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Abstract

One of the main challenges in functional diffuse optical tomography (DOT) is to accurately 

recover the depth of brain activation, which is even more essential when differentiating true brain 

signals from task-evoked artifacts in the scalp. Recently, we developed a depth-compensated 

algorithm (DCA) to minimize the depth localization error in DOT. However, the semi-infinite 

model that was used in DCA deviated significantly from the realistic human head anatomy. In the 

present work, we incorporated depth-compensated DOT (DC-DOT) with a standard anatomical 

atlas of human head. Computer simulations and human measurements of sensorimotor activation 

were conducted to examine and prove the depth specificity and quantification accuracy of brain 

atlas-based DC-DOT. In addition, node-wise statistical analysis based on the general linear model 

(GLM) was also implemented and performed in this study, showing the robustness of DC-DOT 

that can accurately identify brain activation at the correct depth for functional brain imaging, even 

when co-existing with superficial artifacts.
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1. Introduction

Diffuse optical tomography (DOT) is an emerging neuroimaging technology that uses low-

power near infrared light (650 to 950 nm) to measure the changes of cerebral blood flow and 

oxygenation associated with neuronal activity (Villringer and Chance, 1997; Boas et al., 

2004a). Compared with other neuroimaging modalities, such as functional magnetic 

resonance imaging (fMRI), DOT has the advantage of being portable and cost effective, 

with excellent temporal resolution. The near infrared spectroscopy (NIRS) methods used to 
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measure the hemodynamic response to brain activation were first described by several 

groups in 1993 (Villringer et al., 1993; Hoshi and Tamura, 1993; Chance et al., 1993). Early 

studies used a sparse array of light sources and detectors; the spatial resolution was 

comparable to the source-detector separation, namely, in a few centimeters. In the past 

decade, the technology has been advanced to high-density DOT (Boas et al., 2004b; Zeff et 

al., 2007), which records data with a high-density array of light sources and detectors and 

reconstructs volumetric images of brain hemodynamics by solving the forward and inverse 

problems of light propagation in tissue. High-density DOT significantly improves the spatial 

resolution and positional accuracy of optical brain imaging (White and Culver, 2010; 

Eggebrecht et al., 2012; Zhan et al., 2012).

One of the major problems needing attention in DOT development is its severe sensitivity 

decay along depth. It is known that optical sensitivity in DOT has an approximately 

exponential decay with increased depth (Lee et al., 2005; Dehghani et al., 2009a), which 

makes DOT measurements hypersensitive to hemodynamic fluctuations in the scalp rather 

than to the more pertinent signals from the brain. The ill-posed sensitivity matrix causes 

positional errors in image reconstruction since the severe sensitivity decay biases the 

reconstructed brain activation towards the superficial layer. A variety of approaches have 

been developed to minimize depth error in reconstructed images. A widely-used approach is 

to apply a spatially variant regularization (SVR) parameter to regular DOT reconstruction 

(i.e., SVR-DOT) (Pogue et al., 1999; Culver et al., 2003; Dehghani et al., 2009a). Another 

approach is a depth-compensated DOT (DC-DOT) (Niu et al., 2010), which modifies the 

depth-variant sensitivity matrix directly rather than modifying the regularization parameter. 

While these two approaches are mathematically similar, DC-DOT apparently has a wider 

effective range in depth and can adapt for both sparse and dense geometries (Kavuri et al., 

2012). One concern about DC-DOT is that the true quantity of hemodynamic changes is lost 

due to necessary modification on the sensitivity matrix. To solve this problem, a scaling 

factor can be applied on either the modified sensitivity matrix or the reconstructed image. 

Tian et al. (2010) demonstrated that by applying a scaling factor on the reconstructed image, 

DC-DOT actually improves quantification accuracy.

1.1 Depth-compensated DOT to discriminate brain activities from superficial artifacts

DC-DOT also improves depth specificity of brain activation in the existence of non-

activation physiological interferences. It is well known that optical signals from the brain 

contain several physiological fluctuations that originate from cardiac pulsation, respiration, 

change of blood pressure, and so on. These physiological fluctuations are systemic and 

contribute greater signal changes than local brain activities. Tian et al. (2011) have reported 

that DC-DOT is able to recover brain activation at correct depth even when systemic 

fluctuations coexist. The image quality can be further enhanced by adaptive removal (Zhang 

et al., 2007a; 2007b; Zhang et al., 2009; Tian et al., 2011) or linear regression (Saager and 

Berger 2005; Saager et al., 2011) of the systemic fluctuations that are sampled at a short 

source-detector separation (typically within 1.3 cm). Besides the systemic physiological 

fluctuations, currently there is increasing attention on the task-evoked superficial artifacts 

which can lead to false positive findings in functional brain activities (Kirilina et al., 2012 ; 

Takahashi et al., 2011). These superficial artifacts arise from local vascular oscillations in 
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the scalp although the physiological origin is still controversial and might be varied. One 

goal of the present study was to investigate whether DC-DOT has the capability to 

discriminate brain activation from the superficial artifacts according to their depths.

1.2 Integration of DC-DOT with a standard anatomical atlas of human head

Previous studies in DC-DOT (Niu et al., 2010; Tian et al., 2010; 2011 ; Kavuri et al., 2012) 

have used a homogeneous, semi-infinite model of diffusion theory to recover volumetric 

images of brain activation. While this model is computationally efficient because of the 

capability to create analytic solutions, it significantly deviates from realistic human head 

anatomy. In order to localize and quantify brain activation accurately, it is necessary to use a 

computational model derived from real head anatomy. This requires acquisition of MRI 

images of each subject’s head with optode positions marked, followed by generation of a 

subject-specific head model, which enables investigators to solve the forward and inverse 

diffusion equation more accurately (Gibson et al., 2003; Dehghani et al., 2009a; Eggebrecht 

et al., 2012; Zhan et al., 2012). However, this approach reduces the convenience and 

feasibility of optical brain imaging as a stand-alone technology. An alternative approach is 

to fit a standard MRI head template (atlas) for all subjects via affine registration (Custo et 

al., 2010; Cooper et al., 2012); this approach has proved to be consistent with and 

comparable to the subject-specific approach. Another goal of the present study, therefore, 

was to incorporate DC-DOT with a finite element model derived from an anatomical MRI 

atlas of human head. Based on this model, the depth specificity and quantification accuracy 

of DC-DOT can be assessed through computer simulations and human measurements under 

a selected functional stimulation.

1.3 Analysis of volumetric DC-DOT image series with general linear model

In addition, the present study also implemented model-based analysis according to the 

general linear model (GLM). GLM is a statistical linear expression that models measured 

signals as a linear combination of predicted responses to independent stimulation variables 

plus an error term. GLM can be used to analyze a variety of experimental data acquired by 

many measurement modalities. As an example, fMRI has popularly used GLM to model 

blood oxygen level-dependent (BOLD) signal changes. For time-dependent data series, such 

as those seen in fMRI or functional NIRS, GLM-based analysis matches both the temporal 

pattern and the magnitude of signals, thereby providing us with a robust tool to 

quantitatively characterize functional brain responses.

While GLM has been used as a standard data analysis method in fMRI (Beckmann et al, 

2003; Friston et al., 1995; Bullmore et al., 1996), it can be helpful for functional NIRS data 

analysis especially in cases of severe light attenuation. Schroeter et al. (2004) first proposed 

the application of GLM as a standard data analysis strategy in functional NIRS. Later, 

Plichta et al. (2007) showed that model-based GLM provided a powerful test of visual 

cortex activation in a rapid event-related paradigm. It would be beneficial to compare and 

interpret both types of neuroimaging data if both functional NIRS and fMRI images can be 

studied using the same GLM framework. Towards this direction, Ye et al. (2009) have 

developed a software package (known as NIRS-SPM) for functional NIRS, based on a 

statistical parametric mapping (SPM) toolbox that is widely used in the field of fMRI. 
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However, all of these studies have implemented GLM-based analysis that can be applied 

only to channel-wise NIRS data. Post-GLM topographic images are generated by 

interpolating data between adjacent channels and thus result in limited spatial resolution. To 

date, very few studies have applied GLM to volumetric image series achieved through DOT. 

Thus, the final goal of this study was to design, implement, and demonstrate a node-wise 

GLM approach to analyze the volumetric image series generated from brain atlas-based DC-

DOT.

In order to demonstrate the overall improvement in DOT image quality by the three imaging 

and data analysis methods developed in this study, we utilized human sensorimotor 

activations evoked by a finger-tapping task to generate volumetric DC-DOT images. The 

primary sensorimotor regions of the human brain are optically accessible and have been 

intensively studied by researchers in this field as reviewed by Leff et al. (2011). Thus, the 

corresponding brain activations in response to a finger tapping task are well understood. 

