default mode hubs 80% of the time using model M4
(Figure S3B). In contrast, 140 subjects would be equally powered to produce significant
results if model M1 was used.

Motion exaggerates distance-dependent age effects
Next, we investigated the degree to which previously-reported relationships between inter-
node distance and age were present after accounting for motion. Consistent with prior
reports, distance effects were quite marked when data was analyzed using standard methods
(Figure 4A). Specifically, connections that became stronger with age (age-positive) were
longer-range than those that became weaker with age (age-negative). However, both subject-
level and group-level correction strategies clearly diminished this effect (Figure 4A, Figure
S4), with the improved-preprocessing, group-level covariation approach (M4) having
significantly shorter age-positive connections (t=2.86, p=0.004) than the next-most similar
model (M3). The inter-node distance of age-negative connections was not different between
models M4 and M3 or M4 and M2; however, age-negative connections were significantly
longer in model M4 than M1 (t=3.17, p=0.001). Nonetheless, even following both improved
preprocessing and group-level covariation (M4), age-positive connections remained
significantly longer range than age-negative connections (t=3.07, p=0.002; Figure 4A &
4B).

The above analyses only considered the inter-node distance of significant age-positive and
age-negative connections. Next, we examined the modulating effect of inter-node distance
on the age-connectivity relationship across all graph connections. As seen in Figure 4C, with
standard preprocessing and no group-level correction (model M1), there was a substantial
(r=0.21) association between internode distance and the age-connectivity correlation.
Notably, both improved preprocessing and group level covariation (as well as matching)
almost erased this relationship (i.e., r=0.01 for model M4).

Increase in intra-modular connections with development is enhanced when accounting for
motion

Results thus far suggest that motion serves to inflate age- and distance-related effects
observed in studies of developmental functional connectivity. We next investigated the
effect of motion on developmental changes in network segregation by examining the relative
strength of within-module versus between-module connectivity. As expected, using standard
processing methods (model M1) we found that age-positive connections were more likely to
be within-module than age-negative connections (Figure 5A, Figure S5). However, in
contrast to the attenuating effect of motion-control strategies on associations with inter-node
distance, we found that accounting for motion in fact enhanced the effect of network
segregation with age: the proportion of age-positive connections that were within-module
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increased with improved preprocessing. Both improved preprocessing with and without
group-level covariation of motion (M3 and M4) had a higher proportion of within-module
connections compared to models using standard confound regression (i.e., M1 and M2).
Specifically, when improved preprocessing + group level covariation (M4) was compared to
standard preprocessing + group level covariation (M2), the difference was highly
significant: χ2= 34.5 p=4.2×10−9. Overall, this pattern is the inverse of what was observed in
the analysis of inter-node distance, as accounting for motion actually strengthens specific
age-related effects of network segregation. Age-negative connections were also somewhat
more likely to be within-module with both subject- and group-level control of motion;
improved preprocessing and group-level covariation (M4) had a higher proportion of within-
module age-negative connections compared to model M1 (χ2=5.1, p=0.02); no other model
was significantly different for age-negative connections. At a very high threshold for
significance (using Bonferroni correction), connections that strengthen with age are mainly
intra-modular, whereas connections that weaken with age are much more likely to be
between-module (Figure 5B). Overall, motion attenuated the appearance of network
segregation with age, and accounting for motion strengthened this effect.

Multivariate patterns of functional connectivity remain highly predictive of subject age
The above results demonstrate that uncontrolled motion inflates the modulation of age-
related changes in connectivity by inter-node distance, but obscures specific age-related
changes in large-scale network structure. We next examined the degree to which motion-
control strategies impact the ability to derive a functional maturation index of brain
development using multivariate pattern-regression methods (i.e., SVR). We found that the
correlation between subject age and the predicted multivariate functional maturation index
was diminished when both improved preprocessing and group-level matching was applied
(Figure 6A). Standard preprocessing and no matching (model M1) resulted in a correlation
between actual and predicted age of 0.62; this was significantly better than the prediction
yielded by improved preprocessing and group-level matching (model M6; r=0.50, Figure
6B; M1 vs. M4: z=3.5, p=0.0005). Nonetheless, this degree of accuracy for model M4
remained highly significant (permutation-based p<0.001). Other models yielded
intermediate prediction values and were not significantly different from each other. As
expected, significantly weighted connections that weakened with age from model M1 were
shorter than those from model M6 (t=2.36; p=0.02); there was also trend towards
significantly-weighted age-positive features being longer in M1 than M6 (p=0.08). When
actual versus predicted age was compared using multivariate regression splines in model
M6, a linear fit was found to be more appropriate than a non-linear spline.

