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Abstract

Random Effects analysis has been introduced into fMRI research in order

to generalize findings from the study group to the whole population. Gen-

eralizing findings is obviously harder than detecting activation in the study

group since in order to be significant, an activation has to be larger than

the inter-subject variability. Indeed, detected regions are smaller when using

random effect analysis versus fixed effects. The statistical assumptions be-

hind the classic random effects model are that the effect in each location is

normally distributed over subjects, and “activation” refers to a non-null mean

effect. We argue this model is unrealistic compared to the true population

variability, where, due to functional plasticity and registration anomalies, at

each brain location some of the subjects are active and some are not. We

propose a finite-Gaussian–mixture–random-effect. A model that amortizes

between-subject spatial disagreement and quantifies it using the “prevalence”
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of activation at each location. This measure has several desirable properties:

(a) It is more informative than the typical active/inactive paradigm. (b) In

contrast to the hypothesis testing approach (thus t-maps) which are trivially

rejected for large sample sizes, the larger the sample size, the more informa-

tive the prevalence statistic becomes.

In this work we present a formal definition and an estimation procedure

of this prevalence. The end result of the proposed analysis is a map of the

prevalence at locations with significant activation, highlighting activations

regions that are common over many brains.

Keywords: fmri, group studies, localization, random effects, gaussian

mixture, statistical inference

1. Introduction and Motivation

A typical cognitive fMRI study entails the group-wise localization of brain

regions with evoked responses to a given cognitive stimulus. Individual sta-

tistical maps containing regression coefficients per voxel are combined across

subjects to allow for group wise inference using “Random Effects Inference”.

This inference has become standard since it offers reproducible findings (Fris-

ton et al. [10]). Its rationale is to compare the estimated effect to its variabil-

ity over different replications with different subjects. A location is declared

active if the observed effect is improbable, compared to the sampling vari-

ability, when assuming no activation.

The statistical assumptions behind the classic random effects approach

are: (a) Homogeneity: at a fixed location, all subjects are either active or

inactive. (b) Shift alternative: “activation” refers to a non-zero average ef-
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fect over all subjects. (c) Gaussianity: the voxel-wise effect is Gaussian

distributed over subjects.

Unfortunately, these assumptions rarely hold. For assumption (a) to be

violated, it suffice for voxels to contain different structural and/or functional

information across subjects, which is indeed the case; As put in Thirion

et al. [22]: “spatial mis-registration implies that at a given voxel, i.e. a given

position in MNI space, some subjects have activity while other subjects do

not...”. Also in Fedorenko et al. [8]: “... activations land in similar but

mostly non overlapping anatomical locations”. The visual motion area (MT)

has been noted to vary over individuals by more than 2 cm after Talaraich

normalization. The primary visual cortex has also been noted to vary in size–

up to two fold over different subjects [19]. Assumption (b) is just a matter

of convention: should locations where only 50% of subjects truly have non-

zero activation should be called “active” or “inactive”? Finally, regarding (c),

large deviations from the Gaussianity assumption have been demonstrated in

several large studies (eg. Thirion et al. [22] and section 3 herein). This would

typically affect sensitivity but not specificity, as the t-test is known to be

conservative under symmetric but heavier-than–Gaussian tailed distribution

[1]. In the following, we argue this is indeed the case of group fMRI studies.

Spatial smoothing of the signal is the typical solution for the above viola-

tions. It will spatially smear the signal so that between-subjects agreement

is larger. It will also alleviate the Gaussianity assumption via the central

limit theorem. Alas, spatial smoothing comes at the cost of spatial precision

and does not address the inherent inappropriateness of the model.

In this work we take a different path; Without spatially smoothing the
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parametric maps, our model allows for voxels mapped to the same location

to contain some proportion of both active and inactive individuals. The

suggested model is both statistically realistic and explicitly allows for spatial

disagreement over subjects– due to either brain plasticity or mis-registration.

This amortizes the mis-registration effects while allowing to highlight regions

of agreement over subjects with high spatial precision. We also argue that

the proportion of the active sub population at each location (“prevalence”)

is a more interesting parameter than the mean activation or the level of

significance as appear in p-value maps. In particular when large samples are

available and a significance test becomes non-informative, such as in Thyreau

et al. [23]. In the following sections we try to formalize and justify the

population-mixture assumption. Section 2 formalizes this intuition, which is

applied to a large fMRI study in section 3. A discussion follows in section 4.

