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Visual processing is a complex task which is best investigated using sensitive multivariate analysis methods that
can capture representation-specific brain activity over both time and space. In this study, we applied a multivar-
iate decoding algorithm toMEGdata of subjects engaged in passive viewing of images of faces, scenes, bodies and
tools. We used reconstructed source-space time courses as input to the algorithm in order to localize brain re-
gions involved in optimal image discrimination. Applying thismethod to the interval of 115 to 315 ms after stim-
ulus onset, we show a focal localization of regression coefficients in the inferior occipital, middle occipital, and
lingual gyrus that drive decoding of the different perceived image categories. Classifier accuracy was highest
(over 90% correctly classified trials, compared to a chance level accuracy of 50%) when dissociating the percep-
tion of faces from perception of other object categories. Furthermore, we applied this method to each single
time point to extract the temporal evolution of visual perception. This allowed for the detection of differences
in visual category perception as early as 85 ms after stimulus onset. Furthermore, localizing the corresponding
regression coefficients of each time point allowed us to capture the spatiotemporal dynamics of visual category
perception. This revealed initial involvement of sources in the inferior occipital, inferior temporal and superior
occipital gyrus. During sustained stimulation additional sources in the anterior inferior temporal gyrus and supe-
rior parietal gyrus became involved. We conclude that decoding of source-space MEG data provides a suitable
method to investigate the spatiotemporal dynamics of ongoing cognitive processing.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Visual perception is an intricate yet fast process. This is not only the
case for isolated low-level image properties such as object location and
luminance. We are also able to discern different image categories such
as faces and tools very rapidly. Indeed, saccade studies show that as little
as 120 ms is required before a saccade differentiating between animals
and scenes is initiated (Kirchner and Thorpe, 2006), and only 100–
110 ms before saccading to human faces (Crouzet et al., 2010). As
these latencies include the process of saccade planning, differential
brain activity for faces as compared to other semantic categories should
already be present as early as 80 ms after stimulus onset (Crouzet et al.,
2010). However, neuroimaging research has been inconclusive about
this exact timing, demonstrating variable latencies ranging from 40 to
75 ms (Bacon-Macé et al., 2005; Kirchner et al., 2009; Ramkumar
et al., 2013; Seeck et al., 1997; VanRullen and Thorpe, 2001) up to
100–150 ms (Amano et al., 2006; Bode et al., 2012; Carlson et al.,
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2011; Fuentemilla et al., 2010; Jafarpour et al., 2013; Liu et al., 2009;
Simanova et al., 2010; Thorpe et al., 1996; Wokke et al., 2012). In addi-
tion to the fast onset of vision-related activity, the temporal evolution of
this activity is also complex, consisting of multiple visual event-related
potential components, including the P1, N1, and the face-related N170
(Bentin et al., 1996).

Next to this rapid and complex temporal evolution, a multitude of
brain regions is employed in the process of visual perception. Areas
along both the ventral and dorsal streams of visual processing are
recruited, ranging from the striate cortex in the occipital lobe to the an-
terior temporal and parietal lobes (Mishkin et al., 1983). Furthermore,
this activity is thought to proceed in rapid succession (Kirchner and
Thorpe, 2006; Riesenhuber and Poggio, 1999; Serre et al., 2007;
Thorpe and Fabre-Thorpe, 2001). Therefore, a method is required that
can capture both the temporal and spatial aspects of visual processing.

Although electrophysiological methods do provide exquisite tempo-
ral resolution, they generally lack the spatial resolution to localize the
aforementioned temporal evolution. We therefore aim to improve spa-
tial localization by applying a multivariate classification algorithm to
reconstructed source-space activity, calculated from magnetoencepha-
lography (MEG) recordings. Multivariate methods can be more sensi-
tive than univariate methods when discriminative information is
distributed across multiple sources (Kriegeskorte, 2011; Kriegeskorte
et al., 2006; Lange et al., 1999). Previous work with functional magnetic
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resonance imaging (fMRI) data has shown that multivariate methods
allow for the decoding of perceived stimuli from brain activity, both of
low-level image properties (Haynes and Rees, 2005; Kamitani and Tong,
2005; Miyawaki et al., 2008; Thirion et al., 2006; van Gerven et al.,
2010a) as well as high-level image categories (Carlson et al., 2003;
Connolly et al., 2012; Cox and Savoy, 2003; Haxby et al., 2001; Kay
et al., 2008; Naselaris et al., 2009; van Gerven et al., 2010b). Although
multivariate pattern analysis has become a widely used method for
analysis of fMRI data, application to MEG and electroencephalography
(EEG) data is less common. Nonetheless, multivariate techniques have
been used to discern both image features (Carlson et al., 2011;
Ramkumar et al., 2013) and semantic categories of images and words
from electrophysiological data (Bode et al., 2012; Carlson et al., 2011;
Chan et al., 2011; Fuentemilla et al., 2010; Guimaraes et al., 2007;
Jafarpour et al., 2013; Mitchell et al., 2008; Murphy et al., 2009, 2011;
Simanova et al., 2010; Suppes et al., 1997, 1999; van Gerven et al., 2013).

Most of these previous electrophysiological studies have used
sensor-space data as input to the decoding algorithm. However, as
these signals are a mixture of the time courses of the actual underly-
ing sources, reconstructing and analyzing these underlying source-
space activity time-courses should improve localization of involved
neuronal generators. Some studies have already shown that source-
space activity can indeed be used successfully as input to a classifica-
tion algorithm (Sandberg et al., 2013; Sudre et al., 2012; Wu and
Gao, 2011). However, these studies often restrict themselves to
predetermined regions of interest, or have used source-space
activity to improve classification performance without drawing
additional conclusions about localization. In contrast, we propose to
apply the classification algorithm to all source-space activity time-
courses to determine what sources drive the classification of
representation-specific information, independent of any a priori as-
sumptions about possible sources. In addition, we facilitate inter-
pretability by applying an elastic net algorithm (Friedman et al.,
2010). This algorithm enforces a sparsity constraint, resulting in
focal and hence interpretable sources (Carroll et al., 2009). By
using this method we aim to achieve a better identification of the
neuronal generators involved in early visual natural image percep-
tion. Furthermore, by performing classification on these source-
space data for each separate time point, we attempt to extract
which sources are involved in category perception at any specific
point in time. This allows for high-resolution source localization on
a time-scale in the order of milliseconds.