While the emphasis of the present study was on advances and integration of three DOT-

based imaging and data analysis methods, we measured sensorimotor activities during a 

well-known finger-tapping task among human subjects for a demonstrative purpose, without 

utilizing fMRI for validation.

2. Materials and Methods

2.1 Anatomical atlas of human head

We used a standard MRI atlas of human head, known as ICBM 152 nonlinear asymmetric 

template, with a spatial resolution of 1×1×1 mm3 (http://www.bic.mni.mcgill.ca/

ServicesAtlases/ICBM152NLin2009) (Fonov et al., 2009; 2011). This template was 

generated as an unbiased non-linear average among normal population in a broad range of 

ages (18.5 to 43.5 years); the anatomical structures were originally segmented using the 

ANIMAL+INSECT algorithm (Collins et al., 1999). In this study, a total of five head/brain 

tissues were defined: the scalp, skull, cerebrospinal fluid (CSF), gray matter and white 

matter. Optical properties of the segmented tissues at two wavelengths, 750 nm and 850 nm, 

were set according to current literature (Eggebrecht et al., 2012; Zhan et al., 2012), which 

are summarized in Table 1.

2.2 Probe geometry, spatial registration, and head atlas-based meshing

A rectangle probe was used to image the sensorimotor cortex on the left hemisphere in both 

simulation and human head measurements. The probe was composed of 21 sources and 21 

detectors that were arranged alternatively, as shown in Fig. 1(a). The probe provided a total 

of 71 channels at the first nearest source-detector separation of 1.6 cm (or 1st nearest 

neighbors, 1st NN) and a total of 98 channels at the second nearest source-detector 

separation of 3.6 cm (or 2nd nearest neighbors, 2nd NN). Other larger source-detector 

separations were not considered because their signals were too weak in reality.

The probe was placed along a para-coronal line between the left and right preauricular 

points. The center of the probe was located approximately at C3 according to the 

international 10-20 system. In human head measurements, once the probe was set in place, 
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the positions of optodes along with five cranial landmarks (the nasion, inion, left and right 

preauricular points, and vertex) were measured using a PATRIOT motion tracking system 

(Polhemus, Colchester, Vermont, USA.). The cranial landmarks served as mediators for 

converting the standard Montreal Neurological Institute (MNI) coordinates used in the 

standard head atlas into the real-world stereotaxic coordinates based on affine 

transformation (Singh et al., 2005). Following the methods given by Custo et al. (2010), the 

standard head atlas was registered into the real-world space to match each subject’s head. 

Then a finite element mesh (FEM) model was generated from the registered atlas using the 

iso2mesh software package (Fang and Boas, 2009). At this step, the maximum volume of 

the tetrahedral element was set to be 2 mm3. The resultant FEM mesh of the whole head 

consisted of approximately 90,000 nodes and 500,000 tetrahedral elements. After the probe 

was projected onto the FEM mesh, the forward and inverse problems of light propagation 

could be solved based on diffusion theory in order to reconstruct a volumetric image of brain 

activation, which will be described in details in Section 2.6. The spatial registration and head 

meshing were performed for each individual subject. As an example, Fig. 1(b) shows the 

head mesh and the projected probe position on the mesh for Subject 1.

2.3 Simulative experiments

In the first part of this study, simulative experiments were conducted to justify the 

performance of brain atlas-based DC-DOT. In simulations, the initial cerebrovascular 

conditions and task-evoked changes were all known, so we were able to obtain 

comprehensive and quantitative evaluations on DC-DOT, which otherwise were not 

accessible for validation in human measurements. Two types of simulation were conducted 

sequentially: the first was to assess the capability of DC-DOT to recover a static absorber at 

different depths, which mimicked the scenario where a time-averaged change in local 

absorption was imaged without considering any temporal alternation. In the second type of 

simulation, a set of time-dependent cerebral hemodynamics were created to mimic resultant 

fluctuations due to 1) functional brain activations evoked by a finger tapping paradigm, 2) 

systemic physiological noises, and 3) superficial artifacts from the scalp vasculature. The 

reconstructed time-dependent volumetric image series by DC-DOT were analyzed based on 

GLM for each node. The registered probe position shown in Fig. 1(b), which was taken from 

Subject 1, was used in both types of simulations. In particular, we generated two sets of head 

mesh: one mesh (mesh #1) was used to simulate the optical signals measured by the 

detectors, and the other one (mesh #2) was used to compute the sensitivity matrix and to 

reconstruct the volumetric image. The use of two separated head meshes in simulation was 

to avoid the so-called ‘inverse crime’, which denotes the act of employing the same 

computational model to generate and to invert synthetic data (Wirgin, 2004). Under every 

simulated cerebrovascular condition, the optical signals measured by the detectors (based on 

mesh #1) and the sensitivity matrix (based on mesh #2) were computed using NIRFAST 

(Dehghani et al., 2009b), a widely-used FEM-based software package for modeling 

propagation of near infrared light in biological tissues.

2.3.1 Simulating a static absorber at different depths—A spherical absorber, 0.6 

cm in diameter, was embedded in the region of sensorimotor cortex to mimic a local 

absorption change from the baseline. The absorber had a higher absorption coefficient (μa) 
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than that of background at both 750 nm and 850 nm, while keeping the same reduced 

scattering coefficient (μs′) as the background. At both wavelengths, the absorber induced an 

identical absorption perturbation of Δμa = 0.05 cm−1 from the background tissues. To 

comprehensively assess the performance of DC-DOT, five separated trials were simulated 

by placing the absorber at a different depth, namely 0.5, 1.0, 1.5, 2.0 or 2.5 cm from the 

simulated head surface. The localization and quantification accuracies of DC-DOT were 

evaluated at each depth and also compared with those using conventional DOT without any 

spatially variant regularization or depth compensation (Con-DOT), SVR-DOT and DC-

DOT.

2.3.2 Simulating time-dependent cerebral hemodynamics in a finger tapping 
paradigm—The simulated paradigm was a common blocked-design paradigm composed 

of 12 repetitive blocks with 10 seconds of finger tapping and 20 seconds of rest per block. 

There was an initial baseline of 20-second rest prior to the first block. Data were simulated 

at a sampling rate of 10 Hz. The scattering properties of the head were assumed to be stable 

throughout the paradigm. The task-evoked functional brain activation and physiological 

interferences were assumed to be pure absorption changes.

In a previous study (Tian et al., 2011), we performed human measurements using a similar 

paradigm. Prior knowledge obtained from that study directed us to characterize the distinct 

hemodynamic evolutions of functional activation and physiological interferences separately. 

In the last step of this simulative experiment, we combined the hemodynamic evolutions of 

functional activation and physiological interferences to simulate the overall time-dependent 

hemodynamic measurement from the head. The following sub-sections describe the steps 

performed to generate different time-dependent hemodynamic components.

2.3.2.1 Task-evoked functional activation: The task-evoked functional activation was 

characterized by a hemodynamic fluctuation localized within a spherical volume on the 

sensorimotor cortex. The spherical volume had a diameter of 1.0 cm and was embedded 2.2 

cm below the scalp surface. The hemodynamic fluctuation of functional activation, f(t), was 

modeled as the convolution of a stimulation function s(t) [s(t) = 1 for finger tapping and 0 

for rest] and the normalized hemodynamic response function (HRF) h(t), namely, f(t) = s(t) 

⊗ h(t). The hemodynamic response function h(t) was defined as (Cohen, 1997):

(1)

where c was adjusted to give unit amplitude at equilibrium and t is time in second. While eq. 

(1) was introduced for fMRI signals, it was also reasonable to approximately represent the 

time-dependent hemodynamic responses measured by functional NIRS. This is because both 

fMRI and NIRS detect signals that stem from the same origin: the hemodynamic changes in 

the brain, while they may have somewhat different sensitivities toward different 

cerebrovascular compartments. For example, it is known that fMRI is more sensitive to 

venous blood (Huettel et al., 2009) whereas NIRS is more sensitive to capillary bed (Liu et 

al., 1995). Indeed, an optical imaging method that was used to quantify stimulation-evoked 

changes in absolute HbO and Hb concentrations in an animal brain served as a cornerstone 

for validation of fMRI (Huettel et al., 2009). Although it would be ideal to find an NIRS-
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derived HRF to simulate functional activation and to perform consequent GLM analysis, 

such HRF is often not available since it requires careful studies with well-designed 

experimental paradigms. In contrast, fMRI-derived HRFs have been intensively studied and 

are available in literature; thus, it is scientifically appropriate to utilize such a HRF in our 

simulative experiments and in GLM-based DC-DOT image analysis.