2. Method

2.1. Distribution of the Voxel-Wise Effects Over Subjects

We propose a voxel-wise adaptation of classical random-effect model. Re-

calling the random effect model:

yi(t, v) = Xi(t)βi (v) + εi(t, v) (2.1)

Where yi(t, v) is the fMRI signal of subject i at time t in voxel v. The

expected (unscaled) signal induced by a stimulus is denoted by Xi(t) and

assumed known (see Worsley et al. [26] for details). Measurement error,

intra-subject psychological variability and unmodeled effects are captured

by εi (t, v). The subject specific effect induced by a stimulus in voxel v, is
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denoted by βi (v) . As previously mentioned, in the classical random effects

model it is assumed to be Gaussian distributed over subjects, i.e. ∀i =

1, ..., n : f(βi) = φµ,σ2
β
(βi). For the reasons described in the introduction,

we will now allow it to be a mixture of two populations: The “inactive”

population centred at zero and the “active” population with a non-zero center.

After omitting the voxel index v, the probability density function (PDF) of

this mixture is given by:

f (βi) = (1− p) f1 (βi) + pf2 (βi) (2.2)

Where f1 (.) is a symmetric distribution around zero, 0 ≤ p ≤ 1 and

f2 (.) = φµ,σ2 (.) with the mean effect µ allowed to be positive or negative like

in the classical random effects setup.

2.2. Toy Example

To demonstrate that eq. 2.2 amortizes brain plasticity and mis-registration

consider the following example: All subjects have a simple signal in their two

dimensional “brains” as depicted in figure 2.1-A . The signal is similar across

subjects, but not identical, in the sense that different subjects are allowed to

have differently ellipse-shaped signals– mimicking functional plasticity. The

centres are also changing slightly between subjects, mimicking misregistra-

tion effects. Figure 2.1-B depicts the relative frequency of the active subgroup

overlap, over brains. We then introduce inter-subject variability for both the

active and inactive subgroups and estimate p using 100 “scans”. First, using

our assumed variability model (2.1-C) and then using a mispecified model,

to demonstrate robustness (2.1-D).
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Figure 2.1: Toy Signal in Two Dimensional “Brain”. Figure A portrays the activation region
in a single arbitrary “brain”. Figure B portrays the true prevalence (relative frequency)
of the activation at each location after perturbing A to yield 100 “brains”, representing
functional plasticity and misregistration. Figure C portrays the estimated prevalence from
100 scans with an effect variability obeying the assumptions of eq 2.3:
(1− p) · (0.88N (0, 0.15) + 0.12N (0, 1)) + p · N (1, 0.25).
Figure D is similar to C. It demonstrates the prevalence estimator’s robustness to the
mispecification of the active sub-population. The effect’s variability is given by:
(1− p) · (0.88N (0, 0.15) + 0.12N (0, 1)) + p · (0.88N (1, 0.15) + 0.12N (1, 1)). Figures E and
F are the same as C and D (respectively) after masking the insignificant prevalences using
Wilcoxon’s signed rank statistic while controlling the FDR at 0.05
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2.3. Estimation Using Self-Referential Task fMRI Data

In classical random-effects analysis, one would estimate the parameters

of interest, by deriving the marginal distribution of yi(t, v) mixed by f (β).

In the fMRI literature it is more common to use a two-level approach: first

estimate the subject effect, and then estimate the random effect parameters

(Mumford and Nichols [14], Xu et al. [27]). These are known as the first

and second level respectively. We adopt this approach for convenience, both

mathematical and computational, but following a referee’s comment, we wish

to note that proper estimation is still a matter of debate (e.g. Chen et al.

[4]) and discuss the implications of the path we chose in Appendix C.

Due to the two-level approach, and since βi (v) are estimated and not

observed directly, we have to allow for their measurement error. The sec-

ond level effect distribution is given by 2.2 where f1 (.) allows for first level

variance. After considering various distributions for the inactive group–

Gaussian, Cauchy, Laplace and Logistic– we have chosen a centred two-

component–Gaussian-scale-mixture, which was also adopted in Woolrich [24].