Next to source activity reconstruction with the more traditional
LCMV beamformer (Van Veen et al., 1997), we also used the dynamic
beamformer to get an additional estimation of source-space activity
(Bahramisharif et al., 2012). This novel method may further improve
the signal-to-noise ratio of the reconstructed time courses by imposing
temporal smoothness on the source reconstructions. In thisway,we aim
to improve localization performance even further by providing less
noisy input to the employed classification algorithm.

Low-level image properties are important features based on which
the visual system discriminates between different image categories.
For example, the spatial frequency of an image has been shown to be
an important feature based onwhich the visual system assigns category
membership (Crouzet and Thorpe, 2011). Therefore, we attempted to
minimize the effect of these low-level image properties by showing
images that were corrected for both luminance and spatial frequency.
As the correction for spatial frequency reduced the visibility of the images,
we also showed the same images corrected solely for luminance.

Weused apassive viewingparadigm to avoid interference of any task-
related effects, such as encoding or attention. After all, specific attention
towards the stimulus could boost the neuronal activity (Reynolds et al.,
2000) or even speed up the neuronal response (Noguchi et al., 2007).

As will be shown, source-space decoding of MEG data provides a
sensitive way to investigate the spatiotemporal dynamics of visual per-
ception as brain activity proceeds along the visual hierarchy.
2. Methods

2.1. Subjects and stimuli

Three right-handed subjects (twomales; two subjects were aged 27,
one 25) were shown black-and-white photographs of faces, scenes,
bodies and handheld objects. The choice for these categories was
based on the spatial selectivity shown for these types of stimuli in the
fusiform face area (faces), parahippocampal place area (PPA; scenes),
extrastriate body area (bodies) and middle temporal gyrus (tools)
(Downing et al., 2006). Images in the face category consisted of male
and female faceswith a neutral expression facing forward. Scene images
were pictures from houses, forests and mountains. Images in the body
category contained images of male and female whole bodies facing for-
ward with the face grayed out. Tools and kitchen utensils made up the
object category. Each category contained 30 different images, which
were all shown twice per image correction condition (see below). Im-
ages were selected from different online sets. Face images were
obtained from the Karolinska Directed Emotional Faces dataset (KDEF,
images F1, F2, F6, F8, F9, F10, F11, F13, F17, F19, F20, F22, F24, F25,
F27, M37, M39, M41, M42, M43, M44, M45, M47, M52, M56, M58,
M63, M64, M65, M66; Goeleven et al., 2008; Lundqvist et al., 1998).
The scene database was obtained from the Stanford Vision Lab (Fei-Fei
and Perona, 2005). Images of bodies were selected from the bodily ex-
pressive action stimulus test set (BEAST; De Gelder and Van den Stock,
2011). Object images were derived from the Bank of standardized
images (BOSS; Brodeur et al., 2010). All images were cropped to
300 × 300 pixels. A larger set of luminance and spatial frequency
corrected images were rated prior to the study on their visibility and
category membership by four naive viewers on a five-point scale.
These four subjects did not take part in the actual experiment. The 30
images with the highest score were selected for the actual experiment.
The included images all scored between 4 and 5 on visibility, indicating
that they were very well recognizable, despite the blurriness of the
images after correction for spatial frequency.

All stimuliwere corrected for luminance only, aswell as for both lumi-
nance and spatial frequency. Correction of the images was done with the
SHINE toolbox forMATLAB (Willenbockel et al., 2010). Luminance correc-
tion was performed by scaling the mean luminance and standard devia-
tion of the entire image. Luminance and spatial frequency correction
was performed by matching the Fourier amplitude spectra of the images
without optimization of the structural similarity index, and then equating
the luminance histograms over the entire image. In addition, this correc-
tion step resulted in equal root mean square values of the contrast for all
images. Wewill focus on the data of the luminance and spatial frequency
corrected images, as this is the more stringent case. Results of the lumi-
nance only corrected data are comparable to those of the luminance
and spatial frequency correcteddata as shown in the Supplementary data.

Images were presented to the subjects according to the design
depicted in Fig. 1.

During each trial, a natural image spanning the central 6° of the visu-
al field was presented at the center of the screen for 2 s. Subjects had to
focus on a central fixation dot with a diameter of 0.5° to maintain fixa-
tion and to prevent eye movements from being made when viewing
the image. In 10% of the trials the fixation dot turned red in order to
keep the subjects' attention fixed to the center of the screen. When
this happened, the subject had to press a button with their right hand
within 1.5 s, after which feedback was given and a new trial would
start. These catch-trialswere excluded fromanalysis. In thiswaypassive
viewing was enforced, as there was no need to attend the images and
their categories or to encode them to perform the task successfully.

Stimuli were separated by an interstimulus interval of 2 s. During
thefirst second, indicated by the absence of thefixation dot, the subjects
were allowed to blink. Next, the fixation dot returned and subjects were
again required to keep their gaze fixated steadily at the center of the
screen without blinking.



Fig. 1. Study design. Imageswere presented for 2 swhile subjects fixated on thefixation dot, followed by an interstimulus interval of 2 s. Subjects had to press a buttonwhen thefixation dot
turned red. During thefirst second of the interstimulus interval, indicated by the absence of thefixation dot, the subjectwas allowed to blink. Blinkingwas not allowed during the next second
when the fixation dot was present again. The face image in this figure comes from the KDEF dataset (M64; Lundqvist et al., 1998), the tool image comes from the BOSS set (Brodeur et al.,
2010).
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The task consisted of 12 blocks of 40 trials separated by a subject-
paced break. Every even block consisted of images that were only
corrected for luminance, and every odd block consisted of images
that were corrected for both luminance and spatial frequency. The
study was approved by the local ethics review board (Commissie
Mensgebonden Onderzoek Regio Arnhem–Nijmegen).

Stimuli were presented using Presentation software (Version 16.2,
Neurobehavioral Systems, Inc.) via an LCD projector located outside
the magnetically shielded room. Stimuli were back-projected onto a
translucent screen via two front-silvered mirrors. The projector lag
was measured using a photosensor placed on the screen while a
black–white flickering stimulus was presented. Both the signal of the
photosensor and the trigger of the stimuluswere sent to an oscilloscope.
The projector lagwas defined as the lag between the trigger of the stim-
ulus and the signal of the photosensor, and was found to be 35 ms. The
preprocessing analyses assumed a projector lag of 50 ms. Thiswas post-
hoc corrected for by shifting the MEG data 15 ms backwards with re-
spect to the stimulus triggers, resulting in slightly shifted reported
time intervals. All time indications in this manuscript have been fully
corrected for the projector lag.

