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Abstract
Blast-related traumatic brain injury (TBI) has been one of the “signature injuries” of the wars in
Iraq and Afghanistan. However, neuroimaging studies in concussive ‘mild’ blast-related TBI have
been challenging due to the absence of abnormalities in computed tomography or conventional
magnetic resonance imaging (MRI) and the heterogeneity of the blast-related injury mechanisms.
The goal of this study was to address these challenges utilizing single-subject, module-based
graph theoretic analysis of resting-state functional MRI (fMRI) data. We acquired 20 minutes of
resting-state fMRI in 63 U.S. military personnel clinically diagnosed with concussive blast-related
TBI and 21 U.S. military controls who had blast exposures but no diagnosis of TBI. All subjects
underwent an initial scan within 90 days post-injury and 65 subjects underwent a follow-up scan 6
to 12 months later. A second independent cohort of 40 U.S. military personnel with concussive
blast-related TBI patients served as a validation dataset. The second independent cohort underwent
an initial scan within 30 days post-injury. 75% of scans were of good quality, with exclusions
primarily due to excessive subject motion. Network analysis of the subset of these subjects in the
first cohort with good quality scans revealed spatially localized reductions in participation
coefficient, a measure of between-module connectivity, in the TBI patients relative to the controls
at the time of the initial scan. These group differences were less prominent on the follow-up scans.
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The 15 brain areas with the most prominent reductions in participation coefficient were next used
as regions of interest (ROIs) for single-subject analyses. In the first TBI cohort, more subjects than
would be expected by chance (27/47 versus 2/47 expected, p < 0.0001) had 3 or more brain
regions with abnormally low between-module connectivity relative to the controls on the initial
scans. On the follow-up scans, more subjects than expected by chance (5/37, p = 0.044) but fewer
subjects than on the initial scans had 3 or more brain regions with abnormally low between-
module connectivity. Analysis of the second TBI cohort validation dataset with no free parameters
provided a partial replication; again more subjects than expected by chance (8/31, p = 0.006) had 3
or more brain regions with abnormally low between-module connectivity on the initial scans, but
the numbers were not significant (2/27, p = 0.276) on the follow-up scans. A single-subject,
multivariate analysis by probabilistic principal component analysis of the between-module
connectivity in the 15 identified ROIs, showed that 31/47 subjects in the first TBI cohort were
found to be abnormal relative to the controls on the initial scans. In the second TBI cohort, 9/31
patients were found to be abnormal in identical multivariate analysis with no free parameters.
Again, there were not substantial differences on the follow-up scans. Taken together, these results
indicate that single-subject, module-based graph theoretic analysis of resting-state fMRI provides
potentially useful information for concussive blast-related TBI if high quality scans can be
obtained. The underlying biological mechanisms and consequences of disrupted between-module
connectivity are unknown, thus further studies are required.
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INTRODUCTION
Traumatic brain injury (TBI) has been called a “signature injury” in the wars of Iraq and
Afghanistan (Okie, 2006). As of the first quarter of 2012, the total incidence of TBI in U.S.
military personnel since 2000 is 244,217 with 76.8% of these incidents are concussive or
‘mild’ TBI (Defense Medical Surveillance System and Theater Medical Data Store, http://
www.health.mil/Libraries/TBI-Numbers-Current-Reports/dod-tbi-worldwide-2000-2012Q1-
as-of-120516.pdf). Concussive or ‘mild’ TBI is characterized by loss of consciousness up to
30 minutes, altered consciousness and mental state up to 24 hours, post-traumatic amnesia
up to 24 hours and the absence of abnormalities in computed tomography or conventional
magnetic resonance imaging (MRI) (Casscells, 2007). However, utilizing advanced
neuroimaging techniques such as functional magnetic resonance imaging (fMRI), diffusion
tensor imaging (DTI), magnetoencephalography and electroencephalography, reports have
described abnormalities in concussive TBI subjects (e.g., fMRI: Scheibel et al. (2012),
Shumskaya et al. (2012), Slobounov et al. (2011), Tang et al. (2011); DTI: Levin et al.
(2010), Mac Donald et al. (2011), Niogi et al. (2008, 2010), Shenton et al. (2012); fMRI and
DTI: Mayer et al. (2011); magnetoencephalography: Castellanos et al. (2010, 2011);
electroencephalography and DTI: Sponheim et al. (2011)).

Most of these previous functional neuroimaging studies in TBI have focused on group
comparisons and have adopted hypothesis-driven approaches with predefined regions of
interest, seed, or networks of interests. However, high individual variability of functional
topology (van Essen and Dierker, 2007) is major source of variability in group analysis in
healthy normal subjects. In TBI populations, the heterogeneity of injury types and locations
(Doppenberg and Bullock, 1997; Saatman et al., 2008) further increases between-subject
variability. In blast-related TBI (bTBI), the heterogeneity is further increased by the variety
of blast-related injury mechanisms. Blast-related injuries may occur by (1) blast
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overpressure inducing mechanical damage to the brain, (2) having the head struck by debris
or other objects set in motion by the blast (3) being thrown to the ground or against another
stationary object or (4) inhaling toxic fumes, smoke or dust (Finkel, 2006; Warden, 2006).
Different combinations of these injury types and other variables such as direction, distance
and open field versus enclosed space associated with the blast exposures may make group
analysis insufficient for the assessment of bTBI. The aforementioned heterogeneity of
concussive bTBI also increases the chance for hypothesis-driven approaches with predefined
regions or networks of interest to miss regions or networks with alterations of functional
connectivity in concussive bTBI patients. Thus, single-subject based, data-driven
approaches would be more meaningful in these heterogeneous concussive bTBI populations.

Recently, graph theory has become increasingly popular in neuroimaging research (see
Rubinov and Sporns (2010) and Bullmore and Sporns (2009) for review), offering new
insights into the understanding of the brain as a complex network. Several studies (Achard et
al., 2006; He et al., 2007; Salvador et al., 2005; van den Heuvel et al., 2008) have found that
the brain network has economical ‘small world’ properties having high levels of clustering
and short path length for efficient global and local communications (Latora and Marchiori,
2001; Watts and Strogatz, 1998). Early studies of graph theoretic analysis in clinical
populations have demonstrated disrupted ‘small world’ properties in patients with dementia
of the Alzheimer’s type (Stam et al., 2006), schizophrenia (Micheloyannis et al., 2006) and
epilepsy (Ponten et al., 2007). Taking advantage of the ‘small world’ properties of the brain
network, subsequent studies (Chen et al., 2008; Hagmann et al., 2008; He et al., 2009;
Power et al., 2011; Valencia et al., 2009; Yeo et al., 2011b) have identified modular or
community structure of the normal, healthy human brain. With regard to clinical
populations, Valencia et al. (2009) raised the possibility that characterizing the modular
structure of the brain may be important to understand the brain organization during different
pathological or cognitive states. Indeed, graph theoretic analysis of
magnetoencephalography data has revealed disrupted modular structure in patients with
dementia of the Alzheimer’s type (de Haan et al., 2012).

Another advantage of graph theoretic analyses over simple network approaches is that they
do not require assumptions regarding hypothesized (thus predefined) seed regions or
networks of interest. Thus, in this regard, graph theoretic analyses are useful in
heterogeneous populations. With this advantage in heterogeneous populations over simple
network approaches, recent studies (Caeyenberghs et al., 2012; Castellanos et al., 2011;
Nakamura et al., 2009; Pandit et al., 2013) have utilized graph theoretic analyses to provide
more comprehensive understanding of abnormal functional connectivity in TBI patients. In
particular, Nakamura et al. (2009) demonstrated disrupted ‘small worldness’, defined as the
level of clustering relative to path length, of functional networks in patients with moderate to
severe TBI. To our knowledge, there are no previous studies that have investigated modular
structure in resting-state functional connectivity MRI in patients with bTBI or any other
concussive ‘mild’ TBI populations (though Pandit et al. (2013) included a wide range of
injury severities).

In this study, we posited that module-based connectivity in patients with concussive bTBI
may be disrupted. In our previous report (Mac Donald et al., 2011), we demonstrated DTI
‘abnormalities’ in white matter integrity of active duty U.S. military personnel with
concussive bTBI relative to controls who had blast exposure but no diagnosis of TBI. At the
time of the DTI and structural MRI collections in each of these subjects, resting-state blood
oxygenation level dependent (BOLD) fMRI scans were also acquired. Here, we assessed
modular organization of these active duty U.S. military personnel with concussive bTBI,
utilizing whole brain, module-based graph theoretic analysis of these resting-state BOLD
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fMRI scans. Because of the heterogeneity of the concussive bTBI patients, we investigated
module-based resting-state network properties at both the group and single-subject levels.

MATERIALS AND METHODS
2.1 Subjects

Three groups (controls and two TBI cohorts) of active duty U.S. military personnel deployed
to the wars in Iraq and Afghanistan participated in this study. All of them had been exposed
to blasts in a combat environment. The two TBI cohorts had sustained clinically diagnosed
bTBI. The 21 controls (20 males; 19–49 years old with median = 29; 11–17.5 years of
education with median = 12.5) had other injuries but screened negative for TBI (Dempsey et
al., 2009). The first TBI cohort (TBI I cohort) consisted of a subset of the subjects about
which we have reported previously (Mac Donald et al., 2011). Screening, enrollment, and
initial scans were performed at the Landstuhl Regional Medical Center (LRMC), a U.S.
Military hospital in Landstuhl, Germany. 63 TBI patients (all males; 19–57 years old with
median = 25; 8–17 years of education with median = 12) were diagnosed with mild,
uncomplicated traumatic brain injury based on the criteria from the Department of Defense
(Casscells, 2007), marked by less than 30 minutes of loss of consciousness and the absence
of abnormalities in conventional MRI and CT. Post blast exposure time on the initial scans
at LRMC were within 90 days (median = 14). After 6–12 months from their initial scans, 65
out of these subjects traveled to Washington University in St. Louis for follow-up scans.
More details and demographics of this cohort are in Mac Donald et al. (2011).

