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Abstract

Focused attention continuously and inevitably fluctuates, and to completely understand the 

mechanisms responsible for these modulations it is necessary to localize the brain regions 

involved. During a simple visual oddball task, neural responses measured by 

electroencephalography (EEG) modulate primarily with attention, but source localization of the 

correlates is a challenge. In this study we use single-trial analysis of simultaneously-acquired scalp 

EEG and functional magnetic resonance image (fMRI) data to investigate the blood oxygen level 

dependent (BOLD) correlates of modulations in task-related attention, and we unravel the 

temporal cascade of these transient activations. We hypothesize that activity in brain regions 

associated with various task-related cognitive processes modulates with attention, and that their 

involvements occur transiently in a specific order. We analyze the fMRI BOLD signal by first 

regressing out the variance linked to observed stimulus and behavioral events. We then correlate 

the residual variance with the trial-to-trial variation of EEG discriminating components for 

identical stimuli, estimated at a sequence of times during a trial. Post-stimulus and early in the 

trial, we find activations in right-lateralized frontal regions and lateral occipital cortex, areas that 

are often linked to task-dependent processes, such as attentional orienting, and decision certainty. 

After the behavioral response we see correlates in areas often associated with the default-mode 

network and introspective processing, including precuneus, angular gyri, and posterior cingulate 

cortex. Our results demonstrate that during simple tasks both task-dependent and default-mode 

networks are transiently engaged, with a distinct temporal ordering and millisecond timescale.
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1 Introduction

Internal attentional brain states are challenging to study because their fluctuations are not 

always event related and can dynamically ebb and flow at multiple timescales. Traditional 

blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) 

enables observation of the average response evoked by stimuli and/or behavioral response. 

However, task engagement inevitably fluctuates on a single-trial basis throughout the run of 

an experiment. Even simple target-detection perceptual decisions involve a complex cascade 

of neural processes including stimulus detection, target recognition/rejection, motor 

planning, and behavioral response, all of which are associated with evoked responses that 

vary on a single-trial basis (Philiastides et al., 2007). Many of these processes are time 

locked to stimulus onset, but others are more closely locked to the behavioral response 

(Gerson et al., 2005).

The high temporal resolution of scalp EEG allows observation of dynamic neural processes, 

but activity in deep subcortical structures is difficult to detect. Furthermore, source 

localization is essentially an ill-posed problem, with skull and cerebral spinal fluid (CSF) 

impedance resulting in poor spatial resolution. On the other hand, BOLD fMRI can localize 

both superficial and deep sources of activity with mm-scale resolution, but its temporal 

resolution is limited due to the slow nature of the BOLD response and the low sampling rate 

required for acquisition of whole-brain fMRI data.

Perhaps the most well-studied evoked response to a task-related sensory stimuli is the P3 

(also called P300), which peaks at approximately 450 ms post-stimulus (Key et al., 2005; 

Linden, 2005; Polich, 2007). The P3, which is typically measured via 

electroencephalography (EEG), is known to have amplitude that is modulated by the 

endogenous state of the subject (Key et al., 2005; Polich, 2007). Extensive evidence from 

intracranial, lesion, and EEG-fMRI studies shows this response to be generated by a 

widespread network that includes frontal and temporal-parietal areas (Linden, 2005; Polich, 

2007). Frontal activity has been associated with the earlier novelty-related P3a 

subcomponent, and temporalparietal activity with the later task-related P3b subcomponent, 

consistent with their EEG scalp topographies (Polich, 2007).

Endogenous brain states that have been linked to inattention to sensory stimuli are often 

referred to as “resting states.” Both functional connectivity analysis and independent 

component analysis (ICA) of fMRI data have identified many consistent resting-state 

networks (De Luca et al., 2006; Fox et al., 2007). These networks are characterized by 

“infra-slow” fluctuations on the order of 0.01–0.1 Hz (Palva and Palva, 2012) and can be 

observed by recording fMRI on undirected subjects while they lie in the scanner doing no 

specific task. The most extensively studied of these is the default-mode network (DMN), a 

co-activation of the posterior cingulate cortex, medial prefrontal cortex, and angular gyri 
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that was originally defined to represent a baseline brain state (Raichle et al., 2001). It is 

commonly associated with self-monitoring, auto-biographical, and social functions, 

reflecting attention to the internal world (Bressler and Menon, 2010). However, recent work 

has uncovered evidence for a more active role of the DMN related to task performance 

(Eichele et al., 2008), including its deactivation by cognitive load during task engagement 

(Esposito et al., 2006).

In this paper we used simultaneously-recorded EEG and fMRI during a simple visual 

oddball task. We investigate the relationship between neural correlates of processing task-

relevant sensory stimuli and brain states reflective of inattention to the task and sensory 

input. We use the single-trial analysis methodology ofGoldman et al. (2009), whereby 

machine learning methods are used to find a maximally discriminative projection of the 

EEG data, and the single-trial variability of that projection is used to construct the BOLD 

fMRI univariate model. Previous studies of the BOLD correlates of single-trial event-related 

EEG variability have focused mainly on the P3 and only a few other well-known 

components at selected stimulus-locked latencies, and have often used an arbitrary selection 

of electrodes (Benar et al., 2007; Warbrick et al., 2009), and many have studied this 

coupling without regressing out the effect of the externally-observable reaction time 

variability.Eichele et al. (2005) were one of the first to investigate the spatio-temporal 

evolution for BOLD correlates of event-related potential (ERP) components spanning the 

entire trial. Their approach, applied to an auditory oddball paradigm, used ICA to denoise 

the EEG from which they then selected a specific subset of electrodes to construct single-

trial variability regressors for well defined ERPs (e.g. P2, N2 and P3).