2.3.2.2 Systemic fluctuations: The optical signals propagating through the brain contain 

several spontaneous fluctuations that originate from cardiac pulsation, respiration and 

change of blood pressure (also referred to as the Mayer waves). These fluctuations cause 

systemic hemodynamic changes in the entire head except in the CSF. In particular, the 

cardiac pulsation generates fast-oscillating waves, which are distinct from task-evoked 

functional activation and can be efficiently filtered out. Therefore, in the simulations, we 

considered the slow systemic fluctuations only, including Mayer waves and respiration 

waves. The magnitudes, frequencies, and coherence of these two types of fluctuations were 

comprehensively investigated previously (Tian et al., 2011). According to the prior 

knowledge gained (Tian et al., 2011), these two fluctuations were determined to have the 

following characteristics:

Mayer waves: The Mayer waves oscillate along the change of arterial blood pressure and 

have a frequency about 0.1 Hz. However, the exact mechanism of Mayer waves is not well 

understood. Additionally, there were consistent reports on a phase shift between the oxy-

hemoglobin (HbO2) related and deoxy-hemoglobin (Hb) related Mayer waves (Obrig et al., 

2000; Tian et al., 2011), with Hb-related Mayer waves always taking the lead. Therefore, we 

used a random time series to simulate the initial origins of Mayer waves, followed by band-

pass filtering between 0.06 and 0.12 Hz to generate continuous HbO2-related Mayer waves, 

namely m(t). We generated Hb-related Mayer waves separately, as m(t+t0), where t0 was set 

to be 3 seconds.

Respiration waves: The respiration waves usually have a frequency range of 0.2 to 0.4 Hz, 

and the phase shift between Hb-related and HbO2-related components is negligible. In this 

study, a continuous oscillation, generated by band-pass filtering between 0.2 and 0.4 Hz of a 

random time series, r(t), was used to simulate both the Hb-related and HbO2-related 

respiration waves.

2.3.2.3 Task-evoked superficial artifacts: The task-evoked superficial artifacts were 

simulated by hemodynamic fluctuations in a spherical volume in the scalp. The spherical 

volume had a diameter of 0.6 cm and was embedded 0.5 cm below the scalp surface. 

According to Kirilina et al. (2012), the hemodynamic fluctuation of superficial artifacts, a(t), 

was characterized by a block-locked cosine function: a(t) = cos(2πfartifactt). The frequency 

fartifact was the same as the repetitive frequency of task blocks, i.e., fartifact = 0.033 Hz.

It is noted that the temporal patterns of the superficial artifacts given in literature are 

variable and might depend on specific tasks (Takahashi et al., 2011; Kirilina et al., 2012). 

Here we chose a cosine function because it was distinct from the functional brain activation; 

in this way, the superficial artifacts and functional brain activation could be easily 

distinguished in the reconstructed image series. In real applications, however, there is a 
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possibility that the superficial artifacts have a temporal pattern similar to functional 

activation, which will be discussed by the end of this paper.

2.3.2.4 Overall time-dependent cerebral hemodynamics: The overall hemodynamic 

changes in the head were a combination of task-evoked functional activation, systemic 

fluctuations, and task-evoked superficial artifacts with different absolute magnitudes. We 

assumed that each type of systemic fluctuation had identical magnitude in the scalp, skull 

and brain. We also assumed that there was no systematic fluctuation in CSF. The task-

evoked functional activation and task-evoked superficial artifacts were localized in two 

localized spherical regions, namely Ractivation and Rartifact. In summary, the overall 

hemodynamic changes in the ith non-CSF node of the head model were:

(2)

(3)

where ΔCi denotes the concentration change of each hemoglobin species in the ith non-CSF 

node; Af, Am, Ar and Aa denote the magnitudes of functional activation, Mayer waves, 

respiration and superficial artifacts in each hemoglobin species, respectively. These 

magnitudes were determined as follows:

Functional activation: A finger tapping task can evoke about 1 μM increase of HbO2 

concentration and a much smaller decrease of Hb concentration as measured at a source-

detector separation of 3 cm (Tian et al., 2011). For a channel-wise measurement, it is well 

known that a partial volume effect exists and causes under-estimation of the focal 

hemoglobin changes in the brain; namely, the focal hemoglobin changes in the brain are 

“averaged” to the whole volume of tissues probed by a source-detector channel (Boas et al., 

2001; Strangman et al., 2003). To minimize the partial volume effect, the measured channel-

wise hemoglobin changes should be corrected by a sensitivity correction factor, SCF, which 

is defined as a ratio between the summed optical sensitivity of a source-detector channel to 

brain tissues without superficial layers (i.e., scalp and skull) and the summed sensitivity of 

this channel to all of the head tissues including the superficial layers. For a source-detector 

separation of 3.0 cm, a prior calculation using aforementioned mesh #2 and NIRFAST found 

that SCF was about 1/30. So, we estimated the magnitudes of task-evoked brain activation to 

be a 30-μM increase in HbO2 concentration and a 6-μM decrease in Hb concentration.

Mayer waves: It is estimated that Mayer waves introduce about 1 μM changes of HbO2 

concentration in the head (Tian et al., 2011). Also, it is known that Mayer waves originate 

from the arterial blood flow with high oxygen saturation. Therefore, we utilized 0.1 μM to 

represent the magnitude of Hb concentration changes induced by Mayer waves.

Respiration waves: It is also assumed that the respiration waves introduce about 0.3 μM 

changes of HbO2 concentration in the entire head (Tian et al., 2011). It has been 

demonstrated that respiration waves are mainly related to venous flow with oxygen 
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saturation values around 60-70% (Franceschini et al., 2002). Thus, we estimated 0.2 μM to 

be the magnitude of Hb concentration changes induced by respiration waves.

Superficial artifacts: According to relevant literature, task-evoked superficial artifacts cause 

about 0.3 μM decreases in HbO2 concentration and much smaller changes in Hb 

concentration, which are measured at a source-detector separation of 3 cm (Kirilina et al., 

2012). These artifacts originate from the superficial blood vessels that are relatively small in 

size. Similar to the functional activation case, a sensitivity correction factor is also needed to 

estimate the actual hemoglobin changes in the superficial blood vessels from the measured 

signals. Under the assumption that the artifacts come from a spherical volume in the scalp 

with a diameter of 0.6 cm, we calculated SCF for superficial artifacts using aforementioned 

mesh #2 and NIRFAST and found that the corresponding SCF was about 1/50 at source-

detector separation of 3.0 cm. Therefore, we estimated the magnitudes of the superficial 

artifacts to represent a 15-μM decrease of HbO2 concentration and a 3-μM increase of Hb 

concentration, which may need to be confirmed in future studies.

Figure 2 shows the time-dependent Hb and HbO2 concentration fluctuations induced by 

simulated functional activation, Mayer waves, respiration waves, and superficial artifacts, as 

given in four respective panels. The magnitudes, frequency ranges, and time lag between Hb 

and HbO2 for all four time-dependent hemodynamic components are summarized in Table 

2.

The cerebral hemodynamic changes resulted in absorption changes in the head model at both 

wavelengths (750 nm and 850 nm), which were computed as:

(4)

(5)

where , ,  and  denote the molar absorption coefficients of each 

hemoglobin species at 750 nm and 850 nm, respectively.

2.3.3 Calculating the optical signals received by the detectors—Once the 

absorption and scattering coefficients were selected under every simulated state, the 

propagation of near infrared light in the head mesh was modeled using the NIRFAST 

software package. It provided light intensity received by each detector (based on 

aforementioned mesh #1) from every specific source, similar to real data collection on a 

human subject’s head. Details of light propagation modeling have been reported by 

Dehghani et al. (2009b).

Additionally, electronic noises always exist in real data collection. To make the simulated 

data closer to the reality, in the second type of simulation (time-dependent cerebral 

hemodynamics), we added white noise (i.e., a random noise with a flat power spectral 

density) into the time-dependent light intensities output from NIRFAST. In general, a 

shorter source-detector separation results in a bigger received light intensity and better 
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signal-to-noise ratio (SNR). Therefore, we added 1% white noises to all the 1st NN source-

detector channels relative to their baseline intensities and 3% white noises to all the 2nd NN 

source-detector channels. In the first type of simulation with static absorbers, we did not add 

any random noise because of the fact that the white noise in the time-averaged data could be 

reduced significantly.