The same screening criteria as on the TBI I cohort and controls allowed the second TBI
cohort (TBI II cohort) to comprise 40 additional concussive bTBI patients (37 males; 19–44
years old with median = 23; 9–16 years of education with median = 12). The TBI II cohort
underwent the initial scans within 30 days (median = 7) after the blast exposure. After 6–12
months from their initial scans, 32 out of these subjects underwent follow-up scans at
Washington University in St. Louis. The first cohort underwent initial scans in 2008–2009
whereas the second cohort was scanned in 2010–2011.

All subjects participated in this study after obtaining written informed consent and this study
was approved by the Human Research Protection Office at Washington University in St.
Louis, the Institutional Review Board for LRMC at Brooke Army Medical Center, and the
Clinical Investigation Regulatory and Human Research Protection Offices of the U.S. Army
Medical Research and Materiel Command. This study was also registered at
clinicaltrials.gov (NCT00785304).

2.2 MRI data acquisition
Both initial scans at LRMC and follow-up scans in St. Louis were acquired using Siemens
Magnetom Avanto 1.5 Tesla MRI scanners (Siemens, Germany) with identical imaging
protocols. In each imaging session, three 412.5-second runs (total 1237.5 seconds) of
resting-state BOLD fMRI were acquired using a 12-channel phase-arrayed head coil
supplied by the manufacturer with T2

*-weighted blipped EPI sequence (TR/TE = 2500/50
msec; flip angle (FA) = 90°; field of view (FOV) = 25.6 × 25.6 cm; matrix = 64 × 64) to
obtain 165 images of each of 30 axial slices (4.0 mm thick) of the whole cerebrum. During
resting-state fMRI acquisition, the subjects were asked to remain still during the scan, but no
specific requests were made regarding eyes open versus eyes closed and no specific attempts
were made to keep subjects awake. In the setting of acute injury, this was not feasible as
some subjects had orbital injuries and extracranial injuries and analgesic medications after
enrollment. See the discussion for the relevant limitations of the study findings due to these
constraints.
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For surface reconstruction and alignment to resting-state BOLD fMRI of each subject, the
same head coil was used with one high resolution T1-weighted sagittal magnetization
prepared rapid acquisition gradient echo (MPRAGE) image of the whole brain (TR/TE =
2000/2.92 msec; FA = 8°; FOV = 25.6 × 25.6 cm; matrix = 256 × 256; 176 slices, 1.0 mm
thick).

2.3 MRI preprocessing
Briefly, our analyses consisted of cortical surface reconstruction of structural MRI,
preprocessing of resting-state BOLD fMRI, projection of BOLD fMRI onto the
reconstructed cortical surface, network construction and finally graph theoretic analysis (see
Fig. 1). We used Freesurfer (Dale et al., 1999; Fischl et al., 1999a, 2002) for cortical surface
reconstruction of structural MRI, AFNI (Cox, 1996) for fMRI preprocessing and SUMA
(Saad et al., 2004) for surface mapping and surface-based analysis of fMRI time series.
fMRI data were preprocessed in the three dimensional subject-native space of each
participant.

2.3.1 Surface reconstruction of structural imaging—Cortical surface reconstruction
(Fig. 1(a) to (b)) was performed with the Freesurfer image analysis suite (version 5.1.0),
online documented and freely available for download (http://surfer.nmr.mgh.harvard.edu/).
The technical details of these procedures are described in previous publications (Dale et al.,
1999; Dale and Sereno, 1993; Fischl et al., 1999a, 1999b, 2001b, 2002b, 2004a, 2004b;
Jovicich et al., 2006; Segonne et al., 2004). Cortical surface reconstruction results for each
image of the subjects were visually inspected to ensure the accuracy of skull stripping,
Talairach transformation, gray/white matter boundary (white surface), gray matter/
cerebrospinal fluid boundary (pial surface) and cerebral cortex label. When necessary,
manual intervention was performed in order for Freesurfer to correctly reconstruct the
cortical surface. The surface reconstruction was performed unblinded to group membership.
See the discussion for the limitation of this study related to manual intervention and
unblindness to group membership.

2.3.2 fMRI preprocessing—Volumetric BOLD fMRI data were preprocessed (Fig. 1(c)
to (d)) with standard methods using a modified version of a shell script generated by
afni_proc.py (http://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html) from
AFNI (Cox, 1996). Each subject’s whole-brain structural images were first skull-stripped
and coregistered (affine transform with 12 parameters) to the fifth time point of the first
fMRI run. For each fMRI run, the initial four time points were discarded to allow T1
magnetization saturation. Standard preprocessing methods were then used, including
despiking, slice timing correction, motion correction, normalization to whole brain mode of
1000, linear regression and band-pass filtering (0.009 < f < 0.08 Hz). At the motion
correction stage, the 6 rigid body motion profiles were obtained for the linear regression.
After the motion correction, subject masks indicating voxels that have fMRI signal were
obtained for each of the subjects. In the linear regression, several sources of signal
fluctuation unlikely to be of neuronal origin were regressed out as the nuisance variables: (1)
six parameters for the rigid body head motion acquired from the motion correction
(Johnstone et al., 2006), (2) the signal averaged over the lateral ventricles, (3) the signal
averaged over a region centered in the deep cerebral white matter, (4) the signal averaged
over the whole brain (Fox et al., 2005; see the control analyses and their results for the
effects of global signal regression on graph theoretic analysis) and (5) the first temporal
derivatives of aforementioned parameters. After the band-pass filtering, motion ‘scrubbing’
(Power et al., 2012) was performed with frame-to-frame head movement rate of 0.12 mm/s
and standardized DVARS (http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-
research/nichols/scripts/fsl/DVARS.sh) of 1.49 to prevent potential motion artifacts (Power
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et al., 2012; Satterthwaite et al., 2012; van Dijk et al., 2012). To prevent the introduction of
artificial correlations in the fMRI signal between voxels (1) adjacent to each other in space
distant in terms of cortical surface topology (e.g., voxels on opposite sides of the midline) or
(2) that were located near the boundary of functional subdivisions unrelated to each other in
functional connectivity (e.g., primary motor versus primary somatosensory cortex), spatial
smoothing was not applied at this preprocessing step (van den Heuvel et al., 2008).

2.3.3 Inter-subject alignment and surface mapping of volumetric fMRI—The
total number of mesh nodes in the reconstructed cortical surface by Freesurfer varies across
subjects. To allow for cross-subject analysis while preserving geometry of sulcal and gyral
patterns in the original surface of each individual and minimizing unnecessary interpolation
artifacts (Argall et al., 2006), we used SUMA (Saad et al., 2004) to standardize surface
meshes (i.e., coordinates) of each individual (i.e., the total number of mesh nodes is same
across subjects and each mesh node corresponds to same anatomical location in each surface
of the subjects). When calculating new coordinates, SUMA allowed us to set the total
number of mesh nodes in the standard mesh surface of each subject (Fig. 1(e)) to be 11,524
so that the average distance between two nodes (3.7 mm) is close to the spatial resolution of
original volumetric fMRI data (4 mm isotropic) while maintaining topology shown in the
original high resolution (1 mm isotropic) structural MRI.

Volumetric functional time series were then projected onto these standard mesh surfaces of
each subject by interpolating the time series located along the line between two matching
nodes of the white and pial surfaces. For each mesh node, five equally-spaced coordinates
were sampled between corresponding white and pial surfaces. At each time point, functional
data were projected by averaging across the unique 3D voxels belonging to these
coordinates. Consequently, surface-based functional time series (Fig. 1(f)) contained signal
only from voxels within the cortical gray matter. In the same way, the voxel-based subject
masks were converted to surface-based subject masks. For more technical details of the
surface mapping procedure, readers are referred to Saad et al. (2004). Due to susceptibility
artifacts (Ojemann et al., 1997) and inclusion of only cortical areas of surface (i.e., exclusion
of the surface areas of the amygdala, putamen, hippocampus, caudate, ventricles and corpus
callosum), not all nodes had fMRI signal, and surface-based subject masks indicating
existence of fMRI signal on mesh nodes were different across the subjects. Thus, to make a
comparison across subjects, further analyses on network measures considered only the mesh
nodes (8,977 nodes) having fMRI signal across all subjects. This was performed by
obtaining a subject-intersection mask and subsequently applying the intersection mask to
surface-based functional time series of each of the subjects.

