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Abstract
It has been shown that the anatomy of major white matter tracts can be delineated using diffusion
tensor imaging (DTI) data. Tract reconstruction, however, often suffers from a large number of
false-negative results when a simple line propagation algorithm is used. This limits the application
of this technique to only the core of prominent white matter tracts. By employing probabilistic
path-generation algorithms, connectivity between a larger number of anatomical regions can be
studied, but an increase in the number of false-positive results is inevitable. One of the causes of
the inaccuracy is the complex axonal anatomy within a voxel; however, high-angular resolution
(HAR) methods have been proposed to ameliorate this limitation. However, HAR data are
relatively rare due to the long scan times required and the low signal-to-noise ratio. In this study,
we tested a probabilistic path-finding method in which two anatomical regions with known
connectivity were pre-defined and a path that maximized agreement with the DTI data was
searched. To increase the accuracy of the trajectories, knowledge-based anatomical constraints
were applied. The reconstruction protocols were tested using DTI data from 19 normal subjects to
examine test-retest reproducibility and cross-subject variability. Fifty-two tracts were found to be
reliably reconstructed using this approach, which can be viewed on our website.

Introduction
White matter tract reconstruction based on diffusion tensor imaging (DTI) was introduced
more than 10 years ago (Basser et al., 2000; Conturo et al., 1999; Mori et al., 1999; Poupon
et al., 2001). This technique, called tractography, is capable of faithfully reconstructing the
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macroscopic architecture of major white matter bundles, but its limitations are also widely
known (see, e.g., (Tournier et al., 2011)). The DTI data, in which the neuroanatomy in each
pixel is reduced to a mere six parameters, is only an approximation of the tract orientation,
assuming all fibers within a voxel are aligned along one orientation. With 2-3 mm
resolution, many axons could merge, diverge, or cross within one voxel. In addition, partial
voluming occurs in all voxels that are located between two major bundles. As a result, the
tractography results are known to have false-positive and false-negative results. To
complicate the situation even further, the very notion of various “white matter tracts” was
established based on macroscopic visual assessment of postmortem samples (e.g., (Dejerine,
1895; Krieg, 1963)) and their definitions on a microscopic scale, for instance, of the
connectivity by axons, are often vague. This ambiguous anatomical definition has led to a
lack of gold standards, which makes validation of tractography difficult.

There are several approaches, postulated in the past, to achieve more accurate tractography
results. First, we can extract more information from each voxel by not reducing the diffusion
information to the six-element tensor model (Frank, 2001, 2002; Tournier et al., 2004; Tuch
et al., 2003; Wedeen et al., 2005; Wiegell et al., 2000). These methods usually require two
conditions when acquiring data: a large number of diffusion orientation measurements
(typically more than 60); and heavy diffusion weighting (typically more than 3,000 s/mm2).
From these measurements, the fiber angles of multiple tract populations within a voxel can
be estimated. These approaches, however, often sacrifice SNR and higher sensitivity to
measurement artifacts, such as subject motion and eddy current. The low SNR of raw
images, in particular, makes quality control challenging (Ben-Amitay et al., 2012). The
second approach is to improve the tractography method. The simplest approach is
deterministic line propagation, which simply follows the principal eigenvector in each voxel
(see, e.g., (Mori and Van Zijl, 2002)). This approach has, however, been criticized for its
high sensitivity to noise, because it accumulates errors from noise along the path. More
elegant probabilistic approaches to incorporate the path uncertainty have also been
postulated, in which path generation is repeated under different conditions, leading to
multiple potential paths from one seed voxel (Behrens et al., 2003; Jeurissen et al., 2011;
Jones, 2003; Jones and Pierpaoli, 2005; Lazar and Alexander, 2003, 2005; Lori et al., 2002;
Parker et al., 2002; Richter et al., 2013; Tournier et al., 2002). While these methods can be
considered “path generation” approaches, there is another class of “path-finding”
approaches, in which the start and end points are prefixed and the most probable path that
agrees most with the DTI results is sought. Namely, posing the problem as an optimization
problem enables computation of a “shortest path” between chosen initial and terminal points
that globally minimizes a sequentially additive energy constraint defined by the tensor in the
spirit of the classical Djikstra’s algorithm (Everts et al., 2009; Fout et al., 2005; Iturria-
Medina et al., 2007; Lal, 2004; Lifshits et al., 2009; Merhof et al., 2006a; Merhof et al.,
2006b; Poynton et al., 2005; Richter et al., 2013; Tuch et al., 2001; Vorburger et al., 2012;
Zalesky, 2008; Zalesky and Fornito, 2009). These assign a probability distribution to the
local orientation of fibers at each voxel, and use path finding methods to compute the
optimal path between two regions. Our method described in this paper is an extension of
these efforts and uses dynamic programming to minimize a quadratic function based on the
Gaussian form of the full DTI tensor.

