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Studies on metacognition have shown that participants can report on their performance on a wide range of per-
ceptual, memory and behavioral tasks. We know little, however, about the ability to report on one's attentional
focus. The degree and direction of somatosensory attention can, however, be readily discerned through suppres-
sion of alpha band frequencies in EEG/MEG produced by the somatosensory cortex. Such top-down attentional
modulations of cortical excitability have been shown to result in better discrimination performance and de-
creased response times. In this study we asked whether the degree of attentional focus is also accessible for sub-
Neural oscillations jective report, and whether such evaluations correspond to the amount of somatosensory alpha activity. In
Metacognition response to auditory cues participants maintained somatosensory attention to either their left or right hand
Alpha for intervals varying randomly between 5 and 32 seconds, while their brain activity was recorded with MEG.
Neural oscillations Trials were terminated by a probe sound, to which they reported their level of attention on the cued hand
Awareness right before probe-onset. Using a beamformer approach, we quantified the alpha activity in left and right so-
matosensory regions, one second before the probe. Alpha activity from contra- and ipsilateral somatosensory
cortices for high versus low attention trials were compared. As predicted, the contralateral somatosensory
alpha depression correlated with higher reported attentional focus. Finally, alpha activity two to three seconds
before the probe-onset was correlated with attentional focus. We conclude that somatosensory attention is in-
deed accessible to metacognitive awareness.
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Introduction nascent) behavior, rather than knowledge that is based on a meta-

cognition (Fleming et al., 2012). This issue is particularly relevant in stud-

Metacognition refers to the general ability to reflect upon, and com-
ment on mental states and cognitive processes. Traditionally, metacogni-
tion has been an important concept in understanding failure in memory
performance such as false recognition and tip-of-the-tongue (for an
overview see Metcalfe and Shimamura (1994) and Dunlosky and Bjork
(2008)). More recently the concept of metacognition has been embraced
by a broader range of cognitive neuroscience researchers. In cognitive
tasks requiring a behavioral response, the ability to report confidence
about one's performance has been used as paradigmatic example of
metacognition (Fleming and Dolan, 2012). In the perceptual domain
metacognitive reports are taken as reflecting conscious awareness of
the percept, both in human (Kunimoto et al.,, 2001; Szczepanowski and
Pessoa, 2007) and non-human research (Smith et al., 2012). However,
in some cases metacognition might be simply understood as second-
order behavior, i.e. as behavior that is contingent on other (overt or
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ies of attention, where so far metacognition has only been investigated
within the context of behavioral performance. Such experimental para-
digms permit metacognitive reports to be based on performance and
stimulus processing, rather than on introspection of the cognitive (atten-
tional) state. The primary objective of this study was therefore to show
that attentional focus is metacognitive accessible, independently from
the task performance or exogenous stimulus processing.

Neuroimaging techniques can disambiguate the metacognitive ac-
cessibility of attention by providing objective proxies of covert atten-
tion. Visuospatial and somatosensory attention can be gauged using
magnetoencephalography (MEG) or electroencephalography (EEG)
measurements of the 10 Hz rhythms found in the visual and somato-
sensory cortex (Hari and Salmelin, 1997; Pfurtscheller and Lopes da
Silva, 1999). It is now a well-replicated finding that alpha activity de-
creases contralateral to the focus of attention, during visuospatial atten-
tion (Handel et al., 2011; Kelly et al., 2009; Rihs et al., 2007; Thut et al.,
2006; van Gerven and Jensen, 2009; Worden et al., 2000) as well as dur-
ing somatosensory attention (Haegens et al., 2011, 2012; Schubert et al.,
2009; van Ede et al., 2010, 2011). Furthermore, visual and somatosenso-
ry alpha power have been shown to be modulated according to atten-
tional demands (Gould et al., 2011; Haegens et al., 2011), affecting
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subsequent performance (Bengson et al., 2012; Haegens et al., 2011;
Handel et al., 2011; Kelly et al., 2009; O'Connell et al., 2009; Thut et al.,
2006). These findings show evidence for the attentional role of visual
and somatosensory alpha through their role in augmenting and attenu-
ating task relevant and irrelevant regions, respectively (Jensen and
Mazaheri, 2010; Klimesch, 1999; Neuper and Pfurtscheller, 2001;
Schack and Klimesch, 2002). In fact, combined EEG-fMRI studies have
shown that posterior alpha power correlates negatively with visual
BOLD activity (Scheeringa et al.,2011), while central alpha power corre-
lates negatively with BOLD in somatosensory regions (Ritter et al.,
2009). Taken together, alpha power has been shown to be sensitive
both the degree as well as the location of covert visuospatial and so-
matosensory attention.