2.4. Human head measurements

In the second part of this study, human measurements were conducted to compare and 

confirm the performance of brain atlas-based DC-DOT using the same finger tapping 

paradigm as described in Section 2.3.2. Subjects were recruited from the local community of 

the University of Texas at Arlington. The study protocol was approved by the University of 

Texas at Arlington Institutional Review Board. Written informed consent was obtained from 

every subject prior to the experiment.

2.4.1 Subjects—Five healthy subjects (all males, age range 22-39 years) were included in 

the study. The subjects were all right-handed. Subjects were screened and excluded for a 

past or current neurological disorder, a presently unstable medical condition, or current 

intake of any medication. Only eligible subjects who passed screening underwent the 

experiment.

2.4.2 Instrument—A high-density DOT system (Cephalogics LLC., Boston, MA) (Zeff et 

al., 2007) was used to acquire data from human subjects using the probe shown in Fig. 1(a), 

with a sampling rate of 10.8 Hz. In particular, the probe was made with low-weight fibers 

purchased separately from TechEn Inc. (Boston, MA). The low-weight fibers and flexible 

probe assembly ensured subjects’ comfort during the experiments.

2.4.3 Task—Each subject participated in one session of finger tapping experiment using 

the same paradigm described in Section 2.3.2. Briefly, it was a blocked-design paradigm 

composed of 12 repetitive blocks, each of which had 10 seconds of finger tapping and 20 

seconds of rest. An initial baseline of 20-second rest was taken prior to the first block. Each 

subject sat on a chair stably throughout the experiment. During the task period, each subject 

was instructed to tap his index and middle fingers against the thumb at a comfortable 

rhythm, which was about 2 to 3 Hz (Tian et al., 2011). Each subject was instructed to stay 

still and relaxed during the rest period. Ambient light was blocked during the experiment to 

ensure that it did not contaminate the optical signals.

2.5 Data preprocessing

2.5.1 Screening of channel-wise data acquired from the human subjects—In 

human measurements, data from some channels might have very low SNR due to the poor 

contact of optodes on the scalp. The data with bad quality or low SNR could degrade the 

quality of reconstructed images significantly. Therefore, for the human data, in the pre-

processing stage, we excluded all the channels that had high-frequency (>0.4 Hz) noise in 

large amplitudes, that is, larger than 15% of the baseline intensities. For the qualified 

channels, we further excluded some blocks that showed significant data discontinuities (with 

Tian and Liu Page 10

Neuroimage. Author manuscript; available in PMC 2015 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a signal swing of 15% or larger from the raw baseline intensities) resulting from motion 

artifacts.

2.5.2 Filtering of time-dependent data in both simulation and human 
measurements—After data screening, the time-dependent hemodynamic signals from 

both simulation and human measurements were filtered in a common frequency range. First, 

the raw data in light intensity were low-pass filtered at a cut-off frequency of 0.4 Hz to 

reduce the electronic noise. The low-pass filter also removed the fast-oscillating cardiac 

waves. Then, changes in optical signals relative to the baseline were computed as changes in 

optical density, ΔOD, at all respective times. At last, the computed ΔOD value for each 

channel was further high-pass filtered at a cut-off frequency of 0.01 Hz to remove the 

baseline drift during the experiment.

2.6 Tomography

2.6.1 Forward problem—Given the fact that a biological medium has a much greater 

light scattering coefficient than the absorption coefficient in the near infrared range, light 

propagation in tissue can be modeled by the diffusion approximation of the Boltzmann 

transport equation (Arridge, 1999; Durduran et al., 2010). The diffusion approximation is 

given by:

(6)

where v is the speed of light in the medium, S(r, t) is the isotropic source providing the 

number of photons emitted at position r and time t, and Φ(r, t) is the photon fluence rate that 

is proportional to the photon number density U(r, t), namely, Φ(r, t) = vU(r, t). D(r) is the 

diffusion coefficient defined as D=v/[3(μa + μs′)], where μa is the absorption coefficient and 

μs′ is the reduced scattering coefficient. The latter, μs′, is defined as μs′ = (1 - <cosθ>) μs, 

where θ is the scattering angle and <cosθ> is the mean of cosine θ.

The implementation of DOT for functional brain imaging is to reconstruct the absorption 

perturbation from a known background, for which the forward solution of equation (6) can 

be expressed by Rytov approximation (O’Leary, 1996):

(7)

where Δμa is the relative absorption change, detected between a source at position rs and a 

detector at position rd, between two measurement states, Φ0 and Φ. L is the effective optical 

path length of light propagating through the medium. Φ0(rd, rs) ≡ Φ(rd, rs, t0) is the 

measurement taken at baseline and Φ(rd, rs, t) is the measurement taken when the absorption 

is changed in the medium. The left hand side of equation (7) is the definition of optical 

density change for the given source-detector pair, i.e., ΔOD. The right hand side of equation 

(7) is known as the modified Beer-Lambert law (Delpy et al., 1988), which can be 

generalized for a set of discrete elements (i.e., nodes) with potentially different absorption 

changes:
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(8)

where Lj is the effective optical path length of a given source-detector pair in the jth node of 

the medium, and Nnode represents the number of nodes along the optical path between this 

set of source and detector. For multiple source-detector measurements, equation (8) can be 

written in a matrix form as:

(9)

where y is a column vector of channel-wise measurements in optical density changes written 

as y = (ΔOD1, ΔOD2, …ΔODNmeas)T with Nmeas being the number of measurements, and x 
is also a column vector that represents node-wise absorption changes in the 3D image space, 

x = (Δμa
1, Δμa

2, …, Δμa
Nnode)T. A is a Nmeas × Nnode sensitivity matrix of Li,j, where Li,j is 

the effective path length between the ith source-detector pair passing through the jth node. 

Note that index i covers from 1 to the total number of measurements (source-detector pairs), 

Nmeas, on a 2D measurement surface, while index j runs from 1 to the total number of nodes, 

Nnode, in a 3D image space. Matrix A is also called the Jacobian matrix or weight matrix.

2.6.2 Inverse problem—Con-DOT: Due to the limited numbers of sources and detectors 

used in DOT, in equation (9), the number of measurements is much fewer than the number 

of nodes to be reconstructed, namely, Nmeas << Nnode. As a result, the equation is highly ill-

determined and the solution is not unique. Therefore, regularization to the solutions is 

required. The conventional way is to use the Tikhonov regularization method (Tikhonov, 

1963), which reconstructs the image from the following equation:

(10)

where λ = α · smax (A) is the regularization parameter and smax (A) denotes the maximum 

singular value of A matrix, ||x||2 is the l2 norm of x defined as .

However, A matrix is also ill-posed since it has an approximately exponential decay as 

depth increases due to severe attenuation of biological tissues. The nodes from the influence 

of the superficial layer always contribute much greater weights to the measured signals than 

the nodes in deep layers (e.g., the brain). Thus, the superficial layer eventually biases the 

reconstructed brain activation towards the head surface with a significant depth error. As 

reviewed in the beginning of this paper, two approaches have been used to solve this 

problem:

SVR-DOT: The scheme of SVR is to regularize the depth-dependent sensitivities with 

variable λ-values, namely, bigger regularization values to suppress the hyper sensitivities in 

the superficial layer and thus to achieve a more homogenous spatial distribution of the 
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sensitivity. According to Zhan et al. (2012), the SVR approach replaces the original A 
matrix in Equation (10) with a spatially variant form:

(11)

where χ is the spatial regularization factor. According to the literature (Dehghani et al., 

2009b; Eggebrecht et al., 2012; Zhan et al., 2012), χ = 0.01 was chosen in our SVR-DOT 

calculations.

DC-DOT: The DC-DOT approach induces a depth-variant modification function to modify 

the ill-posed A matrix directly. The key idea behind DCA was to find or compose a weight 

matrix M, which has a pseudo exponential increase in magnitude with depth so as to 

counterbalance the severe loss of sensitivity of A in depth. Originally, matrix M was 

developed by Niu et al. (2010) for a perfectly-layered homogeneous model; thus, M can be 

noted hereafter by Mlayer. In this study, since the heterogeneous head mesh does not have a 

perfectly-layered structure, we modified the compensation weight function by using a direct 

exponential term, as defined below:

(12)

where mj (j = 1, 2, … Nnode) is a depth-compensation weight for the jth node, dj (j = 1, 2, … 

Nnode) is the depth of the jth node in centimeter below the scalp surface, and η is a constant 

which controls the compensation power and should have an optimal value to the specific 

probe configuration and tissue optical properties. Equation (12) forms a node-wise, depth-

compensation matrix, noted hereafter by Mnode, which is a modified or simplified version 

from its original form of Mlayer, given by Niu et al. (2010). While the compositions of 

Mnode and Mlayer are not exactly the same, both of them offer a similar trend of exponential 

increase in depth-compensation weight as the depth increases. More details on the derivation 

and discussion on Mnode and η are given in the Supplementary Material.