This “path-finding” approach poses a challenging question: “what defines the ground truth
where two points are connected?” One can argue that if there is one axon between two
points, they are connected. However, we cannot expect that the MRI-based approach can
faithfully reconstruct the pathway of a single axon. We could also argue that this approach
attempts to reconstruct the large white matter bundles already well-described by classic
anatomy literature (Dejerine, 1895; Krieg, 1963). However, visual identification of the long
sweep of an axonal bundle from point A to B does not automatically guarantee that these
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two points are actually connected; many axons can merge and exit along the pathway and
there could be no single axon that travels the entire length of the described tract. These
arguments might suggest that tractography is not a tool with which to investigate
connectivity based on cellular level structure, but to reconstruct macroscopic white matter
architectures or a region-growing tool, which can cluster anatomically related pixels based
on DTI data.

Although it is still vague, we could then define our gold standards as those large bundles that
have been described by neuroanatomists. Some of the large tracts actually have well known
trajectories because their anatomy is homologous to animals, in which invasive studies are
possible. These include the corticospinal tract, the visual pathway, the fornix, and many
tracts in the brainstem. However, detailed trajectory patterns of many association tracts
remain ambiguous because they are much less developed in animals, and our knowledge
derived from this method remains at a lobar-level scale. Cortico-thalamic / thalamo-cortical
projection fibers, as well as commissural fibers, are subject to the same limitations. A subset
of their connectivity patterns are known from animal studies, but our knowledge in the
human brain remains at a macroscopic scale; for example, the projection from or to the
medial-dorsal thalamic nuclei penetrates the anterior limb of the internal capsule, the frontal
corona radiata, and reach the frontal lobe. Assuming that we can use these types of
macroscopic knowledge as the gold standards, knowledge-based tractography can
effectively increase the precision (reproducibility) of the results, while it also supports the
accuracy (validity) of the employed knowledge. Specifically, knowledge-based tractography
is usually performed using multiple regions of interest (ROIs) that define at least the two
target regions, as well as waypoints along the path (Conturo et al., 1999; Huang et al., 2004).
We can use these ROIs as anatomical constraints, retrieving only results that penetrate all
the ROIs. Previous analysis has suggested that this approach can reduce false-positives
(thus, results are specific), while the false-negatives remain stable (thus, sensitivity is
unchanged) when a deterministic approach is used (Huang et al., 2004). In other words, if
two target regions, which are known to be a part of a large fiber bundle, are defined in the
brain, the reconstructed trajectory, if any, is likely to agree with the known trajectory, but it
often returns no result. For example, it is widely known that the projections of the corpus
callosum and the projection fibers (e.g., the corticospinal tracts and thalamic radiations) tend
to miss large portions of projections to the lateral cortical areas with the tensor model and
deterministic approaches.

In this paper, we extended these previous observations by combining a knowledge-based
approach with path-finding algorithms. Because path-finding algorithms always generate a
path, the false-negatives become zero. If the knowledge-based guidance, as a form of ROIs,
ensures removal of false-positives, we expect a highly useful tool with which to study white
matter architecture. Of course, the limitation of this logic is that the accuracy is defined by
the qualitative anatomical knowledge about the white matter architecture. If we place a large
number of ROIs to eliminate all potential false-positive results, the hand-segmented white
matter tract, defined by an anatomist and the tractography, is not needed. In this study,
therefore, we explored the following questions:

1. Can a path-finding algorithm reconstruct known tract trajectories through ROI
guidance? If so, how many ROIs are needed?

2. How does this method compare to conventional deterministic approaches?

3. What is the level of precision in terms of test-retest and cross-subject
reproducibility?

4. Can we automate the process of the ROI placement steps?
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In this study, we employed the dynamic progrmming algorithm and tested a pipeline for
automated trajectory reconstructions of well-described large white matter bundles to
investigate the four questions posed above.