2.3.4 Quality assurance—We restricted our analysis to the subjects whose data quality
was reliable within tolerable range. In the cortical surface reconstruction step, the quality of
T1 images was visually inspected to determine if surface reconstruction was feasible. In
fMRI preprocessing, the quality of preprocessed data was visually inspected at each step.
After visual inspection, a subset of subjects’ data were excluded for following reasons: (1) a
superior part of the functional images did not fall within the prescribed FOV due to
substantial run-to-run change of head position, (2) intensity variation artifacts of low spatial
frequency presumably due to constant oscillating head movement in a certain direction, (3)
substantial susceptibility artifacts (Ojemann et al., 1997) in inferior frontal and inferior
temporal regions, (4) motion correction failure due to large amount of abrupt motion and (5)
lack of fMRI frames due to subject’s refusal to stay in the scanner. After motion ‘scrubbing’,
additional subjects’ data were excluded if total length of remaining volumes after the
‘scrubbing’ was less than 4 minutes, the minimum length required to reliably estimate
functional connectivity (van Dijk et al., 2010). See Table I for the details of the number of
datasets excluded by this quality assurance procedure.
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Visual inspection on each module of the subjects identified by the Louvain algorithm
allowed us to verify that, in 1 control, 4 TBI I and 2 TBI II subjects on the initial scans and 1
control and 1 TBI II subjects on the follow-up scans, the total number of modules was too
few (less than 3) or module assignments were severely scattered yielding failure to identify
major modules shown in group module assignment maps (Fig. 2). Thus, we conservatively
excluded datasets with unidentifiable major modules in subsequent analyses as we could not
be sure whether these module assignments were results of subjects’ condition or merely
failures of the module identification algorithm (Table I).

After quality assurance exclusion, we analyzed functional images of 12/21 control subjects
on the initial scans, 12/18 controls subjects on the follow-up scans, 47/63 TBI I subjects on
the initial scans, 37/47 TBI I subjects on the follow-up scans, 31/40 TBI II subjects on the
initial scans and 27/32 TBI II subjects on the follow-up scans for the subsequent network
analyses. Thus, 75% of all subjects’ data acquired as described above were of sufficient
quality for further analyses. Note that we included subjects’ data if the data passed the
quality assurance procedure for each scan separately. In other words, after the quality
assurance procedure, included subjects on the follow-up scan analyses were no longer an
exact subset of subjects included on the initial scan analyses.

2.4 Network analysis
2.4.1 Network construction—Weighted and undirected networks were constructed (Fig.
1(g)–(i)) for module-based graph theoretic analysis. For the network analysis, a node, a
basic element of graph theoretic analysis, was defined as a mesh node in the cortical surface.
An edge of the graph was defined from correlation matrix (Fig. 1(g)) whose components are
Pearson correlation coefficients of time series at each pair of the mesh nodes in the brain. In
other words, the weights of the edges were the correlation coefficients. An alternative to
Pearson correlation coefficients would be the partial correlation coefficients. The partial
correlation coefficients control for the influence of correlations from the other nodes on a
correlation between two nodes of interest, which could replace global signal regression.
Unfortunately, it was not feasible to use partial correlation coefficients in this study since the
inversion of the covariance matrix to obtain the partial correlations was numerically
unstable. More specifically, the total number of frames has to be greater than total number of
nodes to ensure numerically stable estimation of the inverse covariance matrix. However,
total number of frames (at most 495 frames) was far less than total number of nodes (8,977
nodes) in our case. Thus, we proceeded with the use of Pearson product moment correlations
as edge weights.

Correlation coefficients between time series at short-distance nodes (20 mm in Euclidean
distance), presumably associated with non-biological origins such as increased correlation
by preprocessing and subject motion, were excluded in selecting edges of the graph (Power
et al., 2011). The remaining correlation coefficients were thresholded at 3% tie density, i.e.,
density of the retained strongest correlations, to define edges of the graph (a colored dot and
a yellow line in Fig. 1(h) and (i), respectively) for most analyses. Sparse tie densities were
selected since module identification algorithms perform reliably when graphs are sparse
(Fortunato, 2010). Further, inclusion of weak correlation coefficients (i.e., high tie density)
could yield less reliable module-based graph measures due to artificial correlations between
noise time courses. In addition, we explored the effects of 2% and 1.5% tie densities. For
less than 1.5% tie densities, the TBI patients had excessive numbers of ‘trivial’ modules
making it difficult to fairly compareal the remaining major modules of the TBI groups with
those of the controls. These ‘trivial’ modules were defined as <1% of brain nodes; most
generally had a single node without connection to other nodes. In these thresholding
procedures, only positive correlation coefficients were considered for the network
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connections, as there is ongoing debate about the meaning of negative correlations assessed
after global signal regression (Anderson et al., 2011; Chai et al., 2012; Chang and Glover,
2009; Fox et al., 2009; Murphy et al., 2009; Saad et al., 2012).

2.4.2 Module identification and module-based network properties—With the
constructed binary and undirected brain networks, module-based graph theoretic analysis
was performed using brain connectivity toolbox in MATLAB (Rubinov and Sporns, 2010)
freely available online (http://www.brain-connectivity-toolbox.net) after applying the
previously described subject-intersection mask for the nodes having functional times series
across all subjects. First, the modules were identified (Fig. 1(j)). After module identification,
global and node-specific module-based network properties were obtained.

Identification of modules is a complex and computationally demanding problem. For the

module identification, modularity of a weighted and undirected network, , was defined:

where M is the number of modules, ls is the sum of the weights of all within-module
connections in the module s, L is the total sum of all weights in the network, ds is the sum of
the strength at each node in the module s and strength of a node is sum of the weights of all
edges associated with the given node (Newman, 2004; Guimera and Amaral, 2005). In

theory,  is bounded between 0 and 1 (Newman, 2004; Guimera and Amaral, 2005).

 when nodes are randomly partitioned or all nodes belong to the same module. Thus,
higher modularity means deviations from random networks with no community structure. In
practice, modularity of typical networks with strong modular structure ranges from 0.3 to
0.7, and higher values are rare (Newman and Girvan, 2004). Assuming the brain network
has modular structure (i.e., many within-module connections whereas few between-module
connections), a module identification algorithm optimizes the total number of modules and
the associated module membership of nodes for maximum modularity. For the
implementation of our analysis, we used the Louvain algorithm (Blondel et al., 2008), a fast
and relatively accurate algorithm, suitable for large networks. Due to “heuristic” nature of
this algorithm (i.e., a ‘good enough’ approximation of the exact solution is implemented,
resulting in faster execution time), the module identification algorithm was executed ten
times. Then, we selected single module identification result from among the 10 executions
that yielded the highest modularity to report modularity and assess subsequent module-based
network measures. Overall, the variation of modularity over the executions was negligible,
as in Blondel et al. (2008). For comparison, we additionally identified modules using the
Infomap algorithm (Rosvall and Bergstrom, 2008), another module identification algorithm
(See Supplemental Figs. S2, S3).

Given the identified modules, weighted within-module degree z-score (Fig. 1(k); Guimera
and Amaral, 2005) and weighted participation coefficient (Fig. 1(l); Guimera and Amaral,
2005) were measured at each node of the individual brain network. In calculating within-
module degree z-scores and participation coefficients, we excluded trivial modules whose
size was less than 1% of the total number of nodes.

Briefly, weighted within-module degree z-score of node i, , measures normalized strength
of connections from a node within the corresponding module s. zi can be written as:
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where si is the module containing node i, , within-module strength, is the total sum of

weights of edges connecting node i and all other nodes within si,  and σkw(si) are the

respective mean and standard deviation of the  for all nodes j ∈ si. So, high weighted
within-module degree z-score of a node means the node has a larger than expected strength
within its own module.

Weighted participation coefficient of node i, , is defined as:

where  is the total sum of weights of edges connecting node i and all other nodes in
module s and , strength of node i, is the total sum of weights of edges connecting between
node i and all other nodes in the entire network. Weighted participation coefficient shows
how well a node communicates with other modules. Weighted participation coefficient is
close to 1 if the distribution of connections at a node across modules is uniform. Weighted
participation coefficient becomes 0 if there is no inter-module connection. A high value of
weighted participation coefficient means nodes’ inter-module connections are ‘well-
distributed’ over multiple modules, thus are likely to span more modules.

Each node-specific measure was then spatially smoothed (10 mm full-width-at-half-
maximum (FWHM)) on the cortical surface of each individual to increase signal-to-noise
ratio as in van den Heuvel et al. (2008). To identify ‘abnormal’ regions in the TBI patients,
counted thewe number of patients whose network measures were outside two standard
deviations from the mean of the controls.

2.5 Region of interest analysis
In the region of interest (ROI) analysis, the TBI I cohort served as an exploratory dataset to
identify functional ROIs exhibiting noticeable difference in node-specific network measures
between the controls and TBI patients from the TBI I cohort. The TBI II cohort served as a
validation dataset with no free parameters with regard to ROI selection. Surface-based ROIs
were selected on the standard mesh template in reference to the Destrieux surface atlas
(Destrieux et al., 2010) using SUMA (Saad et al., 2004) to define the center of each ROI.
Similar to the method described in Hagler et al. (2006), we slid a threshold level between
puncorr = 0.05 and 0.01 from the group comparison map for participation coefficients to
identify functional ROIs. We first identified ROI candidates with cluster area (white matter
surface) greater than 150 mm2 at puncorr = 0.05. Then we subdivided large clusters in
reference to the Destrieux atlas (Destrieux et al., 2010) and slid the threshold level up to
puncorr = 0.01. With peaks that survived at puncorr = 0.01, we selected ROIs comprising
nodes within 15 mm geodesic distance (along the white matter surface) from the peaks and
whose puncorr < 0.05. If nodes within 15 mm geodesic distance from the peaks of these
preliminary ROIs were part of 2 neighboring ROIs such that there was overlap, the
boundaries of these ROIs were determined by sliding the threshold down from puncorr = 0.01
towards 0.05 allowing the clusters to grow until the ROIs reached the edge of the
neighboring clusters. With these identified ROIs from the first dataset (i.e., the controls
versus TBI I cohort), we performed ROI analysis on the second dataset (i.e., the controls
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versus TBI II cohort). For each ROI, we defined that a TBI patient had an ‘abnormal’
network measure relative to the controls in the ROI if the average network measure of the
patient in the ROI was outside the mean plus or minus two-standard deviation band of the
controls group. This procedure to identify TBI patients with ‘abnormal’ network measure in
ROIs was carried out after the normality test of the controls’ ROI-specific network
measures.