Following the same logic and steps used in DCA (Niu et al., 2010) with Mlayer, we 

generated a node-wise, depth-compensated sensitivity matrix, A#=AMnode, for DC-DOT 

image reconstruction on the heterogeneous head mesh. Because mj is always larger than 1 

[see eq. (12) and the Appendix], every element in A# is greater than its uncompensated 

element in A. This mismatch in amplitude between A# and A gives rise to the inability to 

recover correct hemodynamic perturbation in the reconstructed DC-DOT images. To fix this 

problem, an additional scaling factor k is introduced in Eq. (13) to keep equal quantity 

between matrixes A# and A within the brain region:

(13)

where j runs 1, 2, … Nnode to cover all the nodes within the head mesh, while i covers all the 

measurement channels, Nmeas, or pairs of sources and detectors. It is noted that the scaling 
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factor k is determined at each wavelength. By keeping the quantities consistent between A# 

and A at each wavelength, factor k adds an extra constraint that may help minimize the 

potential crosstalk when calculating the changes of HbO2 and Hb concentrations. Our results 

to be shown in Section 3 (i.e., section 3.1.2) will provide evidence to support this statement.

After matrix A# = AMnode is generated and scaling factor k is determined, the DC-DOT 

approach is formed to reconstruct DC-DOT images as (Niu et al., 2010; Tian et al., 2011):

(14)

where λ = α · smax (A#).

In the present study, the NIRFAST software package (Dehghani et al., 2009b) was used to 

solve the forward problem and to derive the sensitivity matrix A based on the optical 

properties given in Table 1. To determine the depth of each node inside the head mesh, dj, 

we first defined the surface of the head as 1) a cohort of the surface nodes between the air 

and the scalp (maximum intermodal distance was 2 mm on the head surface) and together 

with 2) a cohort of the centroids of the surface triangles. Then for each node inside the head 

mesh, we computed its distance to all of the identified surface nodes and centroids of surface 

triangles; then we selected the minimum distance as its depth beneath the identified head 

surface. After the depth of each node was determined, the inverse problem was solved under 

the region interrogated by the probe within the depth ranging from 0 to 3.5 cm, which 

included about 15,000 nodes. An identical regularization parameter α = 0.1 was used for all 

of the inverse calculations, namely, for the conventional DOT, SVR-DOT and DC-DOT.

Specifically for our DC-DOT image reconstructions, an optimal compensation power η = 3 

based on the heterogeneous head mesh was determined following the method described by 

Niu et al. (2010); its derivation and confirmation are given in the Appendix. Figure 3 shows 

a comparison of the normalized, depth-dependent sensitivities before and after applying 

depth compensation with η = 3. Finally, the reconstructed absorption images at two 

wavelengths (750 nm and 850 nm) were converted to the HbO and Hb images by inversely 

solving equations (4) and (5).

2.7 Node-wise model-based analysis using GLM

After the time-dependent, volumetric images were reconstructed using the approaches given 

in Sections 2.5 and 2.6, GLM analysis was performed on the node-wise data series. As 

mentioned in Section 1.3, GLM models the measured brain response as a linear combination 

of predicted responses due to variable stimulations plus an error term. It can be used to 

analyze different types of experimental data acquired by a variety of measurement 

modalities. For example, in fMRI, a hemodynamic response function is used to serve as a 

model to predict the blood oxygen level-dependent (BOLD) signals due to variable 

stimulations, followed by data-driven analysis using t-statistics for final formation of fMRI 

images. The characteristic and advantage of model-based GLM analysis are the ability to 

integrate model-driven and data-driven analysis approaches smoothly with a reliable 
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statistical power. This is why it has been popularly utilized in fMRI (Beckmann et al, 2003; 

Friston et al., 1995; Bullmore et al., 1996).

Since the reconstructed images in DOT were concentrations of HbO2 and Hb, we utilized 

the similar GLM approach to select statistically meaningful nodes by t-statistics so as to 

form 3D DC-DOT images. Specifically, for each node, our GLM expression was formulated 

as:

(15)

where z(t) is the reconstructed time series of hemodynamic signals (e.g., HbO2 and Hb) at 

each node, f(t) is the predicted stimulation-evoked response which is computed as the 

hemodynamic response function, h(t), convoluted with the stimulation function, s(t), (refer 

to Section 2.3.2.1), β is the estimated amplitudes of HbO2 or Hb, and ε is the error term. The 

hemodynamic response function given in eq. (1) was also used in our GLM analysis. By 

fitting Eq. (14) to the reconstructed time series of HbO2 and Hb at each node, we would be 

able to obtain the estimated amplitude β and its variance, and thus a statistical t-value 

representing the statistical power of brain activation at the respective node.

In our analysis, the error term ε in GLM was assumed to be spatially uncorrelated and 

normally distributed. Furthermore, it is known that the slow systemic fluctuations (Mayer 

waves and respiration waves) produce structured “noise” to the volumetric data (Plichta et 

al. 2007). In this study, we used linear regression to reduce the systemic fluctuations from 

the reconstructed volumetric image series. For this step, a reference of the systemic 

fluctuations was obtained by averaging the data from the superficial nodes within a depth 

less than 1 cm. After linear regression, the image series from both simulation and human 

measurements were down sampled to 1 Hz, followed by node-wise GLM analysis. Both β-

map and t-statistics map (or t-map) were derived. Both maps were thresholded at the 

corresponding half maxima or half minima to identify the region of activation.

3. Results

3.1 Simulative experiments

3.1.1 A static absorber at different depths—By positioning a static absorber at 

different depths, the localization and quantification accuracies of DC-DOT were assessed 

and compared with those from Con-DOT and SVR-DOT. Here we only show the results at 

850 nm. In Fig. 4, the left column shows the reconstructed images of this absorber at five 

different depths using Con-DOT, in a coronal view of the brain that was along the middle 

line of optode array (as marked by the vertical dashed lines in both panels of Fig. 1). In each 

figure, the small circle indicates the actual location of the absorber, with an absorption 

perturbation of Δμa = 0.05 cm−1 relative to the background. It is seen that conventional DOT 

reconstructs images of the absorber mainly in a shallow region under the scalp surface, 

independent of the actual depth of the absorber. The recovered absorption perturbations of 

the absorber were also much smaller than the true value (Δμa = 0.05 cm−1), with the 

maximum recovered perturbation being 15% of the true value occurring at an absorber depth 

of 0.5 cm. The middle column of Fig. 4 shows the reconstructed images using SVR-DOT, 
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which does improve the depth accuracy in the reconstructed images, especially before the 

absorber reaches 2.0 cm in depth. The right column of Fig. 4 shows the reconstructed 

images using DC-DOT. From actual absorber depths of 0.5 cm to 2.0 cm, the depth 

localization errors in the reconstructed images are small, within a couple of millimeters. The 

algorithm begins to break down at actual absorber depth of 2.5 cm. Compared with Con-

DOT and SVR-DOT, DC-DOT shows improved depth accuracy when the absorber is 

located between 0.5 cm and 2.5 cm in depth within simulated brain tissues. Moreover, DC-

DOT also provides us with better quantification accuracy. The maximum recovered 

absorption perturbation by DC-DOT, occurring also at the actual absorber depth of 0.5 cm, 

is about 60% of the true value.

3.1.2 Time-dependent cerebral hemodynamics in a finger tapping paradigm—
It is known that time-dependent optical signals measured by functional NIRS or DOT can be 

affected by three factors: 1) task-evoked brain functional activation, 2) systemic fluctuations 

caused by physiological noises, and 3) superficial hemodynamic artifacts from the scalp 

vasculature. To evaluate the performance of DC-DOT in response to the simulated finger 

tapping task, we studied two separate cases: in the first case, we considered the situation of 

factors 1) and 2) as overlapped; namely, the simulated optical signals included both task-

evoked brain activation signals and systemic physiological fluctuations. In the second case, 

we assumed that all three factors coexisted. In both cases, node-wise GLM analysis was 

performed on the volumetric image series reconstructed with DC-DOT, followed by 

formation of the magnitude (β-map) and statistical power (t-map) images of time-dependent 

functional activation. A comparison between these two cases proves that DC-DOT is able to 

discriminate task-evoked brain activation from the systemic fluctuations and superficial 

artifacts, as presented in details below.