Figure 2.2 demonstrates the three component Gaussian mixture typically fits

the data better than other candidate distributions.

By redefining f1(.) = 1
1−p

(
p1φ0,σ2

1
+ p2φ0,σ2

2

)
, p3 = p, and keeping the

standard f2 (.) = φµ,σ2 (.) we get a three component mixture:

f(βi) = p1φ0,σ2
1
(βi) + p2φ0,σ2

2
(βi) + p3φµ,σ2

3
(βi) (2.3)

Where p1,p2,p3 are the voxel-wise mixing proportions, naturally summing

to 1, and φmean,variance are Gaussian PDFs allowed to have voxel-specific

parameters.
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Figure 2.2: Distribution of Kolmogorov Smirnov test statistic over voxels, comparing
different fitted distributions to data. To avoid over fitting, a train-test data split has been
used. Boxplots are sorted by the median.
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We are now left with the problem of estimating the parameters of eq.

2.3: (p1, p2, p3, µ, σ2
1, σ

2
2, σ

2
3). We use the expectation maximization algorithm

(EM) to maximize the likelihood. We note that as in any mixture problem,

identification problems arise. Even with the variances constrained so that

σ2
1 < σ2

2, any two-component–mixture can be parametrized as (p1, p2, 0, •, σ2
1, σ

2
2, •)∪

(•, p2, •, 0, σ2
1, σ

2
2, σ

2
1) ∪ (p1, •, •, 0, σ2

1, σ
2
2, σ

2
2) where • denotes a free parame-

ter. We alleviate this problem by constraining the parameter space; In order

to allow the interpretation of p3 as the prevalence of activation, it is set to

zero where the active sub-group is very similar to the inactive group. The

threshing boundaries are an adaptation of the estimation limits in Donoho

and Jin [7]. Particularly p3 = 0 if the unconstrained prevalence estimate is

smaller than exp
[
− µ2

2(p1σ2
1+p2σ

2
2)

]
This form has the following desired quali-
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ties: (a) Donoho and Jin [7], show (figure 1) that prevalence values violating

this constraint are inestimable. (b) It forces p3 → 0 as µ → 0 permitting

p3 to be interpreted as the activation prevalence. (c) The constraint is more

restrictive as the variance of the null population increases.

Once the prevalence has been estimated, the next natural question is

“could it be null?”. The testing stage is a separate problem we will discuss only

briefly and for which many solutions might be considered. See Roche et al.

[17] for some examples. Note however, that unlike the classical random-effect

setup, this null is not tested against a shift alternative (H1 : p3 = 1;µ 6= 0),

but rather against a mixture alternative (H1 : p3 > 0;µ 6= 0). This is

because we consider as “active” any location with a non-null prevalence of

activation. The generalized likelihood ratio test is not useful in this case due

to mathematical and computational complexities (see Garel [12] or Delmas

[6]). Instead, we use the Wilcoxon signed-rank statistic, and this for several

reasons: (a) It is robust to model assumptions. (b) It is sensitive to location

and shape shifts– both present when considering mixture alternatives. (c) It

is easy to compute and interpret. (d) Surprisingly, it is more powerful than

the group-t-test in our setup. We return to this point with real fMRI data

in our hands in section 3.2.

3. Results

The proposed model was used to analyze fMRI data of 64 subjects per-

forming a self-referential task making judgements about trait adjectives. See

Appendix A for details. This is an unusually large study, offering the oppor-

tunity to validate the distributional assumptions presented. The data has
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not been spatially smoothed, except for some voxel blending due to the spa-

tial normalization to the MNI template. We advocate the use of unsmoothed

data to avoid the notorious spatial smearing of the signal (e.g. Saxe et al.

[20]) which compromises spatial accuracy.

Figure 3.1: Estimated signed-prevalence: p̂3 · sign(µ̂). Masked at significant (preva-
lence>0) locations using the signed-rank test statistic with FDR control using B-H at
FDR<0.1. Prevalence contour lines were added to help visualize the shape of the activa-
tion regions.

The SPM of the prevalence estimates is denoted SPM {p3} and demon-

strated in figures 3.1 and 3.3-A. This estimate is compared to the standard

second-level t-statistic depicted in 3.3-C. The boundaries of the activation
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region exhibit a smooth decay of p̂3 from 1 to 0 (more noticeable in 3.3-A).