2.6 Multivariate region of interest analysis
A multivariate approach was then used to decide which TBI patients had ‘abnormal’
measures relative to the controls over all ROIs by aggregating average node-specific
measures within each of the ROIs. After confirming that controls’ network measure at each
ROI passed the normality test, multivariate Gaussian distribution of the network measures
for the controls was estimated. Since the sample size of the controls after the module
identification was small compared to the number of ROIs, estimating covariance structure
was challenging. In order to circumvent this ‘curse of dimensionality’ issue (Duda et al.,
2001), the vector dimension was reduced using probabilistic principal component analysis
(PPCA; Minka, 2000). PPCA automatically estimates the number of reduced components
preserving the variability of the original high dimensional vector while eliminating spurious
and noisy components. Based on reduced components of ROI-based network measures via
PPCA, we defined relatively ‘abnormal’ TBI patients whose components were located
within the lower and upper tails (less than the 2.5th percentile and greater than the 97.5th

percentile) of the estimated multivariate normal distribution from the controls.

2.7 Statistical analyses
All statistical analyses were assessed in MATLAB. First, we performed the Shapiro-Wilk
test at α = 0.05 to assess the normality of distributions of each group’s demographics (age,
years of education and post-injury time at the initial scan) and each network measure. The
aforementioned demographics did not pass the Shapiro-Wilk normality test. Thus, the
Mann-Whitney U test was used to compare the demographics between each pair of groups:
(1) the controls versus TBI I cohort, (2) control versus TBI II cohort and (3) TBI I cohort
versus TBI II cohort. Chi-square tests were used to compare the gender distributions
between each pair of groups.

All network measures for the control group passed the Shapiro-Wilk normality test, but
some measures for the TBI groups did not. Thus, for group comparison of the network
measures, two sided hypothesis tests were taken using permutation tests (10,000
permutations; Nichols and Holmes, 2001) on group means of each measure by permuting
group membership. For global and region-specific network properties, permutation tests
were performed on the t-statistics.

We performed the one-sided z-test (TBI > control) to compare the distributions of the
number of TBI patients with more than two relatively ‘abnormal’ regions versus those
expected. To calculate the expected number of TBI patients with relatively ‘abnormal’
regions, the binomial distribution was used with the probability that a region is relatively
‘abnormal.’ This probability was calculated from both upper and lower tails (i.e., two-
standard deviations ± mean) of the normal distribution. More specifically, the estimated
number of TBI patients with m ‘abnormal’ regions out of total n ROIs was:
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where |S| is total number of TBI patients,  is n choose m and p is the probability that one
region is ‘abnormal’ by chance. The number of ‘abnormal’ regions expected to occur by
chance in each TBI patient was estimated based on the assumption that the ROIs are
statistically independent (see Mac Donald et al., (2011) for the details of this statistical test
procedure).

To minimize potential bias from possible non-independence across ROIs in the single-
subject analyses, we additionally performed one-sided z-tests (TBI > control) on the
distributions of the number of TBI patients as a function of the proportion of ‘abnormal’
nodes versus those expected. The expected distributions were obtained by permuting group
memberships (10,000 permutations) and redefining abnormality based on permuted
‘controls’.

2.8 Control analyses
To assess effects of motions on module-based graph theoretic measures obtained from our
cohorts, each subject’s average frame-to-frame head movement after censoring was first
calculated and compared between cohorts. To compare the average frame-to-frame head
movement after motion censoring between cohorts, subjects whose images passed all quality
assurance procedure up to the motion censoring criterion were included (see Table I). To
assess effects of motion on module-based graph theoretic measures, i.e., average
participation coefficients within each cohort and the number of ‘abnormal’ ROIs in each
TBI cohort, subjects whose images passed all quality assurance procedure were included.
We also assessed the effect of thresholds on our findings by applying two different threshold
levels at 2% and 1.5% tie densities to the correlation matrices and subsequently performing
group and ROI analyses of participation coefficients. To assess the effect of global signal
regression on our results, we additionally preprocessed our data without global signal
regression and constructed a correlation and connectivity matrix. ROI analyses after group
comparisons were then performed for participation coefficients. Lastly, we selected a
different version of ROIs comprising nodes within 20 mm geodesic distance from the peaks,
and we repeated the ROI analyses to verify effects of different size of ROIs on our results.

RESULTS
3.1 Demographics comparisons between the groups

There were no statistically significant differences in age, education, gender, or post-injury
time between the subjects whose scans were included in graph theoretical analyses and their
respective whole cohorts (Table II). The whole cohorts did not show statistically significant
differences in age, education and post-injury time comparing the control vs. TBI I, control
vs. TBI II, and TBI I vs. TBI II cohorts. There were differences in gender that were
significant only between the two TBI cohorts (p = 0.03; chi-square test) as only the TBI II
cohort had females (Table II). For the subjects whose scans (initial or follow-up scans) were
included in graph theoretical analyses, there were no statistically significant differences in
the demographics between each cohort except gender between the two TBI cohorts (p =
0.04; chi-square test).

3.2. Seed-based approach results for the default mode network
To ensure that the preprocessed resting-state BOLD fMRI had acceptable data quality for
the further network analyses, we obtained the seed-based correlation maps from the left
posterior cingulate cortex (−7, −55, 27) per each subject dataset that passed the quality
assurance procedure prior to checking module assignment results. Group statistic maps (Fig.
S1) for the seed-based correlation maps of each control and TBI I group on both scans
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showed the default mode network (See Fig. S1 legend for the detailed methods for the seed-
based approach we used).

3.3. Module identification results
Color maps for identified modules from group averaged correlation matrix (Fig. 2) allowed
us to compare major modules (comprising more than 1% of the total number of nodes)
between groups at each tie density. In the control group, there were typically 4 major
modules identified (except at 1.5% tie density on the follow-up scans, where there were 5).
The identified 4 major modules in the control group corresponded to the default mode
(Greicius et al., 2002; Raichle et al., 2001), executive control (Seeley et al., 2007; Vincent et
al., 2008), visual (Lowe et al., 1998) and somatosensory-motor (Biswal et al., 1995)
networks. In contrast, the TBI I cohort generally had more than 4 modules (except at 3% tie
density on the follow-up scans). These module identification results were consistent with
modular organization maps from young healthy subjects reported elsewhere (Liang et al.,
2013) using the same module identification algorithm. At 3% tie density, subdivided
modules (light green and yellow modules) in the TBI I cohort on the initial scans
reorganized (merged to other modules) on the follow-up scans and their module assignments
became similar to modular structures of the control groups. At 2% and 1.5% tie densities,
many subjects in the TBI I cohort had substantial numbers of trivial modules in lateral
prefrontal cortex and anterior cingulate cortex (white circles) on the initial scans, whereas
fewer trivial modules were observed on the follow-up scans (Fig. 2b–c). Further assessment
revealed that these trivial modules were disconnected from major modules and most of them
consisted of single node, i.e., a node with no connections to other nodes.

An alternative module identification algorithm (Infomap) also demonstrated a large number
of trivial modules and increased total number of major modules in the TBI I cohort on the
initial scans (Fig. S3). For the controls, module assignments were largely similar to the
results of Power et al. (2011), but direct comparisons at the same tie densities were not
feasible as other parameters were different. Specifically, definition of nodes (i.e., modified
voxel or large functional areas versus vertex of surface) and brain regions that involved the
analyses (i.e., whole-brain including subcortical versus cortex only) were different. Note that
we did not further compare Louvain algorithm results with those obtained by the Infomap
algorithm as the Infomap algorithm did not reliably identify modules in some of our cohorts
at the single-subject level (e.g., see Fig. S3).

3.4 Global network properties
Group differences in modularity (Fig. 3) were statistically significant at α = 0.05 on the
initial scans, but not on the follow-up scans. The TBI I cohort had higher modularity on the
initial scans than the controls. Modularity in both groups passed the Shapiro-Wilk normality
test. Modularity of the controls ranged from 0.3 to 0.55 (Fig. 3). This range is slightly low,
especially on the initial scans, but the range is comparable to the modularity range (0.4 to
0.6) previously described in healthy normal subjects (Meunier et al., 2009a, 2009b; Valencia
et al., 2009). At the single subject level, 14 TBI patients on the initial scans had
‘abnormally’ high modularity and 2 had ‘abnormally’ low modularity (Fig. 3). Note that by
chance only 2 subjects out of 47 (4.8%) would be expected to be outside of the 2-standard
deviation range; 1 above and 1 below. With regard to trivial modules observed in the TBI
patients (Fig. 2), the effect of excluding trivial modules on the modularity value was
negligible (< 10−6) since most of the trivial modules comprised of single nodes (see the
modularity equation in the methods section).

Higher modularity in the TBI cohort on the initial scans was associated with lower average
participation coefficient, a measure of between-module connectivity, in these subjects.
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Modularity and average participation coefficient were highly inversely correlated on both
scans (Fig. S4a, b), and average participation coefficient was lower in the TBI I cohort than
in the controls on the initial scans (Fig S4c).