2.2. MEG acquisition

MEG data were recorded using a 275-sensor whole-head system
(CTF Systems Inc., Port Coquitlam, Canada) at a sampling frequency of
1200 Hz. Due to sensor malfunction, data from two sensors (MLT37
andMLF62) were not recorded. Subjects were seated in a dark magnet-
ically shielded room. Three coils, one in both ears and one on the nasion,
were used to determine head position relative to the sensors. Headmo-
tion was monitored during the measurement using a real-time head
localizer (Stolk et al., 2013). When head motion exceeded 5 mm, sub-
jectswere asked to reposition their head to the original location, visually
guided by the real-time head localizer. In this way, head motion has
been kept below 5 mm over the entire run for two of the subjects, and
below7 mm for the third subject. No post-hoc correction of headmove-
ment was performed.

A continuous bipolar electrooculogram (EOG) was recorded for
offline rejection of artifacts related to eye movement. This was done
with four electrodes around the eyes — one below and above the left
eye for vertical EOG, as well as one left of the left eye and right of the
right eye for horizontal EOG. An electrocardiogram (ECG) was recorded
with an electrode on the left collarbone and below the right rib. The
ground electrode was located below the elbow of the left arm. Eye
movements were also measured using an Eye Link SR Research Eye
tracker. These datawere used for additional rejection of eyemovements
that were not detected by the less sensitive EOG, and to ensure that the
observed effects are not likely to be explained by ocularmotion artifacts
(see Multivariate analysis section).

2.3. Preprocessing

Data were analyzed using MATLAB version 7.9.0, R2009b (The
Mathworks Inc., Natic, MA) and FieldTrip, an open source Matlab tool-
box for the analysis of neuroimaging data (Oostenveld et al., 2011). Tri-
als were defined as data ranging between 85 ms before stimulus onset
and 2015 ms after stimulus onset. This interval was chosen as it spans
the entire period during which the stimulus was presented (2 s), as
well as a short baseline period before stimulus onset. MEG time courses
of these trials were visually inspected, and trials that contained artifacts
resulting from SQUID jumps and muscle contractions were rejected.
Furthermore, EOG and eye tracker traces were inspected visually. Trials
with evident eye movement in these signals were excluded from fur-
ther analysis as well. After artifact rejection on average 49 (sd = 2.58)
trials per category per condition remained for analysis. Data were
low-pass filtered at 150 Hz, and 50 Hz line noise was removed from
the data with a DFT notch filter. The period between 185 and 85 ms be-
fore stimulus onset was averaged per trial per channel and subtracted
from the corresponding signal as baseline correction. The data were
downsampled to 300 Hz to reducememory and CPU load. Finally, envi-
ronmental noise components measured by the third order synthetic
gradiometers were subtracted from the sensor data.

2.4. Beamforming

Source-space activity time courses of the whole trial were
reconstructed with an LCMV beamformer (Van Veen et al., 1997). This
method creates a spatial filter, which optimizes the signal coming
from a given source while suppressing activity coming from other
sources. No a priori selection of expected activated sources is required,
making it a well-suited method for whole brain source activation re-
construction. An additional reconstruction was performed with the dy-
namic beamformer, which enforces a temporal smoothness on the
reconstructed time courses by taking previous samples into account
(Bahramisharif et al., 2012). This improves the signal-to-noise ratio of
the activity time-courses which were used as input to the classification
algorithm. The single shell model as described by Nolte (2003) was
used as head model. Individual grids with a resolution of 10 mm were
calculated based on T1 weighted MRI data acquired using a 1.5 T
whole body scanner (Siemens Magnetom Avanto, Siemens, Erlangen,
Germany). Vitamin E markers in the ears marked the same location as
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thefiducial ear coils to allow for alignment of theMEGandMRI data. For
both the LCMV and the dynamic beamformer the rank of the leadfield
was reduced to two per voxel and the leadfield was normalized. Nor-
malization was performed for each voxel by dividing the leadfield by
the infinity norm.

Single trial covariance matrices were estimated from the sensor-
space data in the time interval of 115 to 315 ms after stimulus onset
for classification on that interval as a whole, as well as from 85 ms be-
fore stimulus onset to 2015 ms after stimulus onset for classification
on each time point. Apart from the broadband filtering during prepro-
cessing, the data were not additionally filtered before beamforming.
The covariance matrices were regularized by adding 5% of the average
eigenvalues of thatmatrix to its eigenvalues, to correct for the coarse es-
timation of the covariancematrix. The same filterwas used for each trial
in order to reconstruct time courses at virtual channels in themaximum
power orientation. Activation of each virtual sensor is estimated as the
first eigenvalue of the three dimensions. These source-space activation
time-courses were used as input data to the classification algorithm.

2.5. Multivariate analysis

Multivariate analysis was performed with an elastic net logistic re-
gression algorithm(Friedman et al., 2010). Given trainingdata, the algo-
rithmmaximizes the log-likelihood, penalized by the elastic net penalty

Pα bð Þ ¼
Xp

j¼1

1
2

1−αð Þb2j þ α bj

��� ���
� �

where b is the vector of regression coefficients. This penalty term com-
bines L1 and L2 regularization through a mixing parameter α such that
α = 0 leads to L2-regularized logistic regression andα = 1 leads to L1-
regularized logistic regression. In all experiments, themixing parameter
was set to α = 0.01, encouraging both sparseness and smoothness of
the resulting vectors of regression coefficients. The influence of the elas-
tic net penalty is controlled by a regularization parameter λ, which was
optimized using a nested cross-validation procedure. The input data
were standardized prior to this analysis. Mean and standard deviation
were derived from the training set, and the data in this set were z-
transformed using these values. In addition, data in the test set were
also z-transformed using the mean and standard deviation derived
from the training set.