DISCUSSION
Here we demonstrate that motion has a heterogeneous impact on measured changes in
functional connectivity during development in youth. Motion inflates overall estimates of
age-related changes in functional connectivity as well as the dependence of this effect on
inter-node distance. Conversely, motion attenuates measures reflecting increased network
segregation over development. After accounting for motion effects, the complex pattern of
functional connectivity can still predict an individual subject’s age with a high degree of
accuracy using multivariate pattern regression. Accounting for motion artifact therefore
reduces certain patterns of age-related connectivity change but enhances others, and is more
likely to yield valid estimates of the evolving neurobiology of development.

Motion inflates estimates of age and distance-dependent connectivity change
The first question we set out to answer in this study was whether age-related changes in
connectivity remained after rigorously controlling for the influence of motion artifact. Our

Satterthwaite et al. Page 13

Neuroimage. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



results clearly demonstrate that motion inflates the appearance of age-related connectivity
change. Indeed, whereas 14% of pair-wise connections appeared to have a significant age
effect using standard procedures, this was reduced to only 2% after more rigorous correction
for motion at the subject- and group-level. Nonetheless, even after such a conservative
analytic approach, it is equally clear that connectivity does change substantially during
development. Observed age-related differences remain significant beyond conservative
statistical thresholds for type I error control (i.e., Bonferroni correction), and examination of
these connections in a nearly-motionless sub-sample reveals age-related changes of a similar
effect size.

It should be noted, however, that the effect size (approximately r=0.13) of such age-related
changes is in fact small: FDR-corrected results in a high-dimensional network like the one
utilized here (Power et al., 2011) only become consistently apparent in samples that contain
at least approximately 275 subjects. As expected, testing an a priori requires somewhat
fewer subjects: 182 subects are required to detect a simple strengthening of connectivity
between the default mode hubs of the PCC and vMPFC with 80% reliability. This suggests
that resting-state studies of neurodevelopment in youth using typical sample sizes (e.g., 30–
100 subjects) are substantially underpowered for exploratory analysis of high-dimensional
networks, and (in combination with the presence of uncontrolled motion artifact) may
explain the heterogeneous results of some prior studies. The large sample sizes required
emphasize the need for large-scale multi-modal imaging initiatives such as the PNC, the
Pediatric Imaging, Neurocognition, and Genetics Study (PING; Brown et al., 2012), and the
IMAGEN consortium (Schumann et al., 2010). Establishing the PNC as a publicly available
resource for the study of brain development was one of the principal aims of this initiative.
As noted elsewhere (Biswal et al., 2010; Gorgolewski et al., 2013; Mennes et al., 2012;
Milham, 2012; Nooner et al., 2012), data sharing is a prerequisite for the collaboration
necessary to gain traction towards understanding complex phenomena such as the
neurodevelopmental origins of psychiatric illness. These results also reinforces that
multivariate methods that integrate disparate individual effects of small effect sizes to
produce more robust results are of great utility, as discussed below.

Motion obscures age-related changes in within-network connectivity
While motion inflates overall estimates of age-related changes as well as the impact of inter-
node distance, in-scanner motion was also found to have the opposite effect in attenuating
the pattern of network segregation with age. When processed using standard methods and
without group-level covariation, previously-reported patterns of age-related change in
connectivity were apparent: connections that grew stronger with age were more likely to be
within-module than connections that grew weaker with age (the vast majority of which were
between-module). Notably, controlling for motion at both the timeseries and group level
robustly increased the proportion of age-positive connections that were within-module. As
previously noted, this finding suggests that large-scale brain networks become increasingly
differentiated with age (Anderson et al., 2011; Dosenbach et al., 2010; Fair et al., 2007; Fair
et al., 2009; Supekar et al., 2009), which may contribute to the improvements in cognitive
capabilities that occur during development (Kelly et al., 2008). We show that motion tends
to mask this developmental phenotype, which could be important for understanding
individual brain-behavior differences as well as developmental pathophysiology.