Instead of a priori defining ERP components of interest, we use a purely data-driven 

approach to identify temporally specific, maximally discriminative task-relevant projections 

of the EEG data. Specifically, our multivariate discrimination improves identification of 

task-relevant components in low signal-to-noise ratio environments, such as EEG recorded 

during MRI acquisition. It also enables us to study the BOLD correlates of continuously-

evolving components linked to the task (i.e. defined by trial labels). Since we analyze the 

BOLD signal by first regressing out the variance linked to observed stimulus and behavioral 

events (Feige et al., 2005; Goldman et al., 2009), these methods also allow us to investigate 

the BOLD correlates of modulations in task-engagement that are undetectable with 

traditional methods, and dissociate them from observable behavioral variability. 

Furthermore, we investigate the correlates of these modulations only for target trials (i.e. 

identical stimuli), thus ensuring that the trial-to-trial variation in neural processes is 

reflecting a latent state. Despite making no prior assumptions about functional connectivity 

between brain regions and without aiming to study functional networks, we find that for this 

simple target detection task, regions associated with task-dependent and default-mode 

networks transiently correlate with the trial-to-trial variability of the EEG discriminating 

components, and they do so on a millisecond timescale with a distinct temporal ordering.
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2 Materials and Methods

2.1 Behavioral Paradigm

Seventeen subjects (6 female, mean 27.7 years, range 20–40) participated in three runs each 

of a visual oddball paradigm. The 375 (125 per run) total stimuli were presented for 200 ms 

each with a 2–3 s uniformly-distributed variable inter-trial interval (ITI) and probability of 

target ⅕. The first two stimuli of each run were constrained to be standards. The target and 

standard stimuli were, respectively, a large red circle and a small green circle on isoluminant 

gray backgrounds (3.45° and 1.15° visual angles). The larger target stimuli boosted EEG 

discriminator performance, and did not confound our final results, since we interpreted only 

the variability within the target class. Because our study focused on task-related attentional 

states, subjects were asked to respond to target stimuli, using a button press with the right 

index finger on an MR-compatible button response pad. Stimuli were presented to subjects 

using E-Prime software (PST, Pittsburgh, PA) and a VisuaStim Digital System (Resonance 

Technology, Northridge, CA) 600×800 goggle display. All subjects gave informed consent 

following the protocol of the Columbia University Institutional Review Board.

2.2 Simultaneous EEG and fMRI Data Acquisition

A 3T Philips Achieva MRI scanner (Philips Medical Systems, Bothell, WA) was used to 

collect functional echo-planar image (EPI) data continuously with 3 mm in-plane resolution 

and 4 mm slice thickness. We covered the entire brain by obtaining 32 slices of 64×64 

voxels using a 2000 ms repetition time (TR) and 25 ms echo time (TE). We also acquired a 

single-volume high resolution (2×2×2 mm) EPI image and a 1×1×1 mm spoiled gradient 

recalled (SPGR) image for each subject for purposes of registration.

We simultaneously and continuously recorded EEG using a custom-built MR-compatible 

EEG system (Goldman et al., 2009; Sajda et al., 2010), with differential amplifier and 

bipolar EEG cap. The caps are configured with 36 Ag/AgCl electrodes including left and 

right mastoids, arranged as 43 bipolar pairs (Supplementary Figure 1). Bipolar pair leads are 

twisted to minimize inductive pickup from the magnetic gradient pulses and subject head 

motion in the main magnetic field. This oversampling of electrodes ensures data from a 

complete set of electrodes even in instances when discarding noisy channels is necessary. To 

enable removal of gradient artifacts in our offline preprocessing, we synchronized the 1-

kHz-sampled EEG with the scanner clock by sending a transistor-transistor logic (TTL) 

pulse to a field-programmable gate array (FPGA) card (National Instruments, Austin, TX) at 

the start of each of 170 functional image acquisitions. All electrode impedances were kept 

below 20 kΩ, including 10 kΩ resistors built into each electrode for subject safety. A 

comprehensive description of the hardware, along with the preprocessing and analysis 

methods described throughout the remainder of Section 2, can be found inSajda et al. 

(2010).

2.3 EEG Data Preprocessing

We performed EEG preprocessing offline using Matlab (Mathworks, Natick, MA). In 

addition to standard EEG artifacts, electrophysiological signals recorded inside the MRI 

scanner are contaminated with gradient artifacts and ballistocardiogram (BCG) artifacts due 
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to magnetic induction in the EEG wires. First we removed the gradient artifacts by 

subtracting the mean artifact across all functional volume acquisitions. We then applied a 10 

ms median filter to remove any residual spike artifacts. Because we sync the scanner with 

the EEG we are able to remove the gradient artifact at the commonly-used 1 kHz sampling 

rate of stand-alone EEG. Next we removed standard EEG artifacts, using the following 

digital Butterworth filters: 1 Hz high pass to remove DC drift, 60 Hz and 120 Hz notches to 

remove electrical line noise and its first harmonic, and 100 Hz low pass to remove high 

frequency artifacts not associated with neurophysiological processes. These filters were 

applied together in the form of a linear phase finite impulse response (FIR) filter to avoid 

distortions caused by phase delays.