Classifier performance was quantified in terms of accuracy (propor-
tion of correctly classified trials). In addition, the absolute value of the
estimated regression coefficient associated with each feature was indi-
cative of the importance of that feature for classifier performance. These
measureswere computed by training a classifier onwhole-brain data at
the interval of 115 to 315 ms after stimulus onset. This time period was
chosen because the peak of the visual event-related response roughly
lies within this interval (e.g. Ales et al., 2012; Fellinger et al., 2012;
Itier and Taylor, 2004; Liu et al., 2009; Petrov et al., 2012; Seeck et al.,
1997; VanRullen and Thorpe, 2001). Classifier performance was
validated using five-fold cross-validation. By using cross-validation,
the classifierwas always tested on data it was not trained on, to prevent
double dipping. In sensor space, 163,800 features were used (600 time
points × 273 MEG sensors), whereas in source space this number was
inflated to 1,626,600 features (600 time points × 2711 grid points).
No a priori feature selection was performed. However, the elastic
net algorithm itself, by imposing a sparsity constraint, performed
feature selection by setting the weights of a large set of features
which were not necessary for classification to zero.

Computations were run on a distributed computing cluster with
cores whose clock rate ranged between 2.0 and 3.6 GHz. Sensor level
analyses as described above took about 5 min and required about
4 GB of RAM per contrast per subject. Source space analyses required
about 26 GB of RAM and took about 21 min to complete.
Next to analyses over all grid points, we also ran the classification al-
gorithmover 115 to 315 ms after stimulus onset on a selection of source
space grid points, in order to assess the relative influences of different
regions of interest. We selected grid points that belonged to non-
overlapping cubes over respectively the bilateral occipital lobes, right
temporal lobe and bilateral frontal lobes. The grid point cube was visu-
ally matched to the specific lobe in the underlying brain volume.

In addition to this overall measure, we applied this same classifica-
tion algorithm to each source-space activity time-point separately in
order to assess the temporal evolution of detectable information in the
brain. This was validated using ten-fold cross-validation, and resulted
in an accuracy trace with a temporal resolution of 3.3 ms.

Finally, we applied the aforementioned classification protocol with
ten-fold cross-validation to eye tracker and EOG data, as well as to the
input images, in order to test whether eye movement or low-level
image properties could be driving classification performance. If classifi-
cation on EOG or the eye tracker signal would be possible, classifier per-
formance found in the MEG signal could be due to artificial fluctuations
induced by eye motion. If this would not be the case, it is less likely that
the signal used for classification is driven by fluctuations related to ocu-
lar motion. Similarly, if classification on the images shown to the sub-
jects would be possible, low-level image properties could be driving
the classifier performance on the MEG signals, whereas if classification
on the imageswould not exceed chance level these low-level properties
would be less likely to drive classification, suggesting the involvement
of higher-order semantic properties instead.

2.6. Statistical testing

Individual accuracies were tested on their deviation from chance
level with a binomial test. Multiple comparisons were corrected for
using a Bonferroni correction at an alpha level of 0.05 for 54 multiple
comparisons (3 subjects × 6 contrasts × 3 input data types). Differ-
ences between accuracy levels of classification on sensor-space data
and accuracies based on the different source-space reconstructions
were tested with a binomial test at single-subject level, as proposed
by Salzberg (1997), using a Bonferroni correction at an alpha level of
0.05 for 36multiple comparisons (3 subjects × 6 contrasts × 2 compar-
isons between source and sensor space data). For the accuracy values
per time point multiple comparisons were corrected for by calculating
the false discovery rate (FDR) and corresponding threshold value at an
alpha of 0.05 for all three subjects at each contrast and image correction
condition. The most conservative FDR threshold value for each contrast
and condition was then used as the threshold for the average time
course over subjects.

3. Results

3.1. Overview of classification performance

When applying the classification algorithm to whole brain data be-
tween 115 and 315 ms after stimulus onset, accuracies often rose well
above chance level (0.5; Table 1). Classifier accuracies based on the
EOG and eye tracker traces were not significantly better than chance,
except when contrasting bodies and scenes with tools for one subject
(Bonferroni corrected p b 0.05, accuracy 0.66–0.67), implying that the
results are in general based on genuine brain activity instead of eyemo-
tion artifacts. Classification accuracy based on the input images was in
all cases well above chance level, with accuracies between 0.93 and 1
(p b 0.001). Hence, it could well be that low-level properties of the per-
ceived images at least partially drive classification.

The highest accuracies were obtained when a distinction was made
between the perception of faces and any other category. Furthermore,
when performing classification on source-space time courses, differen-
tiation between images showing bodies and scenes, as well as between
bodies and tools became possible in all subjects. The only contrast



Table 1
Mean accuracy when performing classification based on sensor-space data, on source-
space activity reconstructed with the LCMV beamformer, and on source-space activity
reconstructed with the dynamic beamformer. Grand mean accuracies of the different
data representations (sensor space and source space) are shown in the last row. Grand
mean accuracies of the different contrasts are shown in the last column. The perceived
images were corrected for both luminance and spatial frequency. Standard deviations are
given between brackets. Asterisks indicate that the classification accuracy was
significantly higher than chance level for all subjects (Bonferroni corrected p b 0.05).
Values in bold font indicate a significant increase in accuracy for at least one subject
compared to sensor-space accuracy (Bonferroni corrected p b 0.05). Values in italic font
indicate a trend towards increase in accuracy for at least one subject compared to
sensor-space accuracy (uncorrected p b 0.05).

Contrast Sensor
level (sd)

LCMV
beamformer (sd)

Dynamic
beamformer (sd)

Contrast
average

Face–tool 0.80 (0.06)⁎ 0.88 (0.03)⁎ 0.90 (0.06)⁎ 0.86
Face–scene 0.86 (0.05)⁎ 0.87 (0.05)⁎ 0.94 (0.06)⁎ 0.89
Face–body 0.83 (0.11)⁎ 0.83 (0.10)⁎ 0.93 (0.05)⁎ 0.86
Scene–body 0.69 (0.09) 0.77 (0.07)⁎ 0.86 (0.12)⁎ 0.77
Body–tool 0.69 (0.08) 0.74 (0.06)⁎ 0.83 (0.07)⁎ 0.75
Scene–tool 0.58 (0.09) 0.67 (0.08) 0.75 (0.10) 0.67
Average 0.74 0.79 0.87
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without a stable accuracy above chance level for individual subjects and
also with the lowest average accuracy in both sensor and source space
was the contrast between scenes and tools. Here accuracies only rose
above chance level for only one subject in sensor space, and for two sub-
jects in source space.