Methods
MRI data

Nineteen healthy volunteers with no history of neurological conditions (10 males, 9 females,
22–61 years old; mean, 31 years old) participated in this study. Local Institutional Review
Board approval and written, informed consent were obtained prior to the examination. The
details of the protocol can be found elsewhere (Landman et al., 2011). Briefly, the subjects
were scanned twice using a 3 T MR scanner (Achieva, Philips Healthcare, Best, The
Netherlands). The DTI dataset was acquired with a multi-slice, single-shot, echo-planar
imaging (EPI), spin–echo sequence (TR/TE = 6281/67 ms, SENSE factor = 2.5). Sixty-five
transverse slices were acquired parallel to the line connecting the anterior commissure (AC)
to the posterior commissure (PC), with no slice gap and 2.2 mm nominal isotropic resolution
(FOV = 212 × 212, data matrix = 96 × 96, reconstructed to 256 × 256). Diffusion weighting
was applied along 32 directions (Philips parameters: gradient overplus = no, directional
resolution = high, gradient mode = enhanced) with a b-value of 700 s/mm2. Five minimally
weighted images (five B0 with b ≈ 33 s/mm2) were acquired and averaged on the scanner as
part of each DTI dataset. The total scan time to acquire the DTI dataset was 4 min 11 s. No
cardiac or respiratory gating was employed.

The raw diffusion-weighted images (DWIs) were first co-registered to one of the b0 images
and corrected for eddy current and subject motion with affine transformation using
Automated Image Registration (AIR) (Woods et al., 1998). The six elements of the diffusion
tensor were calculated for each pixel with multivariate linear fitting using DtiStudio (Jiang
et al., 2006). After diagonalization, three eigenvalues and eigenvectors were obtained. For
the anisotropy map, fractional anisotropy (FA) was used (Pierpaoli et al., 1996).

LDDMM-based parcellation
We used a single-subject white matter atlas (JHU-MNI-ss, www.mristudio.org) in the
ICBM-152/ICBM-DTI-81 space. A detailed description of this atlas can be found in (Oishi
et al., 2009). A two-step image transformation was used to warp the atlas to individual data.
First, affine transformation was used to globally adjust the brain position, rotation, and the
size. Then, a non-linear transformation using LDDMM (Large Deformation Diffieomorphic
Metric Mapping) was applied. For LDDMM, the dual-contrast LDDMM was used
(Ceritoglu et al., 2009) in which both the b0 image and the FA map were used
simultaneously. These procedures are reciprocal and provide forward (subject → atlas) and
backward (atlas → subject) transformation matrices.

Automated reconstruction of human brain white matter
The automated reconstruction began with the definition of at least two regions of interest
(ROIs) identifying two connected brain regions. We followed our previous publication to
define the ROIs in an automated manner (Zhang et al., 2008; Zhang et al., 2010). Briefly,
the JHU-MNI-ss atlas contains pre-parcellated structural definition files (brain parcellation
map (BPM)). One of these BPMs, called a Type II BPM, contains 130 parcellated structures,
which was warped to all subjects using the backward transformation matrices. For each tract
of interest, two seed parcels in the BPM were defined as ROIs to drive the tractography,
exploiting the existing anatomical knowledge of tract trajectories. Additional “AND”
(waypoint) ROIs were also selected from the BPM to pose anatomical constraints
(reconstructed tracts must penetrate these ROIs). Depending on the tracts, additional “NOT”
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parcels had to be defined to remove frequently occurring false-positives (all tracts that
penetrate these ROIs are removed). In this way, the anatomical knowledge about the known
trajectory of each tract was stored as seed ROIs, waypoint ROIs, and NOT ROIs inside the
BPM. We generated the BPM for 52 white matter tracts, which were transformed to each
subject using the backward transformation matrix for the automated tract reconstruction.
The names of the reconstructed tracts and parcels used for ROIs are displayed in Table 1.

Tractography methods
Two types of tractography approaches were used. First, the conventional streamline
propagation was performed, using an algorithm called Fiber Assignment by Continuous
Tracking (FACT), which simply follows the orientation of the principal eigenvector (Mori et
al., 1999). For FACT, we used FA > 0.25, and transition angles < 30 degrees were used for
thresholds. Second, the path-finding approach was performed by dynamic programming
(Khaneja et al., 1998; Qiu et al., 2006; Ratnanather et al., 2003). The detail of the white
matter tract generation by dynamic programing is provided by (Ratnanather et al., 2013).

Briefly, this algorithm finds the optimal path between two seed regions by searching over all
possible paths that connect them. A cost function, in the form of probability distribution on
fiber tract orientation, was set to each point on the path, representing the probabilities of the
transitions between the point and each of its 26 neighbors. Dynamic programming was used

to calculate the linking with the lowest cumulative cost of all points on the path. Let 

and  be the eigenvalues of tensor Di normalized by its trace at point i, and  and  be
the unit eigenvectors of Di, the cost function for point i transiting along orientation dj, which
is given by:

where d̄J = dj/∥dj∥ is the unit directional vector indicating the transiting orientation. The
constant term ensures the positivity of the function. In implementation, a threshold was used
to eliminate fibers passing through high isotropic areas by setting π(i,j = 10000 when
FA<0.25.