When the modularities were compared across the initial and follow-up scans at each group,
the modularities were apparently changed in the controls whereas they appeared to remain
stable on average in the TBI I cohort (Fig. 3). However, the interpretation of this result is not
straightforward for two reasons: 1) we acquired MRIs at a different site for the follow-up
scans and 2) the subjects on the follow-up scans included in the analyses were not an exact
subset of subjects on the initial scans due to the quality assurance procedures. In other
words, longitudinal comparisons between each group should not be made until unknown
amounts of (1) effects of different sites on the module-based network properties and (2)
inter-subject variability of the module-based network properties are clarified. Therefore, to
further investigate if the modularities of TBI patients remained stable while those of controls
changed over the two scans at each subject, we performed additional, direct comparisons
between the initial and follow-up scans with subjects who underwent both scans at the
single-subject level (See Fig. S5). At the group level, the overall result was unchanged: there
was increased modularity in the control group over time and stable modularity in the TBI I
group (Fig. S5, 1st, 2nd columns). However, single subject analyses demonstrated a wide
variety of changes (both increases and decreases) in modularity over time in both controls
and the TBI I cohort (Fig. S5, 3rd column). See discussion for the limitations of this study
relevant to this observation. Further, notable group differences in longitudinal changes in
these measures were mainly due to TBI patients with ‘abnormal’ modularities (Fig. S4, 4th

column). More specifically, it was the ‘abnormal ’ TBI patients on the initial scans that
shifted the group average of longitudinal changes toward zero. Without these ‘abnormal’
TBI patients, average longitudinal changes in the TBI I (dotted horizontal bar in Fig. S4, 4th

column) were increased as well, making group differences in longitudinal changes no longer
statistically significant at α = 0.05. Thus, the most likely explanation is that there were
systematic differences between the two scanners as well as changes in the most abnormal
subjects over time.

3.5 Node-specific network properties
Node-specific analysis allowed us to identify localized patterns of module-based network
measures that differed between TBI and control subjects (Figs. 4, 5). Overall, the spatial
pattern of group comparisons (Fig. 4) and the number of TBI patients with ‘abnormal’
network measures relative to the controls (Fig. 5) were clear on the initial scans but less
prominent on the follow-up scans. On the initial scans, the TBI I cohort had small areas of
increased and decreased within-module connectivity relative to the controls (Fig. 4a) On the
contrary, the TBI subjects had extensive and more markedly decreased participation
coefficient (Fig. 4b) compared with the controls. Maps for count of the TBI patients with
‘abnormal’ node-specific measures relative to the controls were similar to the corresponding
group comparison maps (Fig. 5).

3.5.1 Group comparisons—The spatial pattern of group differences in within-module
connectivity changed over time. At the time of the initial scan, within-module connectivity
in the TBI I cohort was slightly elevated, on average, compared with the controls in the right
precentral gyrus, right medial superior frontal gyrus, and right dorsomedial superior frontal
gyrus (R G_precentral, R G_front_sup-medial and R G_front_sup-dorsomedial in Fig. 4a
left panel). Subtle decreases in within-module connectivity of the TBI patients compared
with the controls were also observed in the right supramarginal gyrus and right opercular
part of the inferior frontal gyrus (R G_pariet_inf-Supramar and R G_front_inf-Opercular in
Fig. 4a left panel). Though there were trends in group differences on the initial scans, none
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of the group differences were statistically significant at qFDR < 0.05 (FDR: false discovery
rate (Genovese et al., 2002)). At the time of the follow-up scan, such disturbances in within-
module connectivity became less prominent (Fig. 4a, right panel).

In contrast to the scattered subtle increases and decreases in the within-module connectivity,
the group comparison maps for participation coefficient (Fig. 4b left panel) exhibited more
widespread decreases in the TBI I cohort compared with the controls. At the time of the
initial scan, such patterns were localized over the central sulcus, left anterior transverse
temporal gyrus, right long insular gyrus and central sulcus of the insula, superior frontal
gyrus and sulcus, anterior part of the cingulate gyrus and sulcus, right superior part of the
precentral sulcus, right superior temporal sulcus, right orbital gyri, posterior-ventral part of
the cingulate gyrus near the calcarine sulcus, lingual gyrus, right parieto-occipital sulcus and
left cuneus. These differences on the initial scans were significant based on uncorrected p-
values. However, such group differences on the initial scans did not survive after correction
for multiple comparisons at qFDR < 0.05. At the time of the second scan, the widespread
group differences in participation coefficient mostly became less prominent. (Fig. 4b, right
panel)

3.5.2 Counts of the numbers of TBI patients with relatively ‘abnormal’ node-
specific network measures—Color maps for the number of TBI patients with
‘abnormal’ network measures relative to the controls in each of the nodes (Fig. 5) allowed
us to identify regions where functional connectivity appeared most vulnerable to bTBI.
Here, ‘abnormal’ was defined if a network measure of a patient was outside two standard
deviations from the mean of the controls. Though abnormalities revealed on group
comparison maps did not survive at qFDR < 0.05, the ‘abnormality’ maps demonstrated that
substantial portions of the TBI patients (up to 25%) had ‘abnormally’ low participation
coefficient relative to the controls (Fig. 5c). None had ‘abnormally’ high participation
coefficient. These findings are notable in that by chance 2.4% of the TBI I cohort would be
expected to be lower than the mean of the controls minus the 2-standard deviations.

3.6 ROI analysis results
Since participation coefficient was the most prominent among the module-based network
measures in the group-wide node-specific analysis, we focused on participation coefficient
in further analyses. From the group comparison map in participation coefficient (Fig. 4b),
we identified 15 regions (Fig. 6) for ROI analysis using the Destrieux atlas (Destrieux et al.,
2010), a standard surface-based atlas available from Freesurfer. See the discussion section
for explanation of utilizing structural parcellations as opposed to functional parcellations in
this ROI analysis. The identified ROIs were (1) central sulcus (S_central), (2) left anterior
transverse temporal gyrus (L G_temp_sup-G_T_transv), (3) right long insular gyrus and
central sulcus of the insula (R G_Ins_lg_and_S_cent_ins), (4) superior frontal sulcus
(S_front_sup), (5) the medial portion of the superior frontal gyrus (G_front_sup-medial), (6)
the anterior portion of the superior frontal gyrus (G_front_sup-anterior), (7) deep anterior
part of the cingulate gyrus and sulcus (G_and_S_cingul-Ant-deep), (8) superficial anterior
part of the cingulate gyrus and sulcus (G_and_S_cingul-Ant-superficial), (9) right superior
part of the precentral sulcus (R S_precentral-sup-part), (10) right superior temporal sulcus
(R S_temporal_sup), (11) right orbital gyri (R G_orbital), (12) posterior-ventral part of the
cingulate gyrus (G_cingul-Post-ventral) near the calcarine sulcus, (13) lingual gyrus (G_oc-
temp_med-Lingual), (14) right parieto-occipital sulcus (R S_parieto_occipital) and (15) left
cuneus (L G_cuneus). For detailed locations and surface area of these ROIs, see Fig. 6 and
Table III.
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Scatter plots were made (Fig. 7) to examine the distributions of average participation
coefficient of each subject in three ROIs (G_and_S_cingul-Ant-superficial (left: (-8, 56, 3),
right: (9, 55, 2)), G_cingul-Post-ventral (left: (−8, −52, 3), right: (12, −53, 5)) and R
S_parieto_occipital (18, −81, 38)). These three ROIs were representative of all 15 ROIs
analyzed (see table IV for the complete list of the ROI analysis results). Similar to the trends
observed in global and node-specific network measures, the TBI I cohort, on average, had
lower participation coefficients than the controls on the initial scans, yielding up to 15
(36.6%) relatively ‘abnormal’ TBI patients. (Fig. 7a–c left panel). Such group differences
that were marked by many relatively ‘abnormal’ TBI patients became less prominent at the
time of the follow-up scans (Fig. 7a–c right panel).

Subsequently, without free parameters with regard to ROI selection, we used the TBI II
cohort as a validation dataset to test the hypotheses generated with the TBI I cohort. On the
initial scans, in the three ROIs, relative ‘abnormality’ patterns in the TBI II cohort were less
striking than those in the TBI I cohort, yielding up to 3 (9.6%) TBI patients with relatively
‘abnormal’ participation coefficients (Fig. 7d–f left panels). Table IV indicates that the
number of TBI patients from the TBI II cohort with relatively ‘abnormal’ ROI-specific
participation coefficients on the initial scans was greater than the expected number by
chance (0 above and 0 below). Relatively abnormal participation coefficient on the initial
scans in TBI patients from the TBI II cohort were identified in all ROIs except in the
G_front_sup-medial and L G_cuneus. However, there were fewer TBI patients with
relatively abnormal participation coefficient over the ROIs in the TBI II cohort compared
with the TBI I cohort (Fig. 7 and Table IV).

Turning to multiple ROI single-subject analyses, we counted the number of relatively
‘abnormal’ ROIs in each individual TBI patient and tested if this observed distribution of
‘abnormal’ ROIs differed from the distribution expected by chance (Fig. 8). On the initial
scans, the observed numbers of TBI patients with more than two ‘abnormal’ ROIs were
markedly different from those expected by chance, and these differences were statistically
significant at α = 0.05 in both datasets (27/47 observed versus 2/47 expected in the TBI I
cohort, p < 0.0001, one-sided z-test; 8/31 observed versus 1/31 expected in the TBI II
cohort, p = 0.006, one-sided z-test). As expected considering the nature of these analyses,
the proportion of TBI patients from the TBI II cohort with more than two relatively
‘abnormal’ ROIs was lower than those from the TBI I cohort: 44.9% reduction from the TBI
I cohort to TBI II cohort on the initial scans (i.e., 57.4% = 27/47 versus 25.8% = 8/31).