3.1.2.1 Task-evoked functional activation overlapped with systemic fluctuations: Before 

looking into the reconstructed images, we first compared the time-dependent channel-wise 

data and node-wise data. As reviewed in the beginning of this paper, previous studies 

(Schroeter et al., 2004; Plichta et al., 2007; Ye et al., 2009) had performed GLM analysis on 

the channel-wise data directly; post-GLM topographic images were generated by 

interpolating data between adjacent channels. Therefore, the magnitude and statistical power 

of brain activation in these studies were determined by the channel-wise data. In the present 

study, a series of volumetric images were generated first through DC-DOT, followed by 

GLM analysis on the node-wise data, leading to volumetric magnitude and statistical power 

maps of brain activation. So, a comparison between the channel-wise and node-wise data 

would reveal the difference of GLM-based results between the previous studies and present 

study.

For the comparison, we selected a special 2nd NN channel which was the most sensitive 

channel to the spherical absorbing volume of simulated brain activation. We also randomly 

selected a node that was within the spherical absorbing volume of simulated brain 

activation. In Fig. 5, panels (a) and (b) show the real-time and block-averaged hemodynamic 

signals detected by the selected channel, respectively. Although this channel is supposed to 

be the most sensitive to functional brain activation, it is clearly seen that in panels of Figs. 
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5(a) and 5(b), the task-evoked brain activation patterns are hardly recognized due to strong 

overlap or interference of the systemic physiological fluctuations. Panels (c) and (d) of Fig. 

5 display the real-time and block-averaged HbO2 and Hb profiles, respectively, from the 

selected node after DC-DOT image reconstruction (before the systemic fluctuations were 

removed by linear regression). The task-evoked functional activation patterns are clearly 

seen in both of these panels. This comparison demonstrates that DC-DOT has the ability to 

isolate or separate true brain activation from systemic fluctuations, greatly improving SNR 

in the region of brain activation.

In Fig. 6, panels (a) and (b) show the HbO2-based and Hb-based β-maps derived from node-

wise GLM, respectively. In both maps, the functional brain activation is identified at 

approximately the correct location and depth. The recovered maximum magnitudes of 

functional activation are 2.5 μM in HbO2 and −0.5 μM in Hb; both are about 8% of the 

corresponding true values (30 μM in HbO2 and −6 μM in Hb, see Table 2). In addition, the 

ratio between the recovered HbO2 magnitude and the recovered Hb magnitude (i.e., 2.5 μM 

vs. −0.5 μM) is identical to the ratio between the corresponding true values (i.e., 30 μM vs. 

−6 μM), indicating that DC-DOT induces a minimal crosstalk between the two hemoglobin 

species.

Panels (c) and (d) in Fig. 6 show the normalized t-maps derived from node-wise GLM for 

HbO2 and Hb, respectively. In panel (c), the identified region of activation from HbO2-

based t-map shows a good match with its actual location. In panel (d), however, the 

identified region of activation from Hb-based t-map is a little deeper than its actual location. 

More discussion on the activation region being in a “deeper” depth is given in Section 4.4 

and Supplementary Material.

3.1.2.2 Task-evoked functional activation coexisted with superficial artifacts and 
systemic fluctuations: It has been recently reported that some stimulation tasks can evoke 

hemodynamic changes in the scalp vasculature besides the functional activation in the brain 

(Kirilina et al., 2012 ; Takahashi et al., 2011). The task-evoked superficial artifacts can 

induce a significant bias or false positive reading to functional brain activation because both 

fluctuations have similar task-dependent frequencies. However, DC-DOT may have the 

capability to separate these two fluctuations in the reconstructed images because they 

originate from different depths. Following this rationale, we performed our node-wise GLM 

analysis on the simulated hemodynamic signals that included the functional activation, 

systemic fluctuations, and task-evoked superficial artifacts. The corresponding β-maps of 

HbO2 and Hb are shown in Figs. 7(a) and 7(b). In both panels, we can see that DC-DOT is 

able to localize the functional brain activation and superficial artifacts at correct depths. The 

recovered maximum magnitudes of functional brain activation are about 2.5 μM in HbO2 

and −0.5 μM in Hb; both are about 8% of the corresponding true values. Panels (c) and (d) 

in Fig. 7 show the normalized t-maps derived from the same node-wise GLM analysis when 

both the functional brain activation and superficial artifacts co-existed. In both panels, the 

regions of brain activation are identified at the right locations, although they are ‘pushed’ 

deeper into the brain by the superficial artifacts. More discussion on the reconstructed 

activation region being in a “deeper” depth is Section 4.4 and Supplementary Material.
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Based on channel-wise data, Kirilina et al. (2012) recently reported that brain activation 

cannot be identified when task-evoked superficial artifacts are predominant. The simulation-

based results shown in this paper demonstrate that the combination of DC-DOT with node-

wise GLM analysis is capable of differentiating task-evoked brain activation from the task-

evoked superficial artifacts. Further improvement in our algorithm will continue in order to 

reconstruct more accurately the depth of brain activation.

3.2 Human measurements

To confirm and support the simulative results given in Section 3.1, human measurements 

were performed using a well-studied finger-tapping protocol. In the actual human 

measurements, the optical probe covered a broad cortical region including partial frontal, 

parietal, and temporal lobes (see Fig. 1). In this study we restricted our focus on activation 

around the primary sensorimotor area, contralateral to the tapping hand. The results from 

DC-DOT with node-wise GLM included β-maps and t-maps of both HbO2 and Hb. These 

results were reviewed subject by subject. As an example, Fig. 8 shows the results from 

Subject 1 in a coronal view of the primary sensorimotor area, along the middle line of 

optode array (as marked by the vertical dashed lines in both panels of Fig. 1) in response to 

the finger tapping protocol. Panels (a) and (b) are the derived β-maps for HbO2 and Hb, 

respectively; panels (c) and (d) are the derived t-maps for HbO2 and Hb, respectively. While 

the regions of brain activation identified by t-maps include those seen in β-maps, the t-maps 

outline the activation region deeper into the brain, as seen in Figs. 6 and 7. Again, further 

discussion on this issue will be given Section 4.4 and Supplementary Material. Note that this 

subject does not show obvious superficial artifacts in any of those maps.

In order to characterize or visualize coverage of brain activation on the cortical surface, we 

selected an arc region/volume on or near the brain surface with depths ranging from 1.5 cm 

to 2.5 cm below the scalp surface, as indicated in Fig. 8(a). The β-values and t-values within 

the arc region/volume were averaged across the depth to generate a 2D image of brain 

activation and then projected on the surface of the brain in a way similar to our previous 

study (Tian et al., 2012). Using this projection method, we generated 3D rendered, 

activation-evoked brain images from all of the five subjects, as shown in Fig. 9. This figure 

clearly illustrates that the sensorimotor cortical region was consistently activated during the 

finger tapping task across all the subjects. The β-maps and t-maps are also in good 

agreement with each other in both HbO2 and Hb cases.

4. Discussion

4.1 Localization and quantification accuracies of DC-DOT

In the Introduction section, we mentioned that one of the goals for the present study was to 

incorporate DC-DOT with a finite element model derived from a standard brain atlas. 

Throughout the texts in the Methods and Results sections, we have shown in details how 

DC-DOT is incorporated with a standard brain MRI atlas for volumetric imaging of human 

sensorimotor activation. Improved depth localization and quantification accuracies by the 

brain atlas-based DC-DOT have been clearly demonstrated through computer simulations 

and human measurements. For depth localization accuracy, DC-DOT can recover both 
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superficial and cortical absorption perturbations at their correct depths, which is expected 

and consistent with our previous reports based on a homogeneous, semi-infinite model (Niu 

et al., 2010). For quantification accuracy, DC-DOT has improved the recovery rate of 

absorption perturbation (e.g., 60% using DC-DOT, as compared to 15% and 14% using 

Con-DOT and SVR-DOT seen in Fig. 4 at an absorber depth of 0.5 cm) at each wavelength 

by inducing a scaling factor in reconstruction, which is also consistent with our previous 

reports (Tian et al., 2010). However, we acknowledge that the improvement in 

quantification accuracy becomes less meaningful in larger depths. For example, in the time-

dependent hemodynamic simulations, the recovered maximum magnitudes of functional 

activation (actual depth was 2.2 cm) are about 8% of the true values. Importantly, when 

quantifying hemoglobin concentrations based on at least two wavelengths, the scaling 

factors should follow the spectral constraint. Otherwise, a crosstalk between the 

reconstructed concentrations of Hb and HbO2 could occur due to inappropriate scaling 

factors at different wavelengths. In the example of simulated time-dependent cerebral 

hemodynamics, we did not find any noticeable crosstalk between the derived Hb and HbO2 

concentrations in either node-wise time courses or reconstructed images. Thus, the scaling 

factors we used are expected to be correct across the two wavelengths.