BCG artifacts are more challenging to remove, since they share frequency content with EEG 

activity. Currently-existing BCG removal algorithms cause loss of signal power in the 

underlying EEG, so we performed single-trial classification (described in section 2.4) on the 

data prior to BCG artifact removal. This is a justified practice because our classifier 

identifies discriminating components that are likely to be orthogonal to BCG. In order to 

compute scalp topographies of these discriminating components, BCG artifacts were 

removed from the continuous gradient-free data using a principal components analysis 

(PCA) method (Goldman et al., 2009; Sajda et al., 2010). First the data were low-passed at 4 

Hz to extract the signal within the frequency range where BCG artifacts are observed, and 

then the first two principal components were determined. The channel weightings 

corresponding to those components were projected onto the broadband data and subtracted 

out. These BCG-free data were then re-referenced from the 43 bipolar channels to the 34-

electrode space to calculate scalp topographies of EEG discriminating components.

We investigated both stimulus-locked and response-locked activity because some cognitive 

processes are more tightly time-locked to stimulus onset and others to behavioral responses 

(Gerson et al., 2005; Makeig et al., 2004). We extracted 1000 ms stimulus-locked and 

response-locked epochs (with baseline removal on the 200 ms prior to stimulus) from both 

the 43-channel gradient-free dataset and the 34-electrode re-referenced dataset. By visual 

inspection we discarded trials containing motion or blink artifacts, evidenced by sudden 

high-amplitude deflections, and also those with incorrect responses, identically for both 

datasets. This left approximately 95% of the target trials remaining. Because the paradigm 

does not require a behavioral response to standard stimuli, we randomly assigned reaction 

times (RTs) to standard trials chosen from the probability distribution of target trial RTs 

(Goldman et al., 2009). This provided a baseline activity for response-locked single-trial 

EEG analysis, and it did not affect interpretation of results since we only viewed results 

derived from the variability within the target class.

2.4 Single-trial analysis of EEG

We discriminated target vs. standard trials by applying a linear classifier to the 43-channel 

EEG signal amplitude, xτ(t), using the sliding window method of Parra et al. (2002; 2005). 

This method is described comprehensively inGoldman et al. (2009) andSajda et al. (2010), 

and an overview is illustrated in Figure 1. We selected a training window of width 50 ms 

and varied the window center, τ, across the entire epoch (stimulus-locked 0–1000 ms, 
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response-locked −600–400 ms) in overlapping 25 ms increments. For each of these time 

windows, we used logistic regression on the 50 ms of data to estimate the linear weighting, 

wτ, of the EEG sensors resulting in a projection, yτ(t), that maximally discriminated the 

conditions.

(1)

The classifier output is the distance of each trial from the discriminating hyperplane, 

representing the classifier’s confidence in its prediction based on the training data and the 

model. We treat this as a surrogate for the neural confidence of the decision, which for our 

simple target-detection task is primarily dependent upon the subjects’ instantaneous task-

engagement.

We assessed classifier performance by means of area under the receiver operating 

characteristic (ROC) curve, denoted Az, (Green and Swets, 1966) using leave-one-out 

(LOO) cross validation (Duda et al., 2001). Az calculations performed while sliding the 

window across time enabled observation of the temporal progression of task-relevant 

components and localization of the stimulus- or response-locked time with maximal 

discrimination between conditions. To obtain a significance threshold for the Az values, we 

used a permutation test in which we randomly permuted the trial labels and ran the classifier 

using the LOO approach. Repetition 1000 times for each subject generated a distribution of 

Az values from which we computed the Az corresponding to p = 0.01.

We generated forward models using the sensor-space EEG data, in order to view the scalp 

distribution of discriminating activity for each time window, where Xτ is the matrix 

comprised of all samples within the 50-ms-wide window from τ − 25 ms to τ + 25 ms.

(2)

This forward model is a normalized correlation between the discriminating component and 

the data Xτ, and it represents the electrical coupling between them (Goldman et al., 2009; 

Parra et al., 2002, 2005; Sajda et al., 2010). It allows observation of the progression of the 

components across the scalp over time.

2.5 fMRI Data Preprocessing

Using FSL (Smith et al., 2004), we performed bias-field correction on all images to adjust 

for artifacts caused by the EEG wires. We then performed slice-timing correction, motion 

correction, 0.01-Hz high-pass filtering, and 5-mm full width half max (FWHM) spatial 

smoothing on the functional data. Motion correction provided motion parameters that were 

later included as confounds in the general linear model (GLM). Functional and structural 

images were registered to a standard Montreal Neurological Institute (MNI) brain template 

following brain extraction, and each subject’s registration was checked manually to ensure 

proper alignment.
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2.6 Traditional fMRI Analysis

We first ran a traditional fMRI analysis, using event-related and RT variability regressors in 

our GLM. The event-related regressors were comprised of boxcar functions with unit 

amplitude and onset and offset matching that of the stimuli. RT variability was modeled 

using unit amplitude boxcars with onset at stimulus time and offset at response time, and 

these were orthogonalized to the event-related regressors. Orthogonalization was 

implemented using FSL, which utilizes the Gram-Schmidt procedure (Strang, 2003) to 

decorrelate the RT regressor from all other event-related regressors. All regressors were 

convolved with the canonical hemodynamic response function (HRF), and temporal 

derivatives were included as confounds of no interest. An event-related target vs. standards 

contrast was also constructed. A fixed effects model was used to model activations across 

runs, and a mixed effects approach used to compute the contrasts across subjects. Statistical 

image results for these traditional analyses were thresholded at z > 2.3, and clusters were 

multiple-comparison-corrected at p = 0.05 (Worsley, 2001).