On the follow-up scans, the proportion of patients in the TBI I cohort with more than two
‘abnormal’ ROIs was different than expected by chance with marginal statistical
significance (p = 0.044). The proportion of patients in the TBI II cohort with more than two
‘abnormal’ ROIs on follow-up scans was not statistically significant (p = 0.276).

Multivariate analysis aggregating all 15 ROIs after dimensionality reduction via
probabilistic principal component analysis (Fig. 9) demonstrated a similar reduction in the
proportion of the TBI patients with relatively ‘abnormal’ ROIs from the TBI I cohort to the
TBI II cohort. Specifically, 31/47 (66.0%) of the patients from the TBI I cohort (Fig. 9a) and
9/31 (29.0%) of the patients from the TBI II cohort (Fig. 9b) were deemed to be relatively
‘abnormal’ across the 15 ROIs on the initial scans. On the follow-up scans, 4/37 (10.8%) of
the patients from the TBI I cohort (Fig. 9c) and 1/27 (3.7%) of the patients from the TBI II
cohort (Fig. 9d) were found to be ‘abnormal’ using this multivariate analysis.

3.7 Permutation-based omnibus abnormality analysis results
We next asked whether the above results could have been biased by non-independence of
the ROIs. Therefore, we counted the proportion of ‘abnormal’ nodes in each individual TBI
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patient and compared the observed distributions in TBI patients with those expected by
chance using permutation of group membership (Fig. 10). Again, ‘abnormal’ was defined as
participation coefficient outside of 2 standard deviations of the mean of the controls.
Overall, these omnibus nodal abnormality analysis results were consistent with the ROI
analysis results shown in Fig. 8. Specifically, on the initial scans, the differences between
the observed number of TBI patients with more than 15% ‘abnormal’ nodes in the TBI I
cohort or more than 10% in the TBI II cohort vs. those expected by chance were statistically
significant at α = 0.05 in both datasets (19/47 observed versus 1/47 expected in the TBI I
cohort, p < 0.0001, one-sided z-test; 7/31 observed versus 1/31 expected in the TBI II
cohort, p = 0.012, one-sided z-test). Again, the trends on the follow-up scans shown in Fig.
10 were similar to those in Fig. 8. The observed proportion of patients in the TBI I cohort
was statistically significant (p = 0.0008), but not in the TBI II (p = 0.080).

3.8 Control analysis results
3.8.1 Assessment of the effects of subtle head motion—Recently, the effects of
subtle motion have been found to substantially influence resting-state functional
connectivity MRI findings (Power et al., 2012; Satterthwaite et al., 2012; van Dijk et al.,
2012). Our motion analysis (Fig. S6) revealed that there were not statistically significant
group differences in average frame-to-frame movement in the analyzed data, after censoring
and exclusion of scans with excessive motion (Table I). There were no associations between
average participation coefficient and head motion (Fig. S7) in any of the groups.
Furthermore, there was no relationship between the number of ‘abnormal’ ROIs and head
motion (Fig. S8).

3.8.2 Assessment of the effects of network connectivity thresholds—The
differences between TBI subjects and controls in the number of regions on interest with
‘abnormal’ participation coefficient were replicated at 2 additional threshold levels for
connectivity matrices (Figs. S9, S10 for 2% and 1.5% tie densities, respectively).

3.8.3 Effects of global signal regression—Analyses of the number of ROIs with
abnormal participation coefficient in TBI patients vs. controls based on connectivity
matrices created without global signal regression (Fig. S11) essentially replicated the results
with global signal regression (Fig. 8). The only exception was that the number of TBI I
patients with relatively ‘abnormal’ ROI values on the follow-up scans was not quite
statistically significant at α = 0.05.

3.8.4 Effects of region of interest size—To explore the effect of ROI size, we re-
analyzed the data using all nodes within 20 mm rather than 15 mm geodesic distance of the
local peaks of participation coefficient difference between groups as the ROIs (Fig. S12).
The analysis of the number of ROIs with abnormal participation coefficient in TBI patients
versus controls using 20 mm geodesic distance ROIs (Fig. S13) again essentially replicate
the results with 15 mm geodesic distance ROIs (Fig. 8).

DISCUSSION
In summary, we found disrupted community organization of resting-state functional
connectivity in a subset of U.S. military personnel following concussive bTBI using
module-based graph theoretic analysis. Of the module-based graph theoretical measures
studied, participation coefficient, a measure of between-module connectivity, showed the
most pronounced disruptions in the TBI patients relative to the controls. There were
spatially localized ‘abnormalities’ over multiple brain regions in the TBI patients.
Importantly, these abnormalities were detected in comparison with U.S. military controls
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that had blast-exposures but no clinical diagnosis of TBI. At the time of the initial scans, the
distribution of the number of the ‘abnormal’ regions was different from the expected
distribution by chance. Multivariate analysis aggregating the 15 ROI values of between-
module connectivity consistently demonstrated the substantial portion of TBI patients had
relatively ‘abnormal’ between-module connectivity. The number of TBI patients with
relatively ‘abnormal’ between-module connectivity was less prominent at the time of the
follow-up scans. In an independent group of concussive bTBI patients, we were able to
partially replicate these results with no free parameters.

4.1 Technological innovations effectively analyze heterogeneous concussive bTBI patients
at the single subject level

The single-subject analyses performed in this study were useful to effectively analyze a
heterogeneous group of bTBI patients in this report. Scatter plots (Figs. 3, 7) illustrate
skewed distribution of the network measures in the TBI patients. The distributions of the
TBI patients with multiple ‘abnormal’ regions or nodes (Fig. 8, 10) were consistently
different from those expected by chance. The multivariate analysis (Fig. 9) also consistently
revealed the TBI patients with relatively ‘abnormal’ regions over the two independent
cohorts. Thus, we suggest that single-subject analysis should be considered along with group
analysis for the identification of ‘abnormalities’ in heterogeneous subject populations such
as concussive bTBI patients. Obviously, single-subject analyses have greater potential
clinical applicability than group analyses.

We adopted a surface-based approach to reduce between-subject variability arising from
brain anatomy. An advantage of the surface-based approach is an increase in sensitivity by
(1) matching sulcus-to-sulcus and gyrus-to-gyrus of cortical surface across subjects to
circumvent the issues of improper registration and (2) utilizing spatial smoothing on the
cortical surface rather than the voxel space (Jo et al., 2007, 2008; Tucholka et al., 2012). On
the other hand, a disadvantage of the surface-based approach is that it does not represent the
whole brain. The surface based approach does not assess cerebellum and subcortical regions
such as basal ganglia and thalamus.

Complex network analysis using the graph theory is advantageous in bTBI populations with
heterogeneous injury mechanisms since it does not make assumptions regarding networks or
regions of interest. Thus, our data-driven approach may provide more ‘comprehensive’ view
than hypothesis-driven approaches do in the studies of heterogeneous TBI populations.
Disrupted between-module connectivity in the TBI patients over multiple regions (Figs. 4b,
5c, 7–10, Table IV) indicates that multiple regions or networks should be included to detect
‘abnormalities’ in TBI patients if hypothesis-driven approaches are adopted. Like complex
network analysis using the graph theory, independent component analysis (ICA) is another
data driven approach with potential to identify abnormalities in heterogeneous TBI
populations. Indeed, Shumskaya et al. (2012) identified abnormalities of resting-state
networks in concussive TBI patients utilizing the whole-brain ICA. However, Shumskaya et
al. (2012) applied the ICA to a relatively more homogenous concussive TBI group including
only patients with fronto-occipital injuries. Thus, the utility of whole brain ICA in
heterogeneous concussive bTBI populations warrants further investigations.

In contrast to other graph theoretic analyses on TBI populations (Castellanos et al., 2011;
Nakamura et al., 2009), we exploited the spatial resolution of fMRI by defining each vertex
of the cortical surface as a node. Network analyses with higher spatial resolution of nodes
are beneficial over region-based network analyses in identifying network properties of
interests with greater sensitivity and specificity and visualizing spatially localized network
properties of interest (Hayasaka and Laurienti, 2010). Thus, we attempted to use a vertex as
a node considering that the spatial extent of ‘abnormalities’ in concussive bTBI populations
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measured by the graph theoretic analysis in fMRI was unknown. Indeed, the utilization of
high spatial resolution of fMRI allowed us to identify localized ‘abnormalities’ in the TBI
patients in greater detail, which would be missed if a node was defined from coarse
parcellations. However, a vertex itself is arguably less biologically meaningful than a
functional brain region in the context of graph theoretic analysis (Wig et al., 2011).
Unfortunately our current understanding of the functional subdivisions of the human brain is
not yet sufficient for optimal prespecified ROI analyses. For the same reason, we selected
the 15 ROIs in reference to the Destrieux atlas, a structural parcellation, as oppose to a
functional parcellation.