In general, the results seem to indicate that accuracy increased when
applying the classifier to activity time-courses reconstructed with the
LCMV beamformer compared to sensor-space time courses. This trend
seems even stronger when the classifier was applied to time courses
reconstructed with the dynamic beamformer. A single-subject binomial
test revealed that, for one subject, accuracy increased significantly
when discerning faces and scenes from bodies, as well as faces from
tools, based on activity time-courses reconstructed with the dynamic
beamformer as compared to sensor space (p b 0.0005). In addition,
there was a trend towards increased accuracies for at least one subject
in all contrasts when applying the classifier to time courses re-
constructed by the dynamic beamformer compared to sensor-space
time courses (uncorrected p b 0.05). This trend was also observed
Fig. 2. Top panel: Individual maps per subject of time averaged regression coefficients for the di
ulus onset. Red colors indicate positive regression coefficients; blue colors indicate negative reg
and 0.86. Lower panel: event-related fields (ERFs) over the interval starting at 85 ms before st
gression coefficients. Red traces are the ERFs for tools; blue traces are the ERFs for faces. The bla
gray box indicates the part of the ERF which was not included in the classification.
when applying the algorithm to time courses reconstructed with the
LCMVbeamformer compared to sensor-space time courses (uncorrected
p b 0.05), albeit not for the contrast between faces and scenes, and be-
tween bodies and tools. For images that were corrected for luminance
only, results were comparable, although the individual differences
were more pronounced and variable (see Supplementary Table 1).

For the sake of conciseness the main text of this paper will focus on
results obtained for the luminance and spatial frequency corrected faces
versus tools contrast, because of the high and stable accuracy in all con-
ditions and subjects. Also, other contrasts with similar classification
scores may have their drawbacks: scene-related activity could be
expected to originate from the PPA (Epstein and Kanwisher, 1998),
which may be located too medially for MEG to pick up. Hence, the per-
formance of faces versus scenesmay be explained as a face signal versus
noise. In addition, the performance of the classifier in discriminating
faces from bodies was more variable over subjects.

3.2. Localization based on sensor level data

The regression coefficients estimated for classification on sensor-
space data over the interval of 115 to 315 ms after stimulus onset, aver-
aged over time, are plotted in Fig. 2. Additionally, the event relatedfields
corresponding to sensors with the highest absolute feature weights are
shown. As expected, the regression coefficients are strongest when the
difference between the event related fields of the different categories is
largest, implying that it is this difference that the classifier is likely to
pick up. The features with the highest absolute coefficients are located
towards the occipital cortex. The localization pattern seems to show
some individual variation. However, this could also be explained by a
dipole in the same location but with a different orientation. As sensor-
space analysis is sub-optimal in providing more information about
localization, the same classification algorithm was applied to source-
space activity to further analyze the neuronal generators involved in
visual perception.

3.3. Source localization

As can be seen in Fig. 3, applying the classification algorithm to
source-space activation time-courses between 115 and 315 ms after
scrimination between faces and tools based on sensor level data 115 to 315 ms after stim-
ression coefficients. The respective accuracies corresponding to these maps are 0.90, 0.77
imulus onset until 315 ms after stimulus onset for selected sensors with high absolute re-
ck lines denote the regression coefficients per time point at a fixed yet arbitrary scale. The
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Fig. 3. Individual maps of time averaged regression coefficients for the discrimination between faces and tools based on source-space activity time-courses 115 to 315 ms after stimulus
onset. Red colors indicate positive regression coefficients; blue colors indicate negative regression coefficients. A) Regression coefficients of classification based on source-space activity
reconstructed with the LCMV beamformer. The respective accuracies corresponding to these maps are 0.87, 0.85 and 0.91. B) Regression coefficients of classification based on source-
space activity reconstructed using the dynamic beamformer. The respective accuracies corresponding to these maps are 0.89, 0.85 and 0.96.
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stimulus onset resulted inmore focal averaged featuremaps thanwhen
running this same analysis on sensor-space data. The non-zero regres-
sion coefficients are still localized in biologically plausible areas in visual
cortex. Again there is some individual variation, as the largest source for
the first subject lies in the left middle occipital gyrus, whereas for sub-
jects two and three the largest source is positioned in the right inferior
occipital gyrus, or even the lingual gyrus. When using the dynamic
beamformer to reconstruct the activity time courses the features in-
volved were localized similarly. Very similar localization results were
obtained for images that were corrected for luminance only (see Sup-
plementary Fig. 1).

3.4. Classification per time point

We assessed the temporal evolution of image category perception
by training and testing classifiers on each source-space activity time-
point separately. This way, accuracy values were obtained for each
3.3 ms. Classification accuracy peaked during the first 100–200 ms
after stimulus onset. After this initial peak, accuracy decreased yet
remained around a significant deviation from chance level (see Fig. 4).
For luminance corrected stimuli the results were again similar (see Sup-
plementary Fig. 2).

This sustained activity in the average traces was also seenwhen con-
trasting faces and bodies. However, in all other contrasts the average
accuracy trace dropped to chance level after the initial peak. Still,
individual traces often showed a sustained effect around the significance
threshold when the average trace did not (see Supplementary Fig. 3).

The accuracy traces based on the dynamic beamformer behaved
similar to those based on the LCMV beamformer. However, the peaks
became more pronounced and the traces were smoother in case of the
dynamic beamformer. Indeed, the lag-one autocorrelation for all traces
as a measure of smoothness revealed that for eight out of twelve con-
trasts the accuracy trace based on the dynamic beamformer was
smoother (4.1 b t(2) b 17.5, FDR corrected p b 0.05). The other con-
trasts did not show a significant effect, but did show a trend in the
same direction (2.1 b t(2) b 3.4, FDR corrected p b 0.1).