Previous work suggests that attention might be metacognitively ac-
cessible. In a recent EEG study, Macdonald et al. (2011) let participants re-
port their level of attention during each trial in a visual discrimination
task. Self-reported attention on task correlated negatively with pre-
stimulus alpha power. In Braboszcz and Delorme (2011), subjects were
instructed to count their breath and report by button-press whenever
they noticed a distraction from the task. Posterior alpha and central beta
power were shown to be reduced preceding these reports of mind-
wandering. These findings were interpreted in terms of impaired
working-memory during mind-wandering. In Christoff et al. (2009), at-
tention was sampled during a sustained attention task (SART, Robertson
et al. (1997)). Moments of mind-wandering were shown not to be asso-
ciated with any decreases of BOLD activity in task-related regions. Rather,
they were reflected by a pattern of increased activity in both executive re-
gions (dorsal ACC and the dorsolateral prefrontal cortex) and the default
network (medial PFC, posterior cingulate and posterior temporo-parietal
cortex), consistent with previous reports of default mode network activity
during mind-wandering (Mason et al., 2007). Interestingly, this effect was
found to be reduced when participants reported to have been aware of
being distracted, suggesting that mind-wandering was most pronounced
when it lacked metacognition. Taken together, these findings suggest that
the attentional state during task performance might be metacognitively
accessible. However, it remains an open question whether metacognition
of attention can occur in the absence of a concurrent task.

The current study was designed to measure metacognition of atten-
tion independently from concurrent task performance and stimulus
processing. Participants were instructed to try to maintain maximal at-
tention to their left or right hand as indicated by auditory cues. At ran-
dom periods after the cue, trials were terminated by a probe sound. A
button-press was then used to self-report the degree in which attention
was directed to the cued hand at the moment preceding the probe
sound. These subjective self-reports were associated with alpha as an
objective proxy of attention. For this purpose, MEG was used in combi-
nation with the beamformer method to estimate alpha power at the left
and right somatosensory cortex. We hypothesized that trials with
higher self-reported attention would be associated with lower alpha
power in the contralateral somatosensory region. Confirmation of this
hypothesis permitted us to conclude that the attentional focus is indeed
metacognitively accessible.

Methods
Participants

Fifteen healthy participants (9 female, mean age 30.4 years, range:
19-63) enrolled after providing written informed consent and were
paid in accordance with guidelines of the local ethics committee (CMO
Committee on Research Involving Humans subjects, region Arnhem-
Nijmegen, The Netherlands). One participant was excluded from the
analysis due to excessive movement artifacts. The experiment was in
compliance with national legislation as well as the code of ethical prin-
ciples (Declaration of Helsinki).

Experiment

Participants were instructed to continuously attend to the cued hand
while simultaneously trying to remain aware of their attentive state until
a probe sound (2000 Hz tone) was presented (Fig. 1A). Cues consisted of
two sequential tones of 400 ms each, 200 ms apart, with either ascending
in pitch for the right hand (2000 Hz followed by 2500 Hz) or descending
for the left hand (2000 Hz followed by 1500 Hz). Cue side was deter-
mined pseudo-randomly. Cue-probe intervals followed an exponential
distribution with a mean of 3 seconds and a cut-off time of 27 seconds,
providing a flat hazard rate. In other words, the chance of the probe oc-
curring after trial onset was held constant. A minimal cue-probe interval
of 5 seconds was added, resulting in an average cue-probe interval of
8 seconds and maximal of 32 seconds. After the probe sound, partici-
pants evaluated their level of attention on the cued hand using one out
of four options: (1) not at all, (2) little, (3) much, (4) fully/maximally at-
tentive. The experiment started with a training session, followed by three
continuous blocks of 125 trials separated by self-paced breaks. The re-
sponse hand at the first session was determined randomly, and then
switched for each block. To minimize head movements and provide com-
fort, participants were measured in supine position. To minimize eye
movements and blinks and increase the chance of fluctuations in atten-
tional focus, participants were instructed to remain with their eyes closed
throughout the experiment.