4.2 Findings in relation to prior literature
4.2.1 Multiple regions with disrupted between-module connectivity as
potential candidates for hypothesis-driven network-specific approaches—
Most of the previous functional connectivity studies in fMRI on civilian TBI patients
(Arenivas et al., 2012; Bonnelle et al.,2011; Caeyenberghs et al., 2012; Kasahara et al.,
2010; Marquez de la Plata et al., 2011; Mayer et al., 2011; Sharp et al., 2011; Slobounov et
al., 2011; Tang et al., 2011) used hypothesis-driven approaches within the default mode
(Greicius et al., 2002; Raichle et al.,2001), executive control (Seeley et al., 2007; Vincent et
al., 2008), motor (Biswal et al., 1995), thalamic (Zhang et al., 2008) and hippocampal
(Rombouts et al., 2003) networks. However, to our knowledge, there are no current fMRI
studies of resting-state functional connectivity in concussive bTBI patients using these
networks. In this regard, future work based on the identified ‘abnormal’ regions in Figs. 4–7
could involve assessment of within-network and between-network connectivity in these
specific resting-state networks.

4.2.2 Transient change of module-based organizations following concussive
bTBI—A prevailing view on the plasticity of TBI patients based on functional
neuroimaging studies (Castellanos et al., 2010, 2011; Mayer et al., 2011; Nakamura et al.,
2009; Sponheim et al., 2011) is that the recovery of functional network at the chronic stage
is incomplete. Even after 7 to 12 months of active rehabilitation treatments, it has been
reported that many TBI patients had incomplete recovery of the graph-theory measures,
associated with the incomplete reestablishment of cognitive function (Castellanos et al.,
2011). Furthermore, concussive bTBI patients with 32 months of mean post-injury time
demonstrated relatively reduced inter-hemispheric connectivity in lateral frontal lobe despite
no observed deficits in neuropsychological measures (Sponheim et al., 2011).

In contrast, in our study at the global, region-and node-specific levels (Figs. 3–5, 7–10),
group differences in module-based connectivity observed on the initial scans were less
prominent at the follow-up scan 6–12 months later. This transient change in module-based
connectivity supports the utility of early scanning (if feasible) on bTBI patients to identify
localized modular disruptions in brain networks. However, less prominent group differences
in between-module connectivity at the follow-ups do not necessarily mean complete
restoration of bTBI patients’ network architectures to baseline.

4.2.3 Marginally perturbed within-module connectivity, but markedly
unbalanced between-module connectivity with increased modularity—Node-
specific analysis of the module-based network measures (Figs. 4, 5) demonstrates that the
TBI patients had disrupted between-module connectivity with marginal change in within-
module connectivity relative to the controls. Disrupted between-module connectivity in the
TBI patients indicate that the blast-related injuries may interfere with integration across
functional brain networks, as between-module connectivity may be necessary for complex
tasks spanning multiple modules. In healthy normal subjects, modules in the spontaneous
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brain network are closely associated with auditory, visual, somatosensory/motor, attention,
sub-cortical and default mode networks (He et al., 2009). Though we did not directly assess
in this study, traumatic axonal injuries in long range fibers mediating connections with
multiple modules may lead to disruptions in between-module connectivity. In TBI patients,
disrupted white matter integrity in the splenium of the corpus callosum has been correlated
with PCC functional connectivity in the default mode network (Sharp et al., 2011). Our
previous DTI study showed disrupted white matter integrity in the TBI I cohort relative to
the controls (Mac Donald et al., 2011). However, it is too early to interpret the association of
altered white matter integrity reported in Mac Donald et al. (2011) with disrupted between-
module functional connectivity following bTBI without direct investigation of structural
white matter connectivity at a subject by subject level. Since strong functional connectivity
between regions is often maintained without monosynaptic connections between these
regions (Honey et al. 2009), direct comparisons of functional and structural connectivity are
not straightforward. Therefore, further studies on the association between structural and
functional connectivity on these concussive bTBI patients are needed to understand the
underlying mechanisms of disrupted between-module connectivity following bTBI. This
will require further investigations that are beyond the scope of the current manuscript.

4.3 Technical Limitations
The present study has several limitations due to data quality. First, our analysis results were
from a subset (75% of all subjects’ data; 62%, 76%, 81% of the controls, TBI I cohort and
TBI II cohort, respectively) of the subjects’ data to ensure data quality. Our study results
may be more representative if more subjects’ data had passed the quality assurance
procedure. As such, the quality assurance procedure yielded relatively small sample size
(N=12 for each scan) of controls. Small sample size could be an alternative explanation for
the apparent resolution of the module-based graph measures in the TBI patients on follow-
up scans. In other words, decreases in the numbers of relatively abnormal TBI patients could
have been partially explained by the increased standard deviations of the module-based
graph measures for the controls on the follow-up scans. The exclusion of a part of the
subjects’ data for data quality assurance may not be surprising to neuroimaging researchers,
particularly in fMRI, considering difference in subjects’ conditions between clinical
populations and healthy subjects. However, this is an important consideration clinically as it
may not be feasible to collect reliable data from every patient to be used as early indicators
of injury, disease, or for non-invasive monitoring of rehabilitation progress.

Second, moderate data quality of the T1-weight MRI due to subject motion was not
sufficient for Freesurfer to reconstruct cortical surfaces in fully automated fashion. Thus,
following the well-documented instructions, a substantial amount of time was required for
manual intervention during cortical surface reconstruction to compensate MRI data quality
of our study. Cortical surface reconstruction would be more reliable (and require less
manual intervention) if we increased signal-to-noise ratio of the T1-weighted MRI by
acquiring two or more images as the Freesurfer instructions suggest. However, a practical
limitation of studies of relatively acutely injured subjects is that time in the scanner must be
kept relatively short for patient comfort and safety.

Third, we were not able to include much of the orbitofrontal cortex and inferior temporal
cortex in our analysis due to signal loss by fMRI susceptibility artifacts (Ojemann et al.,
1997) and low signal to noise due to distance from the MR receiver coils. Particularly,
orbitofrontal cortex was of interest based on a previous simulation study on the effect of
blasts on the brain (Taylor and Ford, 2009) and our previous DTI study (Mac Donald et al.,
2011) involving the TBI I cohort. An optimized pulse sequence to account for susceptibility
artifacts (Domsch et al., 2012) would be beneficial in this regard for future studies.
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Fourth, we did not include negative correlations for the network constructions as the
meaning of negative correlations after global signal regression is still unclear (Anderson et
al., 2011; Chai et al., 2012; Chang and Glover, 2009; Fox et al., 2009; Murphy et al., 2009;
Saad et al., 2012). Assessment of anticorrelations in bTBI populations would be of interest if
the meaning of negative correlations is clarified by future studies.

Finally, we did not make direct comparison of the initial and follow-up scans even though
we acquired MRI data at two time points. Instead, we performed only a cross-sectional study
at two time points and observed change of modular organization of the TBI patients relative
to the controls at each time point. Lack of quantification on the effects of the two different
MRI scanners, medications between the time of the initial and follow-up scans and sleep
deprivation at the time of the initial scans prevented us from directly analyzing our data in a
subject-by-subject longitudinal fashion.

4.4 Interpretations
The underlying biological mechanisms and consequences of the findings in this study are
not yet clear. Possible explanations for the relatively disrupted between-module functional
connectivity in the TBI cohorts on initial scans may be related to white matter injury. This
hypothesis is based on previous combined DTI and fMRI connectivity studies on TBI
populations (Bonnelle et al., 2012; Mayer et al., 2011; Sharp et al., 2011). Several relevant
investigations into the underlying biological mechanisms of concussive TBI in the context
of white matter injury have been performed recently. In magnetic resonance spectroscopy
(MRS) studies of concussive TBI (Gasparovic et al., 2009; Johnson et al., 2012, Yeo et al.,
2011a), three main findings have been reported: (1) reduced N-acetylaspartate (NAA) in the
white matter, reflective of disruptions in neuronal integrity, (2) increased creatine in the
white matter, reflective of alterations in cellular energy metabolism, and (3) increased
choline in the white matter, associated with injury and repair of myelin and/or inflammation.
In particular, Johnson et al. (2012) demonstrated that altered metabolic integrity measured
by NAA/choline in the splenium of the concussive TBI patients was associated with reduced
functional inter-hemispheric connectivity following TBI.

Another possibility is unmeasured pathophysiology following TBI in the gray matter.
Previous metabolic imaging studies in concussive TBI reported metabolic changes in the
gray matter following TBI that might lead to changes in BOLD signals (see Lin et al. (2012)
for review). For example, single photon emission computed tomography (SPECT) identified
reduced regional cerebral blood flow (rCBF) in concussive TBI patients (Jacobs et al.,
1996). Positron emission tomography (PET) revealed decreased cerebral glucose metabolic
rate (CMRglu) in veterans with repetitive concussive bTBI (Peskind et al., 2011). MRS
studies (Gasparovic et al., 2009; Yeo et al., 2011a) demonstrated decreased glutamate-
glutamine (Glx) in the gray matter of the concussive TBI group and reduced BOLD
response following TBI. Taken together, future studies involving DTI, MRS, SPECT, PET
and other methods sensitive to structural and metabolic derangements will be required to
assess the underlying pathological mechanisms of findings in this study.

The biological mechanisms for apparent resolution of between-module functional
connectivity in the TBI patients on the follow-up scans are not known. One possibility is
that the TBI patients could have been subjected to more sleep deprivation at the time of
initial scans; sleep deprivation has been shown to affect BOLD signal (Gujar et al., 2010).
Medications used by TBI patients at the acute stage and during rehabilitation could also be
partially accountable.

There are several alternative explanations for our findings:
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1. It is possible that some of these results may have occurred by chance as group
differences at the node- and region-specific level were not statistically significant
after correction for multiple comparisons (qFDR < 0.05). We do not think that this is
likely to be the case for all of our results since the analysis of the TBI II cohort was
performed with no free parameters after we obtained the analysis results of the TBI
I cohort. In other words, the TBI II cohort served as a validation dataset. Thus, the
single-subject analyses of the initial scan (Figs. 7–9) should be regarded as the
most solid.