This phenomenon has already been observed by others, albeit with different

interpretation: “Deviation from normality of the effects... coincides with the

boundaries of activated areas” (Thirion et al. [22]). Since the phenomenon

is to be expected given our motivation we find its empirical manifestation to

be convincing evidence in favour of our model, where non-Gaussianity stems

from sub-populations mixing (recall, no smoothing has been applied to the

data). Also note that the change in prevalence happens at different rates

across the image which excludes voxel blending as a cause for the smooth

decay in prevalence. To further justify the mixture assumption, in figure

3.2 we examine the effect estimates at several select locations which indeed

demonstrate the non Gaussian nature of the data. Figure 2.2 demonstrates

the mixture’s better fit is not limited to just some select locations, but rather

occurs (on average) over the whole brain volume. We are thus confident that

our mixture model is more appropriate for the data we encounter than the

single Gaussian underlying the usual random-effects analysis.

3.1. Interpreting SPM{prevalence}

Figures 3.1 and 3.3 depict the estimated prevalence map. A higher preva-

lence means more people (in the population) show activation at that location.

In particular, this says nothing about the magnitude of the activation (when

present) quantified by µ. High prevalence might be accompanied by high

magnitudes of effect such as in mark 1 in fig. 3.2 and 3.3. This is the sim-

plest pattern of “activation”. High prevalence might come with small effects

(mark 2), which might be seen as statistical artifact which will probably be

weeded out by testing, or as a prevalent small effects. The case of large signal
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Figure 3.2: Distribution of Effect in Selected Locations: A density plot of the second-level
effect distribution (solid grey line) along with the fitted mixture (solid black line) and its
two weighted inactive components (dotted lines) and a third weighted active component
(dash-dotted line). The mean of the active sub population is denoted with a vertical
dashed line. Group t-statistic are included. The figures demonstrate the fit of the three
component mixture to the second level effects at four locations referencing figure 3.3.
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Figure 3.3: Maps of prevalence (A) and effects (B) compared with standard smoothed (D)
and non-smoothed (C) second-level t-maps. The distribution of contrasts over individuals
and value of t-statistic, in marked locations (1-4), can be seen in figure 3.2.
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with small prevalence (mark 3) might be seen as an effect, say, if it were at

the boundary of an activation region, or an outlier, if it were spatially iso-

lated. The t-statistic generally capture the existence of signal, but note that

large variability around zero, might mask the existence of an active group

such as in mark 4.

An example of these phenomena, can be seen in figure 3.3. In particular

note the activation region near coordinates x ≈ 20, y ≈ 40 (or x ≈ 80, y ≈

150 in fig. 3.1). This region is also apparent in the t-maps in figures 3.3

C and D , albeit it is less sharp due to what is probably a small subset of

distinct (not to say “outliers”) subjects. Note the interesting lobe asymmetry

of this region is completely masked in the standard smoothed SPM {t} in

figure 3.3- D.

Mark 2 in figure 3.2 also demonstrates that a negative effect, or contrast,

is accommodated effortlessly. A negative “activated” population would mean

a stimulus is negatively correlated with the BOLD signal, i.e., the neurons at

that voxel are inhibited. If one were interested in positive (negative) effects

alone, one could consider sign, or single-sided-hypothesis masking.

In summary, the prevalence estimate and the classical t-statistic are re-

lated, but capture different aspects of the activation pattern.

3.2. Group-T versus Group-Wilcoxon; Power Considerations

We have previously stated the Wilcoxon test should be preferred over

the group-t-test for the localization problem. To see this last point we first

note that more voxels have been found active; 11,817/27,401 using Wilcoxon

versus 11,037/27,401 using the group-t-test. More importantly, the (Pitman)

asymptotic relative efficiency of the two test statistics can be computed.
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We compute it using the average value of the nuisance parameters in the

current study and find it to be eWilcox,T = 0.37. That is, the Wilcoxon test

is (asymptotically) about three times more efficient when testing for such

mixture alternatives. This result is rather surprising. We elaborate on it in

a separate methodological manuscript [18].