Focusing on the onset of the initial peak, we observed that the aver-
age classification accuracy rises above chance level as early as 85 ms
after stimulus onset (see Table 2). For contrasts between images that
were only corrected for luminance, latencies as short as 65 mswere ob-
served (see Supplementary Table 2). Peak average classification accura-
cy occurred around 130 ms. Note that the longest latencies may not be
valid. Because onset latency is defined as the first time point at which
the average accuracy trace rises above the FDR-corrected threshold, la-
tencies may not be extracted properly when the peak is very low or ab-
sent. After all, in these cases the onset may only be detected at the peak,
or around later spurious peaks, lengthening the latency. This is the case
for those contrasts where the onset latency is the same as the peak la-
tency, such as with scenes versus bodies and tools.
3.5. Spatiotemporal localization

When classifying on each single time point, a specific vector of re-
gression coefficients is derived for each corresponding accuracy value.
Therefore, it is possible to localize the features of importance for classi-
fication at a specific time point. This allows identification of which brain
regions are discriminative at each single point in time. An example of
this analysis for the best performing subject (S3) is shown in Fig. 5. Sim-
ilar plots are derived for the other subjects (see Supplementary Fig. 4).
This analysis reveals that during the initial accuracy peak, 125 to
225 ms after stimulus onset, three main clusters are used by the classi-
fier: one in the right inferior occipital gyrus/lingual gyrus, one in the su-
perior occipital gyrus/cuneus, and a final cluster in the inferior temporal
gyrus. During sustained visual stimulation signals in these areas are still
used by the classifier. In addition,more anterior regions along the dorsal
and ventral streams become incorporated in the classifier model after
the initial peak, specifically the inferior parietal/postcentral gyrus and
a more anterior region of the inferior temporal gyrus.

To assess the influence of specific regions on classification
performance, we applied the classification algorithm to all time
points in the interval between 115 and 315 ms after stimulus
onset for selected regions of interest. Classifying faces and tools
based on only occipital activity time-courses was possible with a
high accuracy (mean = 0.89, sd = 0.06). Classification on the
right temporal lobe was also possible, albeit with a less high
accuracy (mean = 0.73, sd = 0.09). Finally, applying the classifier
algorithm to frontal lobe activity time-courses, where stimulus
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Fig. 4.Average accuracy traces for the contrast faces versus tools. The red areas around the traces indicate the 95% confidence interval. Stimulus onset is at 0 s. The dashed horizontal lines
indicate chance level performance. The solid horizontal lines signify the FDR-corrected threshold for deviation from chance level. After the initial peak, classification performance remained
sustained around the FDR-corrected threshold for this contrast. A) Average accuracy trace based on source-space activity reconstructedwith the LCMV beamformer. The latency forwhich
the trace starts to rise significantly above the FDR-corrected threshold is 85 ms. B) Average accuracy trace based on source-space activity reconstructed with the dynamic beamformer.
Again, the latency for which the trace starts to rise significantly above the FDR-corrected threshold is 85 ms.
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specific information was not expected, was indeed not possible
(mean = 0.55, sd = 0.05).

4. Discussion

In this paper, we showed that multivariate classification algorithms
can be successfully applied to reconstructed MEG source-space activity
time-courses in order to track the spatiotemporal dynamics of visual
perception with a high resolution, both in the spatial and in the tempo-
ral domain. Overall, classification of different stimulus categories was
possible with high accuracy, and resulted from a focal source in the
inferior occipital lobe or nearby downstream areas. Moreover,
investigating the temporal evolution of classifier accuracy per single
time point revealed that the distinction between image categories
could be detected in the brain as early as 85 ms after stimulus
onset. After an initial peak, this distinction was still detectable for
some of the contrasts. Localizing the non-zero regression coefficients
per single time point allowed us to capture the fast temporal dynamics
Table 2
Overview of the onset latency at which the average accuracy trace of different contrasts
first rises significantly above the FDR-corrected chance level, and the peak latency at
which the maximum classification accuracy is reached.

Contrast LCMV beamformer
onset/peak (ms)

Dynamic beamformer
onset/peak (ms)

Face–tool 85.0/128.3 85.0/131.7
Face–scene 105/128.3 98.3/128.3
Face–body 88.3/125.0 78.3/138.3
Scene–body 131.7/131.7 125.0/195.0
Body–tool 91.7/198.3 78.3/215.0
Scene–tool 421.7/421.7 171.7/178.3
of visual category perception in detail. Finally, using source-space
activity time-courses reconstructed with the dynamic beamformer as
input to the algorithm boosted classifier accuracy as compared to
using source-space activity time-courses reconstructed with the LCMV
beamformer. The dynamic beamformer also gave smoother time-
resolved accuracies as obtained from the single time point analysis. In
addition to the analysis of visual perception, this approach to decode
source-space MEG activity can also provide a suitable method to
investigate high-resolution spatiotemporal dynamics of other ongoing
cognitive processes. For example, Sudre et al. (2012) have revealed
spatiotemporal dynamics of semantic processing in amanner comparable
to ours.
4.1. Overall classifier performance

A range of different natural image categories could be decoded suc-
cessfully with our approach. Classification accuracy often exceeded 0.8,
and ranged up to over 0.9. Especially faces were strongly dissociable
from other image categories, with classification performance consis-
tently exceeding chance level for all subjects and analysis pipelines.
This is in line with the idea that faces are processed faster and more ef-
ficiently than other objects (Farah et al., 1998). On the other hand,
scenes and tools were much harder to dissociate from each other. For
this contrast, classification performance did not consistently rise
above chance level. This could be explained by scene-related activity
likely arising from the parahippocampal place area (Epstein and
Kanwisher, 1998). As this area is localizedmedially in the brain, activity
arising from this deep region may be harder to detect with MEG than
activity originating in cortical sources. Therefore, scene-related activity
may have an appreciably lower signal-to-noise ratio. An attempt to
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Fig. 5. Localization of regression coefficients for single time samples during the initial accuracy peak and the sustained period for the best subject (S3). Data are shown for the contrast faces
versus tools. Source-space activity time-courseswere reconstructedwith the dynamic beamformer. Note the initial involvement of three clusters, one in the inferior occipital/lingual gyrus
(IOG), one in the superior occipital gyrus/cuneus (SOG), and one in the inferior temporal gyrus (ITG). During the sustained period regions more anterior in the dorsal (inferior parietal/
postcentral gyrus (IPG)) and ventral streams (more anterior inferior temporal gyrus (aITG)) become of importance to the classifier. Red colors are indicative of positive regression coef-
ficients; blue colors indicate negative coefficients.
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discriminate between scenes and any other category would then actu-
ally constitute a distinction between category-specific activity and
aspecific activity for the scene trials. Hence, classification would rely
on information of only one category. If the other category has strong
category-specific activity, this distinctionmay be easilymade. However,
if this category-specific activity is not so pronounced, or if it resembles
the aspecific activity pattern of scene trials, classification accuracy
may not always reach significance.