2.7 EEG-based fMRI Analysis

For the single-trial variability (STV) fMRI analysis, we modeled the variability of the neural 

response using an additional two regressors – one each for targets and standards. These 

EEG-based regressors were designed with duration 100 ms, centered on the classifier 

training window. The STV regressor height was modulated using the output yτ,i of the EEG 

discriminator for each trial (i). These regressors were convolved with the HRF and 

orthogonalized with respect to all traditional regressors, with temporal derivatives included 

as confounds. It was especially important to regress out the RT variability, since RT is 

known to be negatively correlated with attention (Eason et al., 1969; Weissman et al., 2006), 

and our aim was to study variability in task-engagement that cannot be detected using an 

external measure. This entire analysis was run independently for all stimulus-locked and 

response-locked EEG training windows exceeding a mean Az value of 0.75, which is a 

common psychophysical threshold used in signal detection theory and here represents 

substantial performance of the classifier. To avoid stimulus-type confounds, we focused on 

within-class variability, using only the target stimuli STV statistical maps in our results 

interpretation.

We used a randomization method motivated by deBettencourt et al. (2011) and threshold-

free cluster enhancement (Smith and Nichols, 2009) to correct for multiple comparisons, by 

running a complete STV fMRI analysis after permuting the yτ=450ms values randomly within 

each class. 100 permutations were run for each subject. We carried these randomization 

results through to the group level and thresholded the statistical maps at per-voxel p = 0.005. 

For each cluster in the resulting null distribution, we summed the negative logarithm of the 

p-value over each voxel in the cluster. This provided a score for each cluster that, while 

highly dependent on cluster size, also accounted for some variation in the magnitude of the 

z-scores within the cluster. We determined a threshold based on the 99th percentile of these 

null-distribution cluster scores, or a p-value of 0.01.

We took extra care to investigate the possibility of pulsation artifacts confounding our 

results, by constructing fMRI regressors from BCG-artifact pulse timing. This timing was 
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determined using a peak detection algorithm on temporal lobe EEG channels, which are the 

channels most strongly contaminated with BCG artifact. We fit this regressor to the 

functional data, and thresholded the resulting maps at an uncorrected p = 0.005. We do not 

report any results that overlap with these pulse correlates.

2.8 fMRI Analysis for Localizing the DMN

Because our single-trial findings included correlates consistent with DMN, we performed 

ICA on the functional image data to locate the DMN, which is an established method used to 

study resting-state functional networks not associated with any task (De Luca et al., 2006; 

Fox et al., 2007). To prevent investigator bias, we used a template-matching algorithm to 

automatically determine the DMN component for each subject (template obtained from the 

Neurosynth database of Yarkoni et al., 2011), and we found the group mean DMN 

component in MNI space. Manual DMN component selection was consistent with our 

algorithm output.

3 Results

All subjects responded with high accuracy and speed. 98.4% ± 3.1% of targets were 

correctly detected, with 397.2 ± 38.9 ms RT.

3.1 EEG Analyses

Traditional stimulus-locked event-related potentials (ERPs) displayed a strong visual P2 

peak over frontal and posterior sites and a prominent P3 over central sites (Figure 2, left), 

consistent with previous literature (Hopfinger and West, 2006; Makeig et al., 1999). N1 and 

N2 responses were also visible. The response-locked ERPs showed a double peak that was 

most pronounced at central and posterior sites (Figure 2, right), and which was highly 

replicable across subjects. This matches the post-motor thetaband synchronization described 

byMakeig et al. (2004).

We were able to discriminate target vs. standard EEG trials with highly significant accuracy 

(Figure 3). We surpassed the corrected p = 0.01 value (Az = 0.66) for all consecutive 

stimulus-locked training windows from 150–750 ms and for all analyzed response-locked 

windows centered at −250 ms or later. Maximum discrimination of Az = 0.86 ± 0.04 was 

reached at 325 ms for the stimulus-locked classification, with a broad temporal peak. 

Response-locked classification yielded even higher Az values, with a double peak shortly 

after reaction time. A maximum Az of 0.93 ± 0.04 was reached at 25 ms following RT, and 

0.91 ± 0.07 Az was reached at 150 ms. The window ranges exceeding 0.75 mean Az (and 

thus subsequently included in the EEG-based fMRI analysis) were 175 to 600 ms for 

stimulus-locked and −175 to 375 ms for response-locked discrimination.

Discriminator output was significantly (p < 0.01) negatively correlated with RT for multiple 

stimulus- and response-locked windows. This result demonstrated the need to orthogonalize 

our STV fMRI regressors to RT-variability regressors, being that our aim was to study 

residual variance not observable with behavioral response.
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The grand mean forward models displayed an early frontal positivity that was strongest at 

the 250 ms stimulus-locked window. They also revealed a central negativity around 325 ms, 

which occurred prior to behavioral responses and corresponded to the middle of the broad 

stimulus-locked discrimination peak. A posterior positivity first appeared near the RT and 

slowly became more centrally distributed, reaching its highest strength late in the trial. The 

progression of these discriminating components was consistent with the visual target 

detection results ofGerson et al. (2005). We show EEG topographies alongside their 

corresponding BOLD activations in Figures 4, 5, and 6.