Data preprocessing

Continuous MEG data were recorded using a 275-sensor axial gradi-
ometer system (CTF MEG TM Systems Inc., Port Coquitlam, BC, Canada)
placed in a magnetically shielded room. The ongoing MEG signals were
low-pass filtered at 300 Hz, digitized at 1200 Hz, and stored for off-line
analysis. The subjects' head position was continuously recorded relative
to the gradiometer array using coils positioned at the subject's nasion
and at the left and right ear canals. High-resolution anatomical images
(1 mm isotropic voxel size) were acquired using a 1.5-T Siemens
Magnetom Sonata system (Erlangen, Germany). The same earplugs,
using vitamin E instead of the coils, were used for co-registration with
the MEG data. MEG data was analyzed using the Matlab-based Fieldtrip
toolbox, developed at the Donders Institute for Brain, Cognition and Be-
havior (Oostenveld et al., 2011). Trials containing movement, muscle,
and superconducting quantum interference device (SQUID) jumps
were discarded by visual inspection. Independent component analysis
(ICA) was used to remove eye and heart artifacts.

Source reconstruction of alpha power

Source reconstruction was performed using a frequency-domain
beamformer approach (Dynamic Imaging of Coherent Sources) which
uses adaptive spatial filters to localize power in the entire brain (Gross
etal.,, 2001; Liljestrom et al., 2005). The brain volume of each individual
subject was discretized to a grid with a 0.8-cm resolution. For every grid
point a spatial filter was constructed from the cross-spectral density
matrix and the lead field. The lead fields were calculated from a subject
specific realistic single-shell model of the brain (Nolte, 2003), based on
the individual anatomical MRIs. We calculated the cross-spectral densi-
ty matrix based upon the full interval between cue offset and probe
onset to obtain the most accurate estimation of the alpha sources. Indi-
vidual alpha frequencies were used for each subject (for all grid and
time points), determined by the maximum log power between 7 and
15 Hz on all trials and sensors.

For each grid point and six one-second time segment preceding
probe onset, alpha activity was then estimated. A sufficient number of
trials (~100) had trial lengths of at least 6 seconds preceding probe
onset to enable source statistics at those intervals. A (Slepian)
multitaper approach was used to accomplish accurate frequency
smoothing (4-2 Hz) around the subject-specific alpha peaks. To enable
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Fig. 1. Schematic of paradigm and example of the design matrix used for the source level general linear model. A) Schematic depiction of paradigm showing timing parameters of
trial. B) Example design matrix showing regressors for conditions (0's and 1's) and confound regressors (normalized).

valid voxel-by-voxel comparisons in the face of the beamformer depth
bias, alpha estimates were standardized over trials.

Source level GLM

A voxel-by-voxel first-level GLM approach was then used for every
subject and time segment. Fig. 1B shows an example design matrix, in-
cluding cue side (left/right) and self-report (high/low), dichotomized
according to a median split per subject and time-point. In addition,
trial number and the mean X, Y and Z position of the three fiducial
coils were entered as separate regressors. The locations of the fiducial
coils indicate the position of anatomical landmarks of the subject's
head (nasion and pre-auricular points) in the MEG helmet. Regressors
based on fiducial coil positions can therefore be used to subtract vari-
ance caused by differences in head position over trials (Stolk et al.,
2013). To further reduce variance that could be explained by response
preparation, regressors for evaluation response times and cue-probe
duration were added to the GLM, together with separate regressors
for the response hand, which was switched between each block and
randomized over subjects. The cue side and self-report predictors
consisted of 0's and 1's, thereby yielding mean standardized alpha
power after multiplication with the standardized data. By standardizing
the remaining covariates (response time, trial length, fiducial position,
etc.) multiplication with the standardized data resulted in correlation
values (r). Prior to averaging and group statistics, the resulting R-values
and correlations values were spatially normalized using SPM2 to the In-
ternational Consortium for Brain Mapping template (Montreal Neuro-
logical Institute, MNI, Montreal, QC, Canada).

Functional localization of primary somatosensory regions

After the reconstruction of alpha power for each voxel and time-
point, somatosensory regions of interest (ROIs) were determined
based on alpha power during the last second preceding probe onset. A
voxel-by-voxel comparison was made between left and right attention
trials. A cluster-based permutation test (Maris and Oostenveld, 2007)
was then used to identify significant spatial clusters. This resulted in a
distinct somatosensory alpha-ROI for each hemisphere. Each ROI there-
fore depended on cue condition (left versus right), but remained inde-
pendent of the self-reported evaluation of attention.