2. Unmeasured systematic differences in the time spent in the scanner with eyes open
versus closed or awake versus asleep could also be confounding factors. It has been
reported that functional connectivity strength in the default mode network and
attention network with eyes closed is decreased over network connectivity with
eyes opened (van Dijk et al., 2010). Functional connectivity in the default mode,
attention, executive control, motor, visual and auditory network is retained (Larson-
Prior et al., 2009) during light sleep, but functional connectivity in the default mode
network is partially changed during deep sleep (Horovitz et al., 2009). We were not
able to control the extent of eyes-open vs. eyes closed time, nor assess sleep in the
scanner due to the logistical challenges of obtaining scans in acutely injured U.S.
military personnel.

3. The effects of analgesic medications could be another confounding factor. To our
knowledge, immediate effects of analgesics on resting-state functional connectivity
in fMRI are unknown, but alterations in regional synchrony of resting-state
functional connectivity in fMRI in the right anterior cingulate cortex and left
precentral frontal gyrus in chronic ketamine users has been reported (Liao et al.,
2012).

4. Other, unmeasured differences in pre- and post-injury characteristics among three
groups could also provide alternative explanations for our findings. The initial scan
data of the controls and TBI I cohort were acquired in 2008–2009 while the TBI II
cohort in 2010–2011. During this period, the pace of the wars was changed and
rehabilitation strategies and treatments may have improved (See van Wingen et al.
(2012) for the effects of combat stress on functional connectivity). All these
characteristics were unmeasured. Thus, it is unclear whether reduction in the
proportion of TBI patients with relatively ‘abnormal’ participation coefficient
across ROIs (Figs. 7–9) from the TBI I cohort to the TBI II cohort was solely due
to different detection performance of the multivariate analysis over the two datasets
or due to intrinsic difference between the subjects in the 2 TBI cohorts.

5. Biases due to incomplete blinding during the manual portions of the Freesurfer
analysis could also affect our results though the associated effects are not likely to
be substantial considering the difference in spatial resolutions: 43 mm3 in fMRI
versus 1 mm3 in structural MRI.

6. Test-retest reliability of our findings is still unknown. Two previous reports, one
indicating moderately good reliability (Braun et al., 2012) and another indicating
relatively low test-retest reliability for many graph theoretical measures (Wang et
al., 2011) used coarser parcellation and less aggressive motion scrubbing than the
current work.

4.4 Future Directions
The most important future direction for this line of investigation is an assessment of the
relationship between these graph-theoretically derived neuroimaging variables and clinical
outcomes in these cohorts. This will be the topic of future communications. Further studies
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will be required to address the technical concerns discussed above and assess the
mechanisms underlying these observed network properties.

CONCLUSIONS
In conclusion, we demonstrated disrupted modular organization of resting-state cortical
functional network in U.S. military personnel with concussive bTBI. Module-based graph
theoretic analysis revealed altered between-module connectivity in the TBI patients relative
to the controls who had blast exposures without a diagnosis of TBI. Single-subject
multivariate analysis fairly consistently detected the TBI patients with relatively ‘abnormal’
ROIs over two independent cohorts. Our single-subject analysis approach may be useful for
heterogeneous populations and potentially complement hypothesis-driven approaches for
these populations in future resting-state fMRI studies. Further studies are required to explain
the underlying mechanisms and consequences of these phenomena.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Module-based graph theoretic analysis of resting-state fMRI in patients with
concussive bTBI

• Spatially localized reductions in between-module connectivity in the TBI
patients on the initial scans

• Less prominent group differences on the follow-up scans

• Analysis of the second TBI cohort dataset with no free parameters provided a
partial replication
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Figure 1. An illustration of the analysis procedure
For each subject, with volumetric structural MRI data (a), cortical surface (b) was
reconstructed. Subsequently, the surface underwent the inter-subject alignment and spatial
resampling close to the spatial resolution of resting-state BOLD fMRI (c) to allow surface-
based, node-by-node cross-subject analyses. The preprocessed resting-state BOLD fMRI
data (d) were converted to surface-based BOLD signal data (f) aligned to the individual
cortical surface (e). BOLD fluctuation correlation coefficients between every pair of nodes
in the brain (e.g., the gray square from red and cyan nodes in (e ) ) were obtained to yield a
correlation matrix (g). A connectivity matrix (h) was derived by thresholding the correlation
matrix, and a brain network (i) was constructed. In this illustration, yellow lines indicate
connection between nodes. With the identified modules (three modules delineated by dashed
lines in this example) in (j), modularity, within-module degree z-score (e.g., five magenta
lines for the red-colored node in (k)) and participation coefficient (e.g., the distribution of
magenta, cyan and olive lines for the red-colored node in (l)) were obtained for each node.
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Figure 2. Group module assignments of each of the controls and the first TBI (TBI I) cohort
The identified modules from group averaged correlation matrices were color-coded as a
function of tie densities (densities of the retained strongest correlations): 3% (a), 2% (b) and
1.5% (c). Only modules of size greater than 1% of total number of nodes were displayed.
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Figure 3. Whole brain modularity of the controls and the first TBI (TBI I) cohort
Each symbol represents a single individual’s modularity. The I bars indicate the means and
standard deviation of the control, the dotted horizontal bar is two standard deviations from
the mean of the control and the solid horizontal bar in the TBI I cohort is the mean of the
TBI I cohort. Filled triangles represent TBI patients with relatively ‘abnormal’ modularity,
located outside of the dotted horizontal bars. The number of relatively ‘abnormal’ TBI
patients for modularity was labeled in parentheses, and the p-values were obtained from
permutation tests (10,000 permutations) on group mean difference. Because the quality
control procedures for inclusion or exclusion were performed on each scan individually, the
subjects whose modularity data is shown for the follow-up scans were not an exact subset of
subjects whose data is shown for the initial scans.

Han et al. Page 32

Neuroimage. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Node-specific network properties of the controls and TBI I cohort
Group mean comparison maps (puncorr < 0.05) of within-module degree z-score (a) and
participation coefficient (b), respectively. All color maps were superimposed on the
averaged cortical surface from all participants in the controls and TBI I cohort. R
G_precentral: right precentral gyrus, R G_pariet_inf-Supramar: right supramarginal gyrus, R
G_front_inf-Opercular: right opercular part of the inferior frontal gyrus, R G_front_sup-
medial : right medial superior frontal gyrus, R G_front_sup-dorsomedial: right dorsomedial
superior frontal gyrus.
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Figure 5. Count of the TBI patients from the TBI I cohort with ‘abnormal’ node-specific
network properties relative to the controls
Color maps of the number of TBI patients whose measures (within-module degree z-score
and participation coefficient, respectively) were outside two standard deviations from the
mean of the control. All color maps were superimposed on the averaged cortical surface
from all participants in the controls and TBI I cohort.
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Figure 6. Regions of interest (ROIs) for participation coefficient
15 ROIs are colored and labeled (1: central sulcus, 2: left anterior transverse temporal gyrus,
3: right long insular gyrus and central sulcus of the insula, 4: superior frontal sulcus, 5:
medial superior frontal gyrus, 6: anterior superior frontal gyrus, 7: deep anterior part of the
cingulate gyrus and sulcus, 8: superficial anterior part of the cingulate gyrus and sulcus, 9:
right superior part of the precentral sulcus, 10: right superior temporal sulcus, 11: right
orbital gyri, 12: posterior-ventral part of the cingulate gyrus, 13: lingual gyrus, 14: right
parieto-occipital sulcus and 15: left cuneus). See Table III for the coordinates and areas of
these ROIs.
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Figure 7. ROI analysis of participation coefficient of the controls and patients with TBI
Scatter plots for averaged participation coefficients within each of three selected ROIs. See
Fig. 3 for the details of the scatter plots, Table III for abbreviations and Table IV for results
from all ROIs. Again, because the quality control procedures for inclusion or exclusion were
performed on each scan individually, the subjects whose modularity data is shown for the
follow-up scans were not an exact subset of subjects whose data is shown for the initial
scans.
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Figure 8. Bar graphs for observed and expected ‘abnormal’ ROIs in the patients with TBI
relative to the controls
The distribution of expected relatively ‘abnormal’ ROIs was calculated from the binomial
distribution with the probability that one region deems ‘abnormal’ by chance (0.0455; the
probability that participation coefficient for a TBI patient falls outside two standard
deviations from the mean of the controls). The p-values were obtained by the one-sided z-
test (TBI I > controls in the number of ‘abnormal’ ROIs).
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Figure 9. Scatter plots for multivariate analysis of participation coefficients within the ROIs
after dimensionality reduction by probabilistic principal component analysis
Solid triangles represent relatively ‘abnormal’ TBI patients whose values are locating within
the lower and upper tail, accounting for 2.5% in each tail, of the estimated multivariate
normal distribution from the control. The label in each panel indicates the number of
relatively ‘abnormal’ TBI patients and the number of TBI patients on the corresponding
scan.
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Figure 10. Bar graphs for observed and expected proportion of ‘abnormal’ nodes in the patients
with TBI relative to the controls without ROI selection
The distributions of expected relatively ‘abnormal’ ROIs were calculated from the
permutation of group memberships (10,000 permutations). The p-values were obtained by
the one-sided z-test (TBI I > controls in the proportion of ‘a bnormal ’ nodes).
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