Multivariate prediction of subject age remains accurate even when accounting for motion
In a prominent study of neurodevelopment, Dosenbach et al. (2010) found that complex,
multivariate patterns of connectivity could be used to predict a subject’s age with a high
degree of accuracy, suggesting that connectivity can provide a useful measure of functional
brain maturation. While that study used samples where age and motion were unrelated,
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motion was only accounted for at the subject-level using standard (6-parameter) motion
regression. Our results demonstrate that, as predicted by the mass-univariate results,
accounting for motion reduces the accuracy of multivariate predictions of subject age.
Examination of significantly-weighted model features revealed that this is in part because
distance-dependent effects that were more heavily weighted using standard methods were
less prominent following greater control of motion artifact through group-matching and
improved confound regression. Nonetheless, it should be noted that while better control of
motion did reduce predictive accuracy to some degree, it remained high: predicted age was
correlated with actual age r=0.5 even following improved preprocessing and an age/motion
matched sample. Also, in contrast to Dosenbach et al., we found a linear relationship
between multivariate patterns of connectivity and subject age. However, compared to the
age range in the present sample (8–22 years old), Dosenbach et al. included a substantially
wider range (5–30 years old) and nonlinearities in that study only became apparent above
age 20. Overall, our results buttress the prior findings of Dosenbach et al., and emphasize
that functional connectivity remains a valuable phenotype for charting trajectories of
neurodevelopment.

Limitations and future directions
While this study leverages a very large sample and carefully examines the impact of motion
artifact on age-related changes in connectivity, certain limitations should be acknowledged.
First, although improved confound regression mitigates the influence of motion artifact on
connectivity, it does not completely abolish it (Satterthwaite et al., 2013). In the future,
techniques such as automated labeling of motion-related components generated by single-
subject independent components analysis (ICA) may provide better separation of motion-
related noise from true connectivity signal (Beckmann et al., 2005). Second, because
subject-level timeseries processing could not fully remove the influence of motion, we
additionally accounted for the influence of motion as part of the group level analysis. As we
have previously noted (Satterthwaite et al., 2012; Satterthwaite et al., 2013), such a
covariation approach has the disadvantage of reducing sensitivity in proportion to the degree
to which motion and the variable of interest (i.e. age) are correlated. While matching motion
and age is a suitable alternative, it may bias the study population by selecting for abnormally
still children and abnormally movement-prone adults. Third, better control of motion artifact
may be provided by external monitoring of motion (Tremblay et al., 2005), which may offer
more accurate measures of in-scanner motion than the realignment parameters used here,
and potentially allow on-line correction of artifact (Maclaren et al., 2012). Fourth,
modifications to pulse sequences including using dual-echo imaging acquisition techniques
may help reduce the impact of motion artifact on BOLD signal (Ing and Schwarzbauer,
2012). Fifth, the increasing availability of multiplex EPI acquisitions with sub-second TR
(Feinberg et al., 2010) may allow for better control of motion artifact by preventing the
aliasing of higher-frequency motion-related signals into lower frequencies that provide
greater contributions to functional connectivity. Finally, it should be noted that in the present
work we evaluated changes in connectivity within a system of large-scale brain networks
defined in a sample of adults by Power et al. (2011). One limitation of this approach is that it
does not allow us to describe how the community structure of these networks develops
during adolescence; this remains a fertile ground for future research. In particular, modular
degeneracy (Rubinov and Sporns, 2011) and the overlapping brain networks described by
sparse dictionary learning (Eavani et al., 2012) may be a powerful framework for describing
this evolution.