3.2 Traditional fMRI Analysis

Event-related BOLD responses to target stimuli were present in multiple brain areas, 

including bilateral supramarginal gyri, insular cortices, cingulate cortices, angular gyri, 

precentral gyri, thalamus, cerebellum, and brainstem. Postcentral activations were strong 

and left-lateralized, consistent with right-handed button press. These activations matched 

previous visual oddball paradigm results (Laurens et al., 2005; Stevens et al., 2000; 

Warbrick et al., 2009), and were even stronger and more widespread in the traditional event-

related target vs. standard contrast (Supplementary Figure 2). This contrast additionally 

resulted in right-lateralized clusters in precuneus and middle frontal gyrus. RT-variability 

statistical maps (Supplementary Figure 3) showed activations in anterior cingulate cortex 

(ACC), supplementary motor area, and right precentral gyrus.

3.3 Single-trial EEG Variability fMRI Analysis

Our randomization method, which we used to correct for multiple comparisons, determined 

a p = 0.01 threshold which corresponded to a 60-voxel cluster size (24 voxels for p = 0.05). 

At the p = 0.01 threshold, the EEG-derived regressors resulted in significant group-level 

positive and negative correlations for multiple stimulus-locked and response-locked EEG 

training windows, indicated with diamonds and circles on Figure 3. Interestingly, all 

significant clusters correlating with single-trial variability in windows prior to the RT were 

negatively correlated with classifier output. Near the mean RT, we saw a reversal to positive 

correlations, and this effect lasted approximately 100 ms, after which all significant clusters 

were negative.

Since our analysis separately identifies EEG discriminating components at different time 

windows relative to the stimuli and responses, we are able to study the temporal cascade of 

neural involvement related to modulations of internal attentional states. For simplification 

and clarity in the following discussion, we divided our results into three stages (indicated in 

Table 1 and Figures 2 and 3): early (prior to behavioral response), middle (at or near RT), 

and late (after the response while the subject is waiting for the subsequent stimulus). We 

based these temporal ranges on timing of ERP components at the Pz electrode (Figure 2) 

such that the early stage corresponds to the P2 and N2, the middle stage corresponds to the 

P3, and our late windows are those that occur after the P3.

Table 1 contains a complete list of activations exceeding multiple-comparison-corrected p = 

0.01 with their corresponding EEG windows.
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The early stimulus-locked EEG discriminating components revealed negatively-correlated 

activations in the precentral gyrus, superior lateral occipital cortex (LOC), and frontal 

regions including dorsolateral prefrontal cortex (DLPFC). Components close to the response 

time (but not locked to response) were correlated positively with superior frontal gyrus 

(SFG) and areas consistent with draining veins. The later stimulus-locked discriminating 

components showed additional negative correlations with regions in the left and right 

angular gyrus/LOC, the SFG/paracingulate gyrus, and the right middle frontal gyrus.

The response-locked EEG components revealed an early negative correlate in superior 

frontal gyrus, but most of the significant BOLD activations appeared in windows close to 

the RT. These included negative activations in LOC, middle temporal and frontal gyri, and 

precentral and postcentral gyri. We saw positive activations in cerebellum, posterior 

cingulate, and precuneus immediately following response time. Later response-locked 

components revealed additional negative activations in postcentral and precentral gyri. 

Supra-threshold negative and positive activations also appeared in white matter for our 

response-locked analysis.

The late stimulus-locked windows showed regions consistent with the default-mode 

network. Since the DMN is commonly detected using ICA, we confirmed the location of the 

subject mean DMN using ICA and template matching on the functional data. Our supra-

threshold clusters in the medial frontal gyrus and angular gyri overlapped with this ICA-

determined DMN, as did a negative 58-voxel activation in the posterior cingulate that 

achieved a cluster p-value of 0.0125, with max z = 3.185 at MNI coordinates (10, −48, 34) 

(Figure 7).

4 Discussion

Based on the difference ERPs and the scalp distributions and timing of our EEG 

discriminating components, we believe we are tracking variation related primarily to the P2, 

N2, and P3 responses (Key et al., 2005), so we discuss our results partly in light of these. 

More specifically, our topographies are consistent with discrimination of the target-related 

P3b, frontal P3f, and post-motor potential (Pmp) subcomponents of the P3 (Makeig et al., 

1999), as expected for our visual oddball task. Since amplitudes of these components are 

known to modulate with arousal and attention (Key et al., 2005; Luck et al., 2000; 

Nieuwenhuis et al., 2005), we use the classifier output (i.e. its decision certainty) to index 

the subjects’ attentional state (i.e. task engagement) during each trial. Our EEG-based fMRI 

regressors are thus revealing the BOLD correlates of modulations in task engagement.

Electrophysiological activity and BOLD responses are coupled in a complex way that is not 

yet completely understood. There is evidence to suggest that the sign of the EEG-BOLD 

correlate is both a function of space and of frequency, and the sign of the BOLD response 

itself is affected by the excitation-inhibition balance within local neuronal circuits 

(Logothetis et al., 2008). It has been shown that low-frequency electrophysiological 

variations, such as those measured by scalp EEG in the 0–20 Hz range, are negatively 

correlated with the BOLD response (Goldman et al., 2002; Mukamel et al., 2005; 

Scheeringa et al., 2011). Additionally, commonly-studied fMRI resting state networks have 
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been shown to correlate with specific frequency bands in magneto-encephalography (MEG) 

studies (Brookes et al., 2011; de Pascuale et al., 2010) and show some (though lesser) 

frequency-dependency using EEG-fMRI (Mantini et al., 2007). Since there is still some 

question about the physiological meaning of directionality of electrophysiological BOLD 

correlates, the following sections do not attempt to interpret the sign of the correlation 

between the BOLD signal and the STV regressor.