It is noted that although DC-DOT provides a mathematic approach to improve depth 

specificity, the eventual image quality of DC-DOT still relies on the arrangement of optode 

array and dynamic range of the instrument, which mandate the appropriate source-detector 

separations that can be used. It has been well documented in literature (Dehghani et al., 

2009a) that the inclusion of larger source-detector separations leads to improved depth 

profiling into the deep brain region. However, the SNR of optical signals falls off 

exponentially as the source-detector separation increases. In this study, we only used the 1st 

NN and 2nd NN source-detector separations in the probe, which had acceptable SNR in our 

human measurements. Because of this limitation, we speculate that DC-DOT used in this 

study may be able to accurately recover functional activation only on or shallowly below the 

cortical surface (i.e., 2.5 cm or less from the scalp surface). The main objective of this paper 

is to prove that DC-DOT provides reliable images of the cortex by using a simple 

experimental setup that can be commonly achieved in human studies. We expect that 

incorporation of DC-DOT with larger source-detector separations will further improve the 

quality of deeper brain imaging, with future validation.

4.2 Discriminating brain activation from task-evoked superficial artifacts

It was also mentioned in the introduction that we sought to discover if DC-DOT can be used 

to discriminate brain activation from superficial artifacts. By using the time-dependent 

simulation throughout the text, we have demonstrated the capability of DC-DOT to 

discriminate the brain activation from the task-evoked superficial artifacts, which is 

otherwise difficult to achieve. We chose distinct temporal patterns for the superficial 

artifacts and functional brain activation (cosine function vs. gamma function) so that they 

could be easily distinguished from one another in the reconstructed image. In real 

applications, however, it is possible that the superficial artifacts and functional brain 

activations have similar temporal patterns. In this case, the influences from both fluctuations 

will be overlapped in the transition region, making it difficult to separate the two 
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fluctuations in reconstructed images. The ability of DC-DOT to isolate the influence of 

superficial artifacts from true brain activation when they have similar temporal patterns 

remains to be further studied and validated.

The capability of DC-DOT to discriminate brain activation from task-evoked superficial 

artifacts has many implications. Historically, functional NIRS used single source-detector 

separation (typically 2.5 to 4 centimeters) to detect brain activities. Then, data were 

processed in a channel-wise format, which did not allow components from the brain and 

scalp vasculature to be differentiated. Because the superficial artifacts are also task-evoked, 

they can lead to false positive findings in optical brain imaging. Adaptive filtering (Zhang et 

al., 2007a; 2007b; Zhang et al., 2009; Tian et al., 2011) and linear regression (Saager and 

Berger 2005; Saager et al., 2011), which are designed to remove the systemic fluctuations, 

may be used to reduce the task-evoked superficial artifacts. However, these methods have 

limitations. For example, if the superficial artifacts are from regional scalp vasculature, an 

adaptive filter or linear regression with a distant short-separation reference may not be able 

to remove them efficiently. Another scenario is that task-evoked superficial artifacts have a 

similar temporal frequency to that of brain activation (Takahashi et al., 2011). Then, the use 

of adaptive filtering or linear regression will remove not only the superficial artifacts but 

also the brain activation as well. This scenario may also occur when recording the brain 

activities in response to an external electrical or magnetic stimulation, such as repetitive 

transcranial magnetic stimulation (Näsi et al., 2012). In all of the above-mentioned 

scenarios, DC-DOT may provide an alternative solution, namely, to be able to discriminate 

the brain activation from the superficial artifacts according to their depths.

4.3 Node-wise GLM analysis used with DC-DOT

For the first time, the present study has implemented and performed node-wise GLM 

analysis on the time-dependent volumetric image series of DC-DOT. In both computer 

simulations and human measurements, the GLM-derived β-map in magnitude and t-map in 

statistical power agreed with each other, and both provided reasonable images of 

sensorimotor activations. In particular, linear regression of systemic fluctuations prior to 

GLM analysis was conducted by averaging the shallow nodes (depth < 1 cm) as a reference. 

This operation was different from the procedure given in the literature that used the 1st NN 

channels as a reference (Saager and Berger 2005; Saager et al., 2011). The reason is that the 

1st NN source-detector separation in the current probe configuration was 1.6 cm, which was 

large enough to detect certain brain activities. Therefore, the use of 1st NN channels as a 

reference in this study would reduce the activation-related fluctuations significantly. We 

confirmed that using an average of shallow nodes as a reference helped decrease the 

systemic fluctuations efficiently while retaining the activation-related brain fluctuations.

Compared with several previous studies that used channel-wise GLM analysis, DC-DOT in 

combination with the node-wise GLM analysis has several advantages. First, DC-DOT 

improves the SNR of node-wise data in the region of activation as compared with the 

channel-wise data used in topography, as we demonstrated in time-dependent simulation 

(see Fig. 5). Therefore, it is expected that DC-DOT combined with node-wise GLM analysis 

will lead to a greater statistical power than channel-wise GLM analysis even though both 
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methods may share the same raw dataset. Second, in channel-wise GLM analysis, post-GLM 

topographic images are often generated by interpolating data between adjacent channels, and 

thus the spatial resolution is limited to the distance between the adjacent channels. On the 

other hand, DOT itself has the ability to reach a high spatial resolution, surely higher than 

the source-detector separation, according to several published studies (Eggebrecht et al., 

2012; Habermehl et al. 2012). Thus, the node-wise GLM analysis based on DC-DOT is 

expected to provide a higher spatial resolution while a validation study seems to be the next 

step. Finally, spatial comparison and co-registration between a 2D topographic image from 

channel-wise-based fNIRS and a 3D volumetric image from fMRI is indirect and difficult to 

perform. In contrast, the integration and correlation between images of DC-DOT and fMRI 

are straightforward because both of the modalities offer volumetric images. Therefore, DC-

DOT in combination with node-wise GLM analysis, in a similar way to what fMRI does, 

will ease and benefit the direct comparison between these two modalities in future.

It is also noted that there are several differences between the fMRI-based GLM and DC-

DOT-based GLM. The main difference is that while fMRI images each voxel directly, DC-

DOT generates a volumetric image through a complex reconstruction procedure, where each 

voxel is interrogated by multiple source-detector channels possibly having different noise 

levels. This means that DC-DOT-based GLM analysis could deliver quite different 

outcomes, depending on the pre-processing and reconstruction procedures used to form 

time-dependent volumetric DC-DOT image series. Specifically, we have noticed several 

aspects that may affect the quality of reconstructed images and node-wise GLM analysis: 

first, a single source-detector channel with a poor SNR would severely affect a group of 

nodes/voxels along its optical pathway. To avoid degrading the image quality, data 

screening prior to DC-DOT reconstruction is necessary so as to identify and eliminate all 

removable noise sources among the qualified channels. Second, GLM analysis has to be 

combined with DC-DOT for its best operation. In a relevant study, Habermehl et al. (2012) 

performed classical t-test analysis on the volumetric image series measured by a high-

density DOT system. Without using any depth compensation approach, however, they found 

that the identified regions of activation were mis-located in the superficial layer about 1.5 

cm away from the brain. Their results highlight the importance of depth compensation in 

DOT prior to statistical analysis.

4.4 Limitations of the present study

At last, it is important to note that there are several limitations in the present study: First, it 

is known that the general brain atlas-based reconstruction leads to a greater localization error 

than the subject-specific image reconstruction due to a combination of imperfect optode 

registration, anatomical differences between the generalized brain atlas and individual brain, 

and so on (Cooper et al., 2012). In our human results, it is expected that the localization 

errors of cortical activation could be 1-2 centimeters, large enough to misidentify the 

primary motor and primary sensory activations.

Second, the present GLM analysis used in this study was based on a hemodynamic response 

function derived from fMRI. Because the two image modalities have different sensitivities 

to cerebrovascular components in their measurements, their hemodynamic response 
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functions evoked by given tasks are not necessarily the same. Having an NIRS-specific 

hemodynamic response function would provide more accurate node-wise GLM analysis.

Third, we acknowledge that great improvement in depth localization of brain activation has 

been achieved by developing brain-atlas-guided DC-DOT combined with GLM analysis. 

Further refinement and advances are needed since the errors in depth localization of brain 

activation are still non-trivial and need to be reduced significantly for any meaningful 

clinical application. For example, we have consistently observed that the identified region of 

activation from the GLM-derived t-maps is deeper than the actual location as well as than 

the region resulting from the GLM-derived β-maps (see Figs. 6 to 8). One particular 

question worthy of further investigation is whether the node-wise, depth-compensation 

matrix, Mnode, is sufficient enough to achieve high-quality or high-SNR data so as to 

reconstruct localized images (or t-maps) at deep depths. Based on the discussion given in the 

Supplementary Material, we expect that eq. (12) needs to be refined in order to improve the 

spatial resolution along depth. One possible and feasible solution is to resume layer-wise 

DC-DOT by appropriately finding and segmenting specific layers along human head 

curvatures. The expectation that layer-wise DC-DOT may be able to improve the stretched t-

maps in the “deeper” brain region, as seen in Figs. 6-8, is reasonable and needs to be tested 

in our future studies.