Region of interest analysis

Alpha power values within the left and right ROI voxels were averaged
according to cue condition (ipsi versus contra), evaluation (high versus
low) and time-point (six one-second intervals preceding probe onset).
The effects of cue condition and evaluation on mean alpha power were

tested over time using repeated measures ANOVA. Differences in these
effects over time were tested using post-hoc t-tests per time-point.

Results

Participants were instructed to try to maintain maximal attention to
either their left or right hand as indicated by auditory cues. At random
periods after the cue, trials were terminated by another (probe)
sound. After each trial participants reported by button-press (1 to 4)
the degree of attention that was allocated to the cued hand at the mo-
ment right before the probe sound.

Behavior

Attentional focus fluctuated over time, as reflected by the use of the
full range of responses (Fig. 2A). The number of responses per evalua-
tion, differed significantly (F(3) = 9.896, p < 0.001), showing a linear
relationship (F(1) = 24.778, p < 0.001), with evaluations being gener-
ally high. This shows that participants were confident about their per-
formance. Evaluation times also differed for the different levels
(Fig. 2B; F(3) = 28.739, p < 0.001). Evaluations that were rated high
were also made quicker, showing again a linear trend (F(1) = 47.133,
p < 0.001). Furthermore, evaluation times correlated negatively with
cue-probe duration (mean r = -0.130, t(13) = -5.5048, p = <0.001),
showing that longer cue-probe durations did not result in a loss of vig-
ilance or ability to do the task.

Functional localization of primary somatosensory regions

Somatosensory alpha regions of interest (ROIs) were determined on
the basis of the distribution of alpha power in the brain volume estimate
using the beamformer approach applied to the MEG data during the last
second before probe onset. A cluster-based permutation test (Maris and
Oostenveld, 2007) was used to identify the significant clusters respon-
sive to cue direction. The analysis resulted in two significant clusters,
one in each hemisphere in primary sensorimotor areas (see Fig. 3).
These ROIs were used for further analysis of the alpha power preceding
metacognitive evaluations. For this purpose estimates of alpha power in
the left and right hemispheric ROI's were separated into an ipsi-lateral
ROI and a contra-lateral ROI on the basis of hemisphere and cue direc-
tion. In other words, ipsi-lateral alpha power consisted of the left ROI
during left-attention trials, and the right ROI during right-attention
trials. Similarly, contra-lateral alpha power consisted of the left ROI dur-
ing right-attention trials and the right ROI during left-attention trials.
The ipsi-contra distinction was therefore independent of the distinction
in left and right hemispheric ROL
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Regions of interest analysis

Alpha power was first averaged over grid points in the left and right
ROI and over the 6 seconds interval preceding probe onset. As predict-
ed, differences in self-reported evaluation corresponded to differences
in preceding alpha power, showing lower alpha power for high atten-
tion versus low attention (F(1,13) = 7.163, p = 0.019; compare top
panel with bottom panel in Figs. 4A and B). We then went on to analyze
alpha power preceding probe onset in a post-hoc manner, to investigate
the temporal profile of alpha activity preceding probe onset (Figs. 4C
and D, respectively). Only the contralateral ROI showed significant dif-
ferences between high and low evaluations, for the last 3 seconds
preceding probe onset (two-tailed: [—3: —2] t(13) = —2.357,
p =0.035; [—2:—1] t(13) = 0.017; [—1:0] t(13) = -2.648, p =
0.020).

Confound regressors analysis

Control regressors were used to control for variance due to potential
differences in response times, cue-probe duration, elapsed time (trial
number) and movement (3D position of fiducial coils). These regressors
were standardized and entered as covariates in the design matrix. Re-
sultant correlation values (r) were tested against zero using cluster-
based permutation tests (Maris and Oostenveld, 2007). Cue-probe du-
ration was shown to be significantly positively correlated with
superior-parietal alpha power, and this correlation was shown to be
maintained over time (Fig. 5A). This means that alpha activity in these
regions gradually increased as the trial became longer. Response time
correlated with some alpha activity at somatosensory and visual re-
gions, although these effects did not remain significance for any extend-
ed period of time (Fig. 5B). In conclusion, the level of subjective
attention was mainly reflected by contralateral alpha in somatosensory
regions and was not confounded by correlations with response times or
cue-probe interval.