3.3. Spatial Accuracy and Stability

Visualizing the prevalence maps suggests they might display finer details

than the t-maps. The boundaries of the common regions of activation, in fig-

ure 3.3-A, seem sharper than the t-map in 3.3-C (both unsmoothed). These

details might be mere measurement noise, and thus come at the expense of

stability. We would like to compare the spatial detail and stability of the two

approaches quantitatively .

In order to compare the complexity of the emerging activation regions

we computed the ratio between each region to its smallest enclosing cube.

The more complicated the regions, the smaller is this ratio. We indeed find

that the prevalence-defined-regions to be more complex. For instance, when

half of the brain is “active” in the t-statistic sense, 117 out of the 286 active

regions are singletons (one single voxel). This compares to 70 out of 247 such

regions in the prevalence case. We also note that the median complexity of

the t-regions, after excluding singletons, is 0.75 compared to a median of 0.5

for the prevalence regions.

To establish stability we compared the agreement in the activation regions

defined by the two statistics, over two split samples. We find that using half

of the data (n=32) the activation regions defined by the two statistics have

essentially the same stability. For instance, when half of the brain is “active”
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the agreement of the t-regions over splits is 67% while the prevalence-regions’

agreement is 60%. We thus conclude that prevalence activation regions are

indeed more complex and no-less stable.

4. Discussion

Much of the neuroscientific literature is devoted to the localization of

brain activation. Little attention is given to the magnitude of the mean ef-

fect at active locations. This is no surprise given that the magnitude of the

effect is variable even over different sessions for the same subject (Raemaek-

ers et al. [16]). The suggested mixture-model approach admits a natural and

intuitive quantification of the extent of activation at a location, not by its

strength, but rather by its prevalence. The typical active/inactive qualifi-

cation, is an instance of the suggested model, when p = 0 or p = 1. This

estimation approach is particularly appropriate in large samples where preva-

lence estimators have low variance and significance tests are non informative

and trivially rejected such as in Thyreau et al. [23]. While most appealing in

large studies, the stability analysis in section 3.3 shows that the activation

regions detected using the prevalence analysis are almost as stable as the

group-t regions even with about 30 subjects. Moreover, they also enjoy finer

spatial detail.

The concept of “prevalence” of activation is not a new one. In Friston et al.

[9] the authors discuss how the use of conjunction hypotheses could allow to

infer on the population without the explicit distributional assumptions in the

random effect approach. The “number of subjects in a population showing

the effect” denoted by γ in their eq. (1), is precisely the prevalence discussed

in this paper.
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A test for “at least u out of n” active subjects was the approach taken

in Heller et al. [13], which could possibly be seen as a testimator of this

prevalence. Note though, that their partial conjunction inference measures

the personal subject’s effect against the subject’s variability, while in the

random effects approaches, including ours, the average effect is measured

against the combined between-subject and within-subject variability. The

estimate via partial conjunction may be therefore be 1 if all subjects’ effects

are significant, yet the random effect prevalence be 0 if, say, half are on the

positive and the other half are symmetrically negative. The opposite may

true if individual variability is large the mean effect is small yet subjects’

effects are symmetrically distributed about this non-zero value. The preva-

lence defined in Heller et al. [13] is thus unrelated to our definition. For the

typical definition of “activation”, it is the latter that should be preferred.

The use of finite mixtures in the context of fMRI has also been suggested.

Xu et al. [27], motivated by the artifacts of spatial smoothing, recur to a finite

Gaussian mixture to model variability between subjects. The number of

components is however random and their weights depend on their proximity

to an “activation center”. The spatial distribution of these activation centres

is constructed as a multilevel point process. This construct allows to localize

both a subject’s activation centres and the group activation centres. It also

admits a concept of “prevalence” albeit somewhat more complicated than the

one presented here.

The finite Gaussian mixture also appears in Woolrich [24]. In which the

mixture is motivated by heavier-than-Gaussian tails of the effect distribution.

The author uses a scale mixture to capture outliers in the effect distribution.
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The author does hint to the use of a “mean-shift model”, but again, only for

the purpose of capturing outliers and not as a distinct sub population. In

our work, we have indeed adopted the Gaussian scale mixture as the null

population model, since we empirically found it to have a good fit.

5. Acknowledgements

We wish to thank Prof. Rafael Malach for introducing us to this problem.