At last, the improvement on quantification accuracy has been good only for static absorbers 

at a shallow depth, not for time-dependent hemodynamic changes at deeper regions. Also, 

the spatial resolution of DC-DOT in lateral dimension was not studied. We noticed that a 

few methods (Kavuri et al., 2012; Shimokawa et al., 2012) were developed recently to 

improve the in lateral resolution of DOT. The combination of these methods with DC-DOT 

may further advance the image reconstruction algorithm and improve its 3D spatial 

resolution, but it is beyond the scope of the present work and may be a possible direction for 

future studies.

5. Conclusions

We have incorporated depth-compensated DOT (DC-DOT) with a standard brain atlas. 

Improved depth specificity and quantitative accuracy of brain atlas-based DC-DOT were 

demonstrated through simulation and human measurements of sensorimotor activation. For 

the first time, node-wise GLM analysis was implemented and performed on the volumetric 

image series of DC-DOT, showing the robustness of DC-DOT and its ability to accurately 

identify the brain activation at the correct depth, even in existence of task-evoked superficial 

artifacts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

3D three-dimensional

BOLD blood oxygen level dependent

Con-DOT conventional DOT without any spatially variant regularization or depth 

compensation

DC depth compensation

DC-DOT depth-compensated DOT

DCA depth-compensated algorithm

DOT diffuse optical tomography

fMRI functional magnetic resonance imaging

FEM finite element mesh

GLM general linear model

Hb deoxy-hemoglobin concentration

HbO2 oxy-hemoglobin concentration

HRF hemodynamic response function

MNI Montreal Neurological Institute coordinates

MRI magnetic resonance imaging

n refractive index

NIRFAST a FEM-based MATLAB package for modeling propagation of near infrared 

light in biological tissues

NIRS near infrared spectroscopy

NIRS-SPM a SPM-based software package for functional NIRS data analysis

OD optical density

SCF sensitivity correction factor

SNR signal-to-noise ratio

SPM statistical parametric mapping

SVR spatially variant regularization

SVR-DOT apply spatially variant regularization to regular DOT reconstruction

μa absorption coefficient

μs′ reduced scattering coefficient
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Highlights

1. Development of brain atlas-based, depth-compensated diffuse optical 

tomography (DC-DOT) for accurate volumetric functional brain imaging

2. Validation and demonstration through computer simulations to show that DC-

DOT is able to specify the brain activation from the task-evoked superficial 

artifacts.

3. For the first time, robustness of node-wise GLM analysis in combination with 

DC-DOT is demonstrated and able to clearly identify the human sensorimotor 

activation.
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Fig. 1. 
Probe configuration and spatial registration: (a) Optical probe configuration. The probe was 

composed of 21 sources and 21 detectors that were arranged alternatively, providing a total 

of 71 channels at the 1st nearest source-detector separation and a total of 98 channels at the 

2nd nearest source-detector separation. (b) Projected probe location on the head mesh for 

human Subject 1. The head mesh and projected probe location were also used in the 

computer simulations.
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Fig. 2. 
Time-dependent Hb and HbO2 fluctuations (unit: μM) of the simulated (a) functional brain 

activation, (b) Mayer waves, (c) respiration waves and (d) superficial artifacts. The dash line 

in top panel marks the starting time of each block.
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Fig. 3. 
Normalized depth-dependent sensitivity of optical measurements: (a) Without depth 

compensation and (b) With depth compensation. The depth-dependent sensitivity was 

computed as a mean of node-wise sensitivities in a depth step of 2 mm for each source-

detector separation. Without depth compensation, in panel (a), both the 1st NN and 2nd NN 

measurements were more sensitive to the superficial tissues. With depth compensation, in 

panel (b), the 1st NN measurements were more sensitive to the superficial tissues and the 2nd 

NN measurements were more sensitive to the brain.
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Fig. 4. 
Reconstructed images of a static absorber at depths of 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm and 

2.5 cm: the first, second, and third columns counting from left show the reconstructed 

images using conventional DOT, SVR-DOT, and DC-DOT, respectively. All of the images 

were normalized by the true absorption perturbation (Δμa = 0.05 cm−1) and cut off at the 

corresponding half maxima. The color scale in each image represents a recovery rate, which 

is a ratio between the recovered absorption perturbation and the true absorption perturbation.
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Fig. 5. 
Comparison of the channel-wise data and reconstructed node-wise HbO2 and Hb profiles 

from the simulated task-evoked brain activation with systematic fluctuations: (a) Time-

dependent channel-wise data from a specific 2nd NN channel that was most sensitive to the 

brain activation. (b) Block-averaged data from the same channel. (c) Time-dependent node-

wise HbO2 and Hb profiles from a node inside the volume of brain activation. (d) Block-

averaged data from the same node. In panels (a) and (c), the dash line indicates the starting 

time of each block.
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Fig. 6. 
Identified brain activation locations after excluding the systematic fluctuations by voxel-

wise GLM analysis: (a) HbO2-based β-map, (b) Hb-based β-map, (c) HbO2-based t-map, 

and (d) Hb-based t-map. Each image was thresholded at the corresponding half maxima or 

half minima. The small circle in each panel indicates the real location and size of the 

simulated brain activation. The color scales in (a) and (b) represent the real β-amplitude in 

μM. Images (c) and (d) were normalized by their corresponding maximum or minimum t-

values, and thus have unit amplitude.
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Fig. 7. 
Identified brain activation and superficial artifacts from the systematic fluctuations based on 

voxel-wise GLM analysis: (a) HbO2-based β-map, (b) Hb-based β-map, (c) HbO2-based t-

map, and (d) Hb-based t-map. Each image was thresholded at the corresponding half 

maxima and half minima. The bigger circle in each image indicates the actual location and 

size of the simulated brain activation; the smaller circle in each image indicates the actual 

location and size of the simulated superficial artifacts. The color scales in (a) and (b) 

represent the real β-amplitude in μM. Images (c) and (d) were normalized by their 

corresponding maximum or minimum t-values.
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Fig. 8. 
Identified sensorimotor activation of human Subject 1 based on voxel-wise GLM analysis: 

(a) HbO2-based β-map, (b) Hb-based β-map, (c) HbO2-based t-map, and (d) Hb-based t-

map. Each image was thresholded at the corresponding half maxima or half minima. The 

dash arc in panel (a) indicates the selected region for surface imaging of the sensorimotor 

activation. The color scales in (a) and (b) represent the real β-amplitude in μM. Images (c) 

and (d) were normalized by their corresponding maximum or minimum t-values.
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Fig. 9. 
Activation images of 3D rendered sensorimotor cortex evoked by the finger-tapping task 

from all five subjects. The images were generated by averaging the β-values or t-values 

across the depth of the selected arc region, as marked in Fig. 8(a). The HbO2-based β-maps 

and t-maps were thresholded at the corresponding half maxima, in which the warm colors 

represent values from half maximum to full maxima. The Hb-based β-maps and t-maps were 

thresholded at the corresponding half minima, in which the cool colors represent values 

from half minima to full minima.
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Table 1

Absorption coefficient μa, reduced scattering coefficient μs′ and refractive index n of the segmented head 

tissues

750nm 850 nm Refractive
index n

μa (cm−1) μs′ (cm−1) μa (cm−1) μs′ (cm−1)

Scalp 0.17 7.40 0.19 6.40 1.4

Skull 0.12 9.40 0.14 8.40 1.4

CSF 0.04 3.00 0.04 3.00 1.4

Gray matter 0.18 8.36 0.19 6.73 1.4

White matter 0.17 11.91 0.21 10.11 1.4
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Table 2

Magnitudes, frequency ranges, and time lags between Hb and HbO2 of the task-evoked functional activation, 

slow systemic fluctuations (Mayer waves and respiration waves) and task-evoked superficial artifacts used in 

the simulation

Magnitude (μM)
Frequency (Hz) THb→HbO2 (s)*

HbO2 Hb

Functional activation 30 −6 0

Mayer waves 1 0.1 0.06 - 0.12 3

Respiration 0.3 0.2 0.2 - 0.4 0

Superficial artifacts −15 3 0.033 0

*
Time lag from Hb-related oscillation to HbO2-related oscillation
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