4.1 Early EEG discriminating components reveal BOLD correlations in task-relevant brain 
areas

Early EEG windows resulted in right-lateralized activations in brain regions associated with 

taskrelevant neural processes (Figure 4). These included frontal activations in DLPFC and 

posterior SFG, which are most commonly associated with working memory and higher-level 

cognitive processing during demanding tasks (Fuster, 2001; MacDonald et al., 2000), and 

the superior LOC. These areas have been linked to P3 modulations and are discussed further 

in Section 4.2, which focuses on components in that time range. To the best of our 

knowledge, BOLD correlates of variability in the early P2 and N2 ERP components have 

not been studied in the visual domain; however,Eichele et al. (2005) found correlates of 

auditory oddball N2 variability in both of these areas at similar latencies. Using a visual 

target detection task,Novitskiy et al. (2011) found these regions correlated with variability in 

the even earlier N1 component, but their activations were left-lateralized.

4.2 EEG discriminating components during the P3 and around reaction time reveal a 
period of transition from externally driven task-related to internally-driven processing

Our middle windows, which occurred close to the behavioral response and in the range of 

the P3, revealed a superposition of task-related and endogenous attention areas (Figure 5). 

Similar to the early windows, task-related BOLD correlations were found in right middle 

frontal gyrus and superior LOC. We also found an activation in right inferior frontal gyrus, 

an area associated with reorienting to salient behaviorally-relevant stimuli and is a main 

node in the right-hemisphere ventral attention network (VAN) (Corbetta and Shulman, 

2002; Corbetta et al., 2008). Right-hemisphere frontal areas have been shown by a number 

of recent EEG-fMRI studies to modulate with P3 amplitude during visual (Bledowski et al., 

2004a) and auditory (Eichele et al., 2005) tasks, and were reported for the latter case at a 

similar latency.

Our superior LOC correlate is an expected finding, given its common association with visual 

attention (Murray and Wojciulik, 2003). However, similar regions have also been shown to 

couple with EEG components in the P3 time range for auditory tasks.Benar et al. (2007) 

linked the parieto-occipital junction to P3 modulations during an auditory oddball task. In 

our previous study that used an analogous auditory oddball paradigm and the same EEG 

discriminating component methods (Goldman et al., 2009), we also detected a correlate in 

the right LOC in the P3 range, but that cluster was located slightly inferior to our current 

finding. These collective findings suggest a supra-modal role for the LOC in attention.

An activation also appeared in right temporal fusiform cortex, an area commonly known to 

be involved in high-level visual processing.Bledowski et al. (2004b) also found that higher 
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visual areas in inferior temporal gyrus contribute to the visual P3b, and their correlate 

appeared at similar latency. We also detected right-lateralized activations in auditory cortex. 

This co-activation of auditory and visual processing areas supports the presence of cross-

modal attentional modulations, suggesting that modulations in auditory-directed attention 

(e.g. listening to scanner noise) affect attention to the visual modality.

As expected for EEG windows close to reaction time, we found BOLD correlates in several 

regions related to the button press. This included the motor areas of the left precentral and 

postcentral gyri, which is consistent with a right-handed button press and has previously 

been associated with P3 coupling in visual (Bledowski et al., 2004a, 2004b; Warbrick et al., 

2009) and auditory (Benar et al., 2007) tasks. We also saw activations in the cerebellar 

vermis, which coordinates and monitors movement (Ghez and Fahn, 1985), and right 

cerebellum area VIIIb, which plays additional roles in motor control, coordination, and 

accurate timing of movements, and which has been particularly associated with right-handed 

finger tapping (Stoodley and Schmahmann, 2009; Stoodley et al., 2012).

The precuneus has been associated with a variety of task-relevant cognitive processes, 

including attentional orienting, visuo-spatial imagery, coordination of motor behavior, 

success monitoring, and self-referential thoughts (Cavanna and Trimble, 2006; Taylor et al., 

2009).Eichele et al. (2005) found precuneus activations correlated with earlier P2 amplitude 

modulations, though their study used an auditory task. Our reaction-time precuneus 

activation supports the idea of a transition from the exogenous attentional state required for 

the visual perceptual decision to motor coordination required for the button press, followed 

by a reflection on task performance. Activations associated with other forms of internal 

thought, including posterior cingulate and SFG, were detected both in middle and late 

windows, and these are discussed in section 4.3.

BOLD fMRI literature historically has reported activations mainly in gray matter, partially 

due to the common practice of masking white matter during statistical analyses, but growing 

evidence supports the presence of white matter BOLD signals. This is particularly true when 

single-trial variability is modeled (Yarkoni et al., 2009). Here, our latent variability feature, 

the EEG single-trial discriminating component, revealed BOLD correlates in white matter 

regions. Since these activations were adjacent to sensorimotor regions, including right 

postcentral and precentral gyri and the left precentral gyrus, they are most closely related to 

the button press.