Discussion

The main purpose of this study was to investigate whether the de-
gree of somatosensory attentional focus is metacognitively accessible,
as shown by a correspondence between contralateral alpha and self-
reported attentional focus. As a prerequisite for our study, alpha activity
produced in primary somatosensory regions was first shown to be
hemispherically lateralized in response to cued attention to the left or
right hand. Furthermore, by demonstrating significant lateralization in
the somatosensory cortex during the second preceding probe onset, it
was shown that this lateralization can be sustained for extended periods
of time (from 8 to 32 seconds). The main finding was that participants’
subjective rating of their attentional focus was reflected in somatosen-
sory alpha power contralateral to the attended hand. This somatotopic
specificity supports the notion that participants were not reporting on
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Fig. 2. Behavioral differences between evaluation responses. A) Distribution of trials

according to evaluation of attention shows that attention was generally rated high. B) Evalu-
ation times were reduced when attention was evaluated higher.
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Fig. 3. Somatosensory alpha power lateralized in response to cue direction. Source
reconstructed alpha activity during one second preceding probe-onset shows clear later-
alization at primary somatosensory regions. Significant voxels were thresholded based
on cluster-based permutation test (Maris and Oostenveld, 2007).

a general attentional state, but were able to report specifically on their
attentional sensory specific focus. This study therefore provides strong
support for the metacognitive accessibility of attentional focus. More-
over, this is the first study showing metacognition in the absence of ei-
ther exogenous stimulation or evaluations of task performance based on
overt behavior. Furthermore, response times were shown not to con-
tribute to somatosensory alpha power, supporting the behavioral inde-
pendence of our findings.

Our findings are consistent with previous electrophysiological studies
on metacognition. A previous investigation by Braboszcz and Delorme
(2011) showed reduced posterior alpha during mind-wandering, which
the authors interpreted in terms of impaired working-memory processes.
However, the role of alpha oscillations during working memory has also
been understood to reflect active inhibition of task-unrelated activity,
suppressing visual processes during memory retention (Jensen and
Mazaheri, 2010; Klimesch, 1999; Neuper and Pfurtscheller, 2001;
Schack and Klimesch, 2002). The results of Braboszcz and Delorme
(2011) could therefore have reflected mal-adaptive attention to visual
processes during mind-wandering. This would put their findings in line
with ours, providing converging evidence for the metacognitive accessi-
bility of the internal attentional state. A recent sophisticated EEG study
by Macdonald et al. (2011) found a negative correlation between pre-
stimulus parieto-occipital alpha power and self-reported attention dur-
ing a visual detection task. Interestingly, parieto-occipital alpha and
self-reported attention correlated over periods of several minutes. Such
slow fluctuations of attention are in accordance with O'Connell et al.
(2009), where lapses in visual attention were preceded by increased
parieto-occipital alpha for at least 20 seconds before an error occurred.
Importantly, neither O'Connell et al. (2009) nor Macdonald et al. (2011)
used cued spatial attention, but rather correlated self-reports with the
measurement of general visual attention. Our data extend these findings
by showing that self-reported attentional focus corresponds most strong-
ly with contra-lateral (to cued side) somatosensory alpha. This demon-
strates that the correlation between self-report and alpha activity can
be spatially specific. In other words, while the findings by O'Connell
et al. (2009) and Macdonald et al. (2011) suggest metacognitive access
to the visual attentional state, our findings provide strong evidence for
metacognitive access to spatial focus as well.

Previous work has shown that, in visuospatial (Fu et al., 2001; Kelly
et al.,, 2006; Worden et al., 2000) and somatosensory attention tasks
(Haegens et al., 2012), the inclusion of distracting stimuli at the un-
cued side can result in an increase of ipsilateral alpha power, reflecting
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Fig. 4. Topographic and time-resolved difference in alpha power shows consistency with self reported attention. A) Surface plot of standard MNI brain showing mean standardized alpha
power on the contralateral hemisphere for the 6 seconds preceding probe onset, separately for high- and low-attention. B) Surface plot of standard MNI brain showing mean standardized
alpha power on the ipsilateral hemisphere for the 6 seconds preceding probe onset, separately for high- and low-attention. C) Time resolved alpha power for 6 seconds preceding probe
onset, based on contralateral region-of-interest (see Fig. 3), separately for high- and low-attention. Asterisks depict significant differences between high- and low-attention on separate
time points. Shaded surface represents standard error of mean. D) Time resolved alpha power for 6 seconds preceding probe onset, based contralateral region-of-interest (see Fig. 3), sep-

arately for high- and low-attention. Curve width represents standard error of mean.