The R implementation would not have been possible without the valuable

work of Dr. Jonathan Clayden and the tractor.base package (Clayden et al.

[5]).

Yoav Benjamini and Jonathan Rosenblatt were supported by a European

Research Council Advanced Investigator Grant (P.S.A.R.P.S.).

Appendix A. Data

We used data from 64 subjects (30 male, 34 female, mean age 30.3 +/-

6.5 SD years). These data were acquired at the University Medical Center

Utrecht as part of a larger study (Zandbelt et al. [28], van Buuren et al.

[3, 2]). All subjects were right-handed.

Subjects performed a self-referential task. In short, subjects had to make

judgements about trait adjectives (for example ‘lazy’) in relation to them-

selves (Self condition), to someone else (Other condition), or they had to

indicate whether this trait was socially desirable (Control condition). Con-

ditions were presented in five separate blocks of eight trials (28s) each, al-

ternated with rest periods of 30s. Total task duration was about 10min 32s

fMRI measurements All imaging was performed on a Philips 3.0T Achieva

whole-body MRI scanner. Functional were obtained using a 2D-EPI-SENSE

18



sequence with the following parameters: voxel size 4 mm isotropic; TR=

1600 ms; TE = 23 ms; flip angle = 72.5°; matrix 52x30x64; field of view

208x120x256; 30-slice volume; SENSE-factor R=2.4 (anterior-posterior). A

total of 395 functional images were acquired during the self-reflection task.

After the acquisition of the functional images, an 3D Fast Field Echo (FFE)

T1-weighted structural image of the whole brain was made (scan parameters:

voxel size 1 mm isotropic, TR = 25 ms; TE = 2.4 ms; flip angle = 30°; field

of view 256x150x204, 150 slices).

fMRI preprocessing and analysis Image preprocessing and analyses were

carried out with SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). After realign-

ment, the structural scan was co-registered to the mean functional scan.

Next, using unified segmentation the structural scan was segmented and

normalization parameters were estimated. Subsequently, all scans were reg-

istered to a MNI T1-standard brain using these normalization parameters

and a 3D Gaussian filter (8-mm full width at half maximum) was applied to

all functional images. The preprocessed functional images were submitted to

a general linear model (GLM) regression analysis. The design matrix con-

tained factors modelling the onsets of the Self, Other and Control condition

as well as the instructions that were presented during the task. These fac-

tors were convolved with a canonical hemodynamic response function [11].

To correct for head motion, the six realignment parameters were included

in the design matrix as regressors of no interest. A high-pass filter was ap-

plied to the data with a cut-off frequency of 0.0055 Hz to correct for drifts

in the signal. For the second-level analysis, we used the self condition versus

baseline (rest) contrast.
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Appendix B. Statistical Method

As previously mentioned, estimation was performed by maximizing the

likelihood using an EM algorithm. A major concern when solving several

tens-of-thousands of EM problems, is speed, which is largely affected by the

initialization values. Moment estimators are typical initialization values, but

having six nonlinear moment equations these are hard to find. We thus em-

ploy a hybrid solution, in which we search over a grid of (p1, p2) values, solve

the four moment equations given (p1, p2), and keep the highest likelihood

value combinations as initialization values for the EM. This initialization

heuristic allowed considerable speed gains during estimation.

Implementation was done in the R programming environment (R Core

Team [15]). The described estimation procedure has been implemented in the

R package FPF (fMRI Prevalence Finder) available from R-Forge (Theußl

and Zeileis [21]) at http://rosenblatt1.r-forge.r-project.org/. See

the package’s in-line help for details. The results in this paper were obtained

using version 0.53 of the package. The raw data used is included in the

package for reproducibility.

Appendix C. Implications of two stage estimation

As presented in section 2, we use the first level effect estimates to fit a

population distribution and estimate the prevalence. In particular, we do not

use the first level variance estimates as done in some software suits ([see 25,

footnote 1]). While chosen due to its simplicity, there are several considera-

tions supporting our approach. First, there are the classical considerations:

(a) the between-subject variance assumed to be of larger magnitude than the
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within-run variance and (b) the matter affecting only efficiency and not bias.

More importantly- the effect of inverse variance weighting is unclear, as

we are no longer in the variance-components setup and we are no longer

interested in the effect (µ), but rather in the prevalence (p).
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