Reports of BOLD activations in draining veins are also rare in the literature, due to the high 

spatial resolution required to differentiate veins from cortical tissue. However,Bianciardi et 

al. (2011), using a high-resolution study of visual areas at 7 T, found task-related negative 

BOLD correlates in large cerebral veins. We found a remarkable 340-voxel cluster that is 

adjacent to the precuneus but appears to track the superior sagittal sinus, a large cerebral 

vein that drains widespread areas of cortical tissue. The BOLD signal we detected in 

cerebral veins is likely due to a transient misbalance between metabolic demands and 

increased oxygenated blood, and may reflect strongly activated cortices that are functionally 

but not anatomically overlapping across subjects, but which drain into the same veins. Since 

the superior sagittal sinus is nearly exclusively responsible for draining the cerebrum (Mattle 
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et al., 1990), this interpretation does not allow speculation regarding particular cortices. An 

alternative idea for the physiological meaning of this activation is that it reflects a global 

change in cerebral blood flow. Given the care we took with image registration, pulsation 

artifact investigation, and multiple comparison correction, and the congruency of our 

cortical results with the literature, we believe these to be true results that should not be 

ignored. However, these remain preliminary findings that we are currently validating in new 

datasets using diffusion tensor imaging and magnetic resonance veinography.

4.3 Late EEG discriminating components reveal default mode activity between subject 
response and the next stimulus

BOLD correlates of EEG discriminating components late in the trial (Figure 6) appeared in a 

pattern matching the DMN (Figure 7), supporting MEG evidence for a transient nature of 

functional networks (de Pascuale et al., 2010). Given that we found an earlier activation in a 

region associated with the VAN, this supports the hypothesis for complementary roles of the 

DMN and VAN in directed awareness (Boly et al., 2007; Vanhaudenhuyse et al., 2011), and 

supports the intracranial EEG finding that transient stimulus-related activations in VAN 

areas occur earlier than those in DMN (Ossandon et al., 2011).

Our finding is in agreement with a number of recent fMRI and combined EEG-fMRI studies 

that suggest that the DMN plays an active role in task-related processing. Spontaneous 

DMN fluctuations have been shown to affect visual task performance (Eichele et al., 2008) 

and during rest have inversely correlated with the frontal theta rhythm (Scheeringa et al., 

2008), which is typically associated with cognitive processing. There is also evidence of 

transient event-related suppression of DMN regions related to increased cognitive load 

during a visual N-back task (Esposito et al., 2006; 2009a) and during motion discrimination 

(Singh and Fawcett, 2008) and auditory oddball tasks (Eichele et al., 2005), though in the 

latter case corresponding to an earlier component. This converging evidence supports the 

idea that DMN regions modulate selective attention for optimal allocation of attentional 

resources.

Because our correlate appears after the response, our finding suggests an active role for the 

DMN in introspective task-relevant processing, such as an active observation of the 

behavioral response. Such retrospection is not necessarily overtly conscious so it is 

challenging to investigate experimentally (Schooler, 2011). We do not believe this post-

response DMN correlate is reflecting an anticipatory state while subjects await the next 

stimulus since ERPs (derived from EEG data that were not highpass-filtered) revealed no 

effect of contingent negative variation (CNV), a slow ERP component with magnitude 

dependent upon level of expectation of the following stimulus (Palva and Palva, 2012; 

Scheibe et al., 2010) (data not shown). Previously reported BOLD correlates of CNV did not 

include the canonical DMN (Scheibe et al., 2010); combined with our result, this loosely 

suggests that suppression of DMN is not related to increased anticipation. Further evidence 

for an introspective state late in the trial is an activation in the paracingulate, which has 

associations with self awareness and theory of mind, and particularly introspection-related 

activity during visual tasks (Goldberg et al., 2006).
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Our bilateral angular gyri clusters, which are subregions of the intra-parietal lobules (IPL) 

(Udin et al., 2010), are consistent with many reports of IPL in P3 coupling (Linden, 2005). 

Similar to our late (525–550 ms relative to stimulus) activations, Bledowski et al. (2004a, 

2004b) found bilateral IPL correlated with EEG amplitude variability, reported around 540 

ms (in 2004b). Our stimulus-locked correlates appear later than the peak amplitude of the 

P3, which suggests that the IPL is more closely linked to P3 latency variability than 

amplitude variability. This is consistent with findings that activity in parietal areas correlates 

with P3 latency but not with amplitude (Warbrick et al., 2009).

4.4 BOLD coupling with the EEG response is captured by reaction-time variability for a 
subset of brain regions

Our results differ from converging evidence of the literature in that we did not find any EEG 

variability correlates in the ACC. This region is thought to be involved in both top-down and 

bottom-up attentional control related to sensory processing (Crottaz-Herbette and Menon, 

2006) and has been linked to early EEG component modulations. The N1 has been shown to 

correlate with ACC activity during auditory discrimination tasks using EEG-fMRI (Mulert 

et al., 2008) and fMRI-constrained EEG source localization (Esposito et al., 2009b). The 

latter technique was applied to both visual and auditory oddball data to find correlates in the 

early N2b and P3a components (Crottaz-Herbette and Menon, 2006). However, we did find 

ACC correlates of RT variability, which was not regressed out of the single-trial-variability 

models in these previous investigations. This finding is in accordance withWarbrick et al. 

(2009), who used a visual target-detection task to discover similar ACC correlates for both 

RT variability and P3 latency variability, but did not tease these effects apart. We 

demonstrate that attention-related ACC coupling with EEG components is reflected in the 

variability of externally-observable behavioral response events.