active suppression of the distracting sensations. In the current experi-
ment, participants were only required to attend continuously to the
cued hand while no distractors were presented. Consistent with the
idea that sensations from the un-cued hand posed little challenge and
did not need to be actively inhibited, alpha power tended to be lower
rather than higher at the ipsilateral hemisphere when attention was re-
ported to be higher, although they did not do so significantly. This sug-
gests that metacognitive reports were not based on the unattended
hand. Future experiments, however, could investigate the potential to
not only report on the degree of attention, but also on the degree of sup-
pression of distraction.

Interestingly, in our analysis of confound regressors, cue-probe du-
ration was found to correlate positively with superior parietal alpha
power at regions. The superior parietal lobule (SPL), in particular the in-
ferior parietal sulcus (IPS), has been implicated in body-centered coding
(Galati et al., 2010) and movement preparation (Cohen and Andersen,
2002). Furthermore, the SPL/IPS is considered part of the Dorsal Atten-
tion Network (DAN; Corbetta and Shulman (2002, 2011)), involved in
goal-directed orientation of attention. Not much is known about the
role of SPL alpha oscillations, however. The question remains if
superior-parietal alpha has similar inhibitory effects as in sensory re-
gions (Jensen and Mazaheri, 2010; Klimesch, 1999; Neuper and

Pfurtscheller, 2001; Schack and Klimesch, 2002). A recent study on pa-
rietal alpha of local field potentials in the macaque monkey (Premereur
et al.,, 2012) does suggest that parietal alpha actively inhibits the onset
of target-oriented saccades, consistent with the involvement of parietal
alpha in encoding gaze-centered reference-frames (Buchholz et al.,
2011; Van Der Werfet al., 2012). As a matter of speculation, our results
could therefore suggest increased suppression of reorienting activity
with increasing trial duration.

Decades ago, Nelson and Narens (1994) argued eloquently for meta-
cognition as a topic of interest in its own right as well as a bridge be-
tween many areas of cognitive and psychological investigation, e.g.,
between decision making and memory, learning and motivation. Re-
cently, action and perceptual processes have been added to this list
(see Fleming et al. (2012) for an overview) and with our and other re-
cent studies (Braboszcz and Delorme, 2011; Christoff et al., 2009;
Macdonald et al., 2011), attention and mind-wandering as well. This
speaks to the general role of metacognition as cognitive processes that
monitor and control cognition (cf. e.g., Fernandez-Duque et al., 2000).
According to metacognitive principles, cognition can be split into two
interrelated levels: the metalevel and the object level (Nelson and
Narens, 1990). While the metalevel is continuously updated by
bottom-up information, it asserts controls over the object level by
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providing top-down input and initiating or terminating its actions
(Nelson and Narens, 1990). In this light, our measure of somatosensory
attention reflects the subservient object level rather than the metalevel.
Our paradigm did not enable a valid comparison between trials in which
metacognition was present and trials where it was absent. However, a
recent study on interoception of event-times (Guggisberg et al., 2011)
has done so. Interestingly, the patterns of neural activity that was relat-
ed to introspection depended on the target of introspection, i.e., wheth-
er it concerned auditory perception, intentional or motor events. Each
was related to a specific introspection-related network. Along similar
lines, future studies can be expected to delineate frontal brain networks
that are specifically involved in metacognitive monitoring of attention.
Such research could take into account the rich literature on executive
control in metacognition (see e.g., Botvinick et al. (2001) and
Fernandez-Duque et al. (2000)) as well as recent models of attention
that organize brain networks in terms of their relationship to internal
goals and external cues (e.g., Corbetta and Shulman (2002) and Miller
and D'Esposito (2005)). Our data suggest that part of the introspective
process might involve the maintenance of attention through the sup-
pression of reorienting responses arising from the Dorsal Attention Net-
work (Corbetta and Shulman, 2002, 2011).
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