Another possible explanation for contrasts with faces having the
highest accuracies could be the correction for spatial frequency. This
correction decreased image visibility, and it could be that faces were
better recognizable than other categories after correction. This is, how-
ever, unlikely. First, when images were only corrected for luminance,
which does not affect image visibility, classifier accuracies were still
highest when discriminating between faces and other objects. Second,
from a larger set only the most visible images were selected for the ac-
tual experiment, and all selected images were rated as well recogniz-
able. The difference between faces and the other stimulus categories
may also arise from a difference in encoding. However, as the task was
unrelated to the images, subjects were not required to actively process
the images. A difference in encoding strategy is therefore unlikely.

4.2. Temporal evolution of classifier accuracy

Previous studies have usedmultivariatemethods overmultiple short
timewindows of electrophysiological data to get a handle on the tempo-
ral evolution of neuronal activity involved in the perception of stimulus
categories (Bode et al., 2012; Carlson et al., 2003; Liu et al., 2009;
Ramkumar et al., 2013; Simanova et al., 2010; van Gerven et al., 2013).
These studies have shown a very early onset of brain activity related to
category perception, starting as early as about 100 ms after stimulus
onset. As pointed out by Crouzet et al. (2010), category-specific
information can be detected in the brain as early as about 80 ms
after stimulus onset. In line with this, we observed above-chance
classification as early as 85 ms after stimulus onset. These latencies are
plausible in the light of monkey studies that have shown that visual
information is detectable in the early occipital cortex around 50 ms
after stimulus onset, and about 90 ms after stimulus onset in the
temporal lobe (Thorpe and Fabre-Thorpe, 2001).

Next to onset latency, we also inferred how category-specific infor-
mation evolved during image perception. Accuracy peaked in most
contrasts around 130 ms. This is in line with observations in the afore-
mentioned studies, though the peak we found was narrower and oc-
curred somewhat earlier. This may be due to the temporal resolution,
which in this study was as high as 3.3 ms and may therefore have
resulted in a less smoothed andhence narrower peak. Thepeak occurred
around the P1 visual event-related field, before the face-specific N170
(Bentin et al., 1996). Some studies have shown category-specificity dur-
ing this P1 component (Itier and Taylor, 2002; Taylor, 2002)while other
studies did not show this specificity earlier than the N170 component
(Rossion et al., 2003; Rousselet et al., 2007). This study provides further
evidence for detectable category-related information already being
present as early as the P1 component.

After the initial peak, accuracies were found to decrease again. In
some cases (contrasting faces with tools or bodies) accuracy remained
significantly above chance level. In other cases, however, average accu-
racy decreased to chance level during the remainder of stimulus presen-
tation. Still, at the individual level, many contrasts did stay around their
individual FDR threshold during this sustained period. It could well be
that, as the individual sustained effects fluctuated around the signifi-
cance threshold, this effect averaged out to values below the conserva-
tively chosen group level threshold. Alternatively, the lack of consistent
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sustained activity could be an effect of inattentional blindness (Rees
et al., 1999), as subjects solely had to focus on the fixation dot, and
therefore paid no attention to the image itself.

It should be noted that the onset latencies differed between the dif-
ferent contrasts. However, peak latency is often stable. This may be a
signal-to-noise issue. After all, onset latency is defined as the time be-
tween stimulus onset and the first time point at which the average ac-
curacy trace passes the FDR threshold. Contrasts with lower peaks
cross this threshold later than contrasts with more pronounced peaks,
even when the peak occurs at the same latency. This may also explain
the longer latencies observed for contrasts where scenes are involved,
as scene-related activity may actually be noise (see above). However,
this observation only holds for images corrected for both luminance
and spatial frequency. It could be argued that this is an effect of a general
decrease in signal-to-noise ratio for images that were corrected for spa-
tial frequency as well.

4.3. Localization of temporal dynamics

In addition to the temporal dynamics that this method allowed us to
extract, it also enabledmore precise pinpointing of the neuronal sources
underlying visual perception.When classifying on all datameasuredbe-
tween 115 and 315 ms after stimulus onset, features used by the classi-
fier seemed to specifically lie in the inferior occipital gyrus and lingual
gyrus, aswell as themiddle occipital gyrus for one of the subjects. Com-
pared to sensor-space analysis, using source-space data as classifier
input improved localization by renderingmore focal, spatially unmixed
sources.

Moreover, when applying the classification algorithm exclusively to
activity time-courses originating from the occipital lobe, classification
accuracywas high, indicating a strong influence of signals from this spe-
cific region on the classifier. It is likely that classification in this region of
interest was driven by a complexmixture of low-level image properties
that make up a natural image. Indeed, because classification was possi-
blewith high accuracy on the input images, regardless of applied correc-
tion for low-level image properties, it is not possible to rule out the
influence of these features. At the same time, when restricting the algo-
rithm to activity originating from sources over the right temporal lobe
classification was still possible. The involvement of these sources may
be indicative of at least some semantic category-related information
being used to drive classification.

More interesting, however, is to assess the spatial features used by the
classifier at individual time points in order to determine how neuronal
sources evolve over time. This showed that, while classifying on all data
in the 115 to 315 ms interval after stimulus onset binned together re-
vealed only one main occipital source, this source was segregated into
multiple clusters when assessing this interval per single time point. In-
deed, between 125 and 225 ms after stimulus onset three clusters were
found to alternately be used to a more or lesser extent by the classifier
in the distinction between faces and tools: the inferior occipital/lingual
gyrus, the superior occipital gyrus/cuneus, and the inferior temporal
gyrus. These areas are biologically plausible regions for category percep-
tion. For example, the occipital face area is located in the inferior occipital
gyrus andhas been shown to be related to face processing (Gauthier et al.,
2000; Nichols et al., 2010). Also, the lingual gyrus has been implicated in
face-specific ERP responses (Allison et al., 1999; McCarthy et al., 1999).
The superior occipital gyrus and cuneus belong to the dorsal stream,
which has been shown to be activated by tools (Almeida et al., 2008;
Almeida et al., 2010) or at least tool-shaped objects (Sakuraba et al.,
2012). The inferior temporal gyrus, on the other hand, is part of the ven-
tral stream and as such related to object identity (Mishkin et al., 1983).