Our EEG variability results also differ from the many EEG-fMRI reports of P3-variability 

correlates in the insula (Bledowski et al., 2004a, 2004b; Eichele et al., 2005; Warbrick et al., 

2009). However, we did find bilateral insula correlates of the average event-related 

response, and additional RT-variability correlates (max z-score 3.78 in right insula and 3.38 

in left insula) that were slightly too small to pass cluster threshold. Using a visual target-

detection task,Warbrick et al. (2009) also found bilateral insula correlates with a traditional 

analysis, and conversely with P3 amplitude variability but not RT variability. Together with 

their findings, our results suggest that variance of the BOLD signal within the insula can be 

explained primarily via the average event-related response, with only minor contributions 

observable in EEG-component and RT variability.

4.5 Our methods begin to unravel a cascade of neural events associated with endogenous 
attentional modulations

Precise temporal localizations are difficult in traditional fMRI studies due to the slow, 

diffuse, and indirect nature of the BOLD measurement and to spatial variations in the HRF. 

Our method of combining single-trial EEG variability with fMRI was able to circumvent 

this limitation by finding BOLD correlates of the electrophysiological response at multiple 

temporal offsets. Because we used EEG STV in our fMRI model design and orthogonalized 

to event-related regressors, our activations reveal the BOLD correlates of endogenous 
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modulations in attention across trials. This method begins to unravel a complex cascade of 

neural events, including sensory processing, executive processing, motor planning, and 

default-mode activity, in high spatial and temporal resolution.

Due to the simplicity of the task, the subjects’ minds were free to wander, and this enabled 

observation of natural fluctuations in task engagement and the underlying spatial 

redistribution of attentional resources throughout the duration of each trial. Specifically, our 

results revealed task-relevant and primarily right-lateralized frontal areas engaged 

immediately following the stimuli, and default-mode-region activations following the 

behavioral response. These findings are consistent with the role Polich (2007) proposed for 

the P3 in rapid inhibition of ongoing neural processes to facilitate the transfer of stimulus 

information from frontal to temporal-parietal areas. They also provide evidence for a role of 

the default mode network in task-related processing. Furthermore, our findings demonstrate 

the utility of our methods for noninvasively investigating the temporal ordering of many 

widely distributed BOLD activations. We believe these techniques will be important in 

future investigations of brain function, as the information they provide is complementary to 

that which can be obtained from intracranial-EEG, MEG, and resting state studies.
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Highlights

*BOLD signal modeled using discriminator-determined trial-to-trial EEG variability.

*Correlates of continuously evolving discriminating components are investigated.

*Methods allow study of processes not observable with behavioral measures.

*Both task-dependent and default-mode regions are transiently engaged.
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Figure 1. Method for constructing fMRI regressors from simultaneously-acquired EEG data
A. For each trial (i), select a training window of EEG data (Xi) with offset τ from the 

stimulus (or behavioral response). B. Train linear classifier on EEG data within the time 

window to estimate a set of spatial weights (w) that maximize discrimination of the two 

conditions (shown using only 2 EEG channels for visualization purposes). C. In addition to 

traditional event-related average response (ERAR) and reaction time (RT) regressors, 

construct single-trial EEG variability (STV) regressors by modulating boxcar height with 

classifier output (y) for each trial. D. This technique is repeated for multiple window offsets 
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spanning the epoch to view temporal progression of discriminating components spanning the 

trial.

Walz et al. Page 22

Neuroimage. Author manuscript; available in PMC 2015 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Stimulus-locked and response-locked ERPs recorded at the Pz electrode
Our definition of early, middle, and late window ranges (see main text for discussion) are 

indicated with shading.
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Figure 3. Group mean averages and standard errors of single-trial EEG discrimination 
performance
Results of both the stimulus-locked (blue) and response-locked (green) analyses are shown, 

aligned by mean RT. Since we are interested in the BOLD correlates of single-trial EEG 

variability, we only consider EEG components with discrimination that is both significant 

(Az > 0.66, p < 0.01) and substantial (Az > 0.75). Windows resulting in significant positive 

and negative BOLD correlations are indicated with magenta diamonds and orange circles, 

respectively. Early, middle, and late windows (as grouped for discussion) are indicated with 

shading.
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Figure 4. Significant clusters correlating with EEG single-trial variability early in the trial
Shown for stimulus-locked (SL, top) and response-locked (RL, bottom) windows. 

Corresponding EEG discriminant component scalp projections (forward models) are also 

shown.
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Figure 5. Significant clusters correlating with EEG single-trial variability in middle windows
These activations occurred near the behavioral response time and in the range of the P3, 

shown for stimulus-locked (SL, top) and response-locked (RL, bottom) windows. 

Corresponding EEG discriminant component scalp projections (forward models) are also 

shown.
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Figure 6. Significant clusters correlating with EEG single-trial variability late in the trial
These activations occurred after the subject has made his/her response, for stimulus-locked 

(SL, top) and response-locked (RL, bottom) windows. Corresponding EEG discriminant 

component scalp projections (forward models) are also shown.
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Figure 7. DMN determined independently with EEG single-trial variability and ICA
525 ms stimulus-locked window EEG single-trial variability (STV) negative correlates in 

medial frontal gyrus, bilateral angular gyri, and posterior cingulate (in blue, with hue 

representing p-value in the range 0.005−0.001), overlaid with the mean default-mode 

network (DMN) as determined using ICA (pink). STV results shown are multiple-

comparison corrected at p < 0.05. An additional cluster in right middle frontal gyrus can also 

be seen.
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