Conclusions
Here, we re-evaluated the most prominent findings in neurodevelopmental connectivity after
accounting for motion artifact. We found that motion inflates the general appearance of age-
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related connectivity change as well as their apparent relation to inter-node distance. In
contrast, motion attenuates evolving patterns of network segregation, and controlling for
motion makes this effect more obvious. Finally, complex multivariate patterns of
connectivity remain highly predictive of subject age even after controlling for subject
motion. On the balance, while these results demonstrate that certain aspects of previously-
published findings may have been biased by motion artifact, they suggest that motion
artifact alone cannot completely explain such results, and that existing conceptions of
fundamental patterns of neurodevelopmental change in connectivity can be maintained.
While studies of neurodevelopment using resting state functional connectivity remain
particularly prone to contamination by motion artifact given the strong relationship between
subject age and in-scanner motion, this problem is not unique to neurodevelopmental
research and also applies to studies of psychopathology and individual differences, where
the independent variable is often strongly correlated with in-scanner motion. Taken together,
the present results argue that functional connectivity remains a valuable phenotype for the
study of neurodevelopment, which may be assessed with greater accuracy when carefully
controlling for motion.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Relationship between age and in-scanner motion in complete sample (A), a motion–matched
sub-sample (B), and in a motion-matched, nearly-motionless sub-sample (C). Males are
marked in blue, females are marked in red.
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Figure 2.
Network definition. (A) Nodes in the network are defined according to the system
established by Power et al. (2011), including 264 spheres (5mm radius) comprising 13
functional brain modules. Nodes are colored according to module membership as indicated
in the figure legend. Nodes not assigned to a functional module by Power et al., (2011) are
not displayed. (B) Mean network connectivity across full sample of 780 subjects displayed
as a heat map. (C) Spring-embedded rendering of mean network connectivity matrix.
Although all analyses are conducted using fully-connected networks with both positive and
negative weights, for display graph edges are thresholded to produce a network density of
10%. Graph edge thickness is scaled according to connection strength. Nodes are colored by
module assignment as in (A). As noted by Power et al. (2011), certain network modules
(motor, visual, default) are more segregated, whereas networks implicated in cognitive
control (frontoparietal, salience) display more inter-modular connections.
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Figure 3.
Accounting for motion reduces but does not eliminate significant relationships between age
and functional connectivity. (A) Number of statistically significant connections (FDR
Q<0.05) within network of 264 nodes with 34,716 unique edges resulting from four different
analysis procures, varying factors of subject-level confound regression and group-level
covariation of motion. Standard confound regression included 9 parameters (6 motion
parameters + global, WM, CSF timecourses); improved confound regression included 36
parameters (i.e., standard parameters + their temporal derivatives, quadratic terms, and
quadratic of derivative) as well as spike regressors for relative displacements >0.25mm. Age
effects were investigated at the group level either without a motion covariate or with motion
(mean relative displacement) added as a covariate. Sex was included as a covariate in all
models. (B) Similar results are seen when the median absolute correlation between age and
connectivity is evaluated across models: age effects are diminished when motion is
controlled for at the subject and group level. As the median is a robust representation of the
central tendency of this skewed distribution, small changes in median connectivity here are
accompanied by substantial changes in the tail of the distribution and the corresponding
number of FDR-corrected significant connections (see A). (C) Graphical representation of
the 42 connections that displayed significant age effects following improved preprocessing
and group-level analysis with a motion covariate. Due to the large number of FDR-corrected
significant connections, only connections that surpassed a Bonferroni-corrected statistical
threshold (corrected p<0.05, uncorrected p<1.4×10−6) are displayed.
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Figure 4.
Motion artifact inflates estimation of distance-dependent change in functional connectivity
during adolescence. Both subject- and group-level strategies for controlling the influence of
motion artifact reduce the difference in Euclidean distance between connections that
strengthen with age and those that weaken with age (A). Mean distance in was calculated
from connections that were found to be significant above a threshold defined by FDR
(Q<0.05); error bars represent standard error of the mean. However, even following both
improved preprocessing and group-level covariation, connections that strengthen with age
were found to be significantly longer than those that weaken with age (A & B). Due to the
large number of connections present, only connections that surpassed a Bonferroni-corrected
statistical threshold of p<0.05 are displayed. In contrast, when all connections are considered
(instead of only connections that significantly change with age), more stringent control of
motion artifact abolishes the modulation of age-dependent change in connectivity by
distance (C). The y-axis represents the correlation between the z-transformed age-
connectivity correlation and inter-node Euclidean distance.
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Figure 5.
Accounting for motion allows improved ability to detect development of within-module
connections. As previously reported, connections that strengthen with age are more likely to
be within-module than between-module. However, improved preprocessing enhances this
effect (A). Additionally, both subject- and group-level strategies for accounting for motion
also result in a greater proportion of within-module age-negative connections, although the
overall proportion of these remained quite low. Bar chart represents the percentage of
significant (FDR Q<0.05) age-positive connections (green) or age-negative connections
(yellow) that are intra-modular. Following both improved preprocessing and group-level
covariation, the majority of connections that strengthen with age are intra-modular (red
connections; B), whereas most age-negative connections remained inter-modular (blue
connections; C). As prior, connections displayed were significant beyond a Bonferroni-
corrected threshold of p<0.05.
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Figure 6.
Correction of motion artifact impacts the accuracy of age prediction using multivariate
patterns of functional connectivity, but accuracy nevertheless remains high. Compared to an
unmatched sample that that received standard preprocessing, age-motion matching and
improved preprocessing reduced the degree to which the complex pattern of functional
connectivity could be used to predict subject age using a 10-fold cross-validated linear
support vector regression (SVR; A). However, the predictive ability of the model even after
accounting for motion remained high (r=0.5, permutation-based p<0.001; B).
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