Involvement of these areas was not limited to the initial peak. Also
during sustained visual stimulation the classifier used information
from these areas. In addition, during the sustained period areas more
anterior along the ventral (anterior inferior temporal gyrus) and dorsal
(inferior parietal/postcentral gyrus) stream became involved, again
being suggestive of the additional influence of semantic category-
related information. However, sensitivity of these areas to low-level vi-
sual features cannot be ruled out.

There could be an additional effect of field spread. However, during
whole-brain analysis multiple separated sources were extracted that
were of influence to the classifier. These different sources were more-
over observed at separate time scales, indicative of being different un-
derlying sources. Furthermore, classification on frontal sources only is
not possible, making the influence of a general effect less likely.

A certain amount of blurring or shifting of sources is possible, as
there was some limited headmotion in all subjects. However, although
the clusters involved in early and sustained visual perception were lo-
cated close to each other, they could be clearly distinguished using our
approach by being assigned regression coefficients with different
signs. Therefore it is unlikely that there has beenmixing of these sources
due to a blurring effect, or even field spread.

4.4. Comparison of source reconstruction methods

Next to classification on source-space activity time-courses re-
constructed with the LCMV beamformer, we performed the same anal-
yses on source-space activity time-courses reconstructed using the
dynamic beamformer (Bahramisharif et al., 2012). This beamformer
method, by taking previous samples into account, results in smoother
source-space activity time-courses. Applying the classification
algorithm to these activity time-courses resulted in smoother
accuracy traces, as well as boosted classification accuracy while
maintaining an equal localization performance. This effect can likely
be explained by the increased signal-to-noise ratio of the input
activity.

We observed a significant increase in classifier performance when
applying the algorithm to activity time-courses reconstructed by thedy-
namic beamformer compared to sensor-space time courses for all con-
trasts, as well as a trend for the other contrasts. We also observed a
trend towards increase in performance when using source-space
activity time-courses reconstructed by the LCMV beamformer instead
of sensor-space time courses. The lack of strong significant results
despite these trends could be a ceiling effect, as classifier accuracies
were already quite high for sensor-level data. In addition, with about
49 trials per category an increase in performance of 10% would still be
small in the absolute number of additional correctly classified trials,
making significant results hard to obtain. Finally, there is a loss in
power due to the multiple comparisons resulting from the different
contrasts, subjects and data representations. It should be noted that,
for one subject, classifier performance sometimes worsened when
using source-space instead of sensor-space time courses. This could be
caused by a less optimal source space reconstruction. After all, anything
that can influence the quality of the source-space signal in its turn
influences the accuracy of the classification algorithm.

Observed differences between sensor-space and both source-space
accuracies can be explained by differences in regularization. After all,
the regularization may be differentially influenced by the various data
representations. The average regularization parameter λ was slightly
different for contrasts based on sensor-space data (8.0), source-space
activity reconstructed with the LCMV beamformer (10.3) and source-
space activity reconstructed with the dynamic beamformer (12.3). In
addition, the beamformer may suppress noise from unrelated sources,
which would then lead to an input with a higher signal-to-noise ratio
for the classifier.

4.5. Interpretation of classifier parameters

The magnitude of the regression coefficient for a given feature is in-
dicative of the contribution of that feature to the current classification
problem. This, however, does not imply that there is a direct relationship
between features of importance to the classifier, and the underlying
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neuronal substrates driving category perception (Bießmann et al., 2012).
Furthermore, it is possible that features of importance for the classifier
are actually noise components (Yamashita et al., 2008). This makes a
straightforward interpretation of regression coefficients difficult.
However, as the elastic net method imposes a sparsity constraint, only
a small number of features have coefficients set to non-zero values.
This small set of features is sufficient nonetheless to reach the classifier
accuracies described. All other features are not involved in that specific
classification, and hence not necessary to obtain high classifier
accuracies.

Not only the magnitude, but also the sign of the regression coeffi-
cients has to be interpreted with care. For example, the classification al-
gorithm may decide in favor of tools when the sum of feature values
multiplied by their regression coefficients is positive, whereas the deci-
sion is in favor of faces when this weighted sum has a negative value.
However, this does not mean that negative regression coefficients are
indicative of ‘face-features’ and positive regression coefficients signify
‘tool-features’. For example, a negative regression coefficient at a nega-
tive ERF component results in a net positive coefficient, hence pushing
the classifier decision to the opposite category.

The focal nature of the obtained sources can partially be explained in
terms of properties of the employed classification algorithm. The elastic
net algorithm is regularized by an L1 and L2 norm, which respectively
favor few focal sources and multiple smoother sources with lower cor-
responding regression coefficients. We set the mixing parameter α
such that the model incorporated strong L2 regularization and weak
L1 regularization, in order to be able to detect distributed, yet focal
sources. Indeed, we often found multiple focal sources involved during
the different stages of perception. Adjusting themixing parameterα to-
wards stronger L1 regularization resulted in a sparser model in which
sources were indeed more focal (see Supplementary Fig. 5).

We observed minor individual differences in localization. For exam-
ple, in the overall classification results, one subject showed a contribu-
tion of the middle occipital gyrus to the classifier, whereas for the other
two subjects this contribution was located more inferiorly, as well as in
the opposite hemisphere. These differences could be explained in terms
of variation in anatomy, resulting in different dipole configurations and
therefore differences in signal quality. The algorithm may then favor
different clusters that have a more distinct signal. Still, this does not
make the localizations we find arbitrary. After all, classifier accuracies
for all these models were high, and hence the selected sources can be
regarded as highly relevant for visual perception. In addition, adjusting
the regularization parameter α does not change the location of the
source, only the sparsity of that source. Also, intrasubject localization
was similar for source-space activity reconstructed with the LCMV
beamformer and reconstructed with the dynamic beamformer, and
different amounts of correction of low-level image properties also
showed similar plausible sources. Therefore, localization seemed to be
robust in the light of changes in parameter settings and representation
of input data.

To summarize, we showed that by applying a multivariate
classification algorithm to source-space activity time-courses, we
were able to investigate the spatiotemporal dynamics of visual
perception. Not only did we use the temporal resolution of MEG
data to pinpoint the early onset and temporal evolution of
perceptual information, we also localized this temporal pattern to
focal biologically plausible sources. By optimally combining the
spatial and temporal domain, this method allowed us to study the
spatiotemporal dynamics of perception, in order to assess the
evolution of neural sources involved over time.
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