After the path finding, a knot vector K = ki was obtained recording the coordinates of voxels
along the “blocky” path. Then a smooth streamline was represented by connecting sections
of continuous points p(tj) where each section of points pi(tj) was estimated by b-spline
function of the knot ki. In our implementation, equidistant cubic b-spline function was used,
whose matrix expression is shown:

Where tj, [0:0.05:1], which means 20 equidistant and continuous points were used for
representing the section of curve. The calculation was performed on a desktop with Intel
Xeon 2.13GHz CPU (4 core, 4 thread). The computation load is 2.17s/streamline using a
single CPU core. Employment of four parallel processing reduced the time to 0.54s/
streamline.
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After fibers were generated by the initial seed ROI-ROI tracking, and the logical operations
"AND" and “NOT” were applied on the fibers. This is an “editing” process aimed at
selecting fibers passing through the anatomically known areas. One of the important
limitations of dynamic programming is that the size of the ROI needs to be small with
respect to the level of the anatomical resolution. For example, if we define the entire motor
cortices in both hemispheres and find paths connecting the two ROIs, the path-finding
method would report only trajectories that connect the closest regions; for example the right
medial motor cortex to the left medial motor cortex. The long paths connecting lateral
regions of the motor cortices inevitably have higher costs. Anatomically, it is known that
most cortical areas have commissural connections to homotopic areas in the opposite
hemisphere. Although connections to heterotopic areas are also known, we used anatomical
constraints for the reconstruction of the homotopic areas. This was achieved by dividing the
cortical ROIs into 27-voxel (3*3*3) sub-parcels, and the connections between two
corresponding sub-parcels from both hemispheres were reconstructed. The “corresponding”
sub-parcels were found by determining the closest sub-parcel after a reflection operation
about a midline. For projection fibers (connecting a cortical parcel and a non-cortical
parcel), multiple trajectories between a non-cortical parcel and each 27-voxel sub-parcels in
the cortical areas were reconstructed.

Reproducibility evaluation
The precision (reproducibility) of this automated tractography method was evaluated using
an intra-subject test-retest reproducibility; namely, the same tracts were reconstructed
automatically using the fiber-finding algorithm using two sets of DTI data from the 19
selected subjects scanned on different dates. We used the reconstructed results from the
pontine tracts for the reproducibility study because they are the most challenging due to the
long lengths and convoluted trajectories. The reproducibility of the two trials was measured
by mean along-tract FA values and by streamline distances. Two corresponding paths which
connected same destinations were first converted to two smooth streamlines by b-spline
interpolation. Then equal numbers of control points were uniformly sampled respectively on
these two streamlines where these controls points were indexed from 1 to N. The average
distance of all N pairs of corresponding control points was calculated and used as the
streamline distance.

Creation of probabilistic atlases
To create probabilistic coordinates of various white matter tracts reconstructed in this study,
the tractography results were first converted to binary image files (1: voxels that contain the
tracts, 0: the remaining voxels), which were then transformed to the reference atlas using the
LDDMM forward transformation matrices. The binary files from the 19 normal subjects
were then averaged to create probabilistic maps in the MNI coordinates.

Availability of the code
The matlab scripts, together with the command-line executable files which performed the
tracking, can be downloaded from www.mristudio.org.

Results
Commissural fibers

Fig. 1A and 1B compare results from the dynamic programming and the conventional
deterministic method, in which commissural connections between the right and left pre-
central gyri (PrCGs) are shown. As is widely known, the deterministic approach could
reconstruct only the projections to the medial homotopic areas. Dynamic programming used
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the two seed parcels (red parcels in Fig. 1A) and one waypoint parcel defining the corpus
callosum at the mid-sagittal level (the blue parcel in Fig. 1A), from which the algorithm
found connection pathways penetrating the corpus callosum. Dynamic programming
revealed the trajectories to the lateral regions. The cortical regions were divided into 18
regions, as shown in Table 1, and 18 commissural connection patterns were defined. Of
these connections, the connections between four parcels in the temporal lobe were
reconstructed; all the generated tracts did not conform to the anatomical criteria posed by the
ROIs (Table 1). In Fig. 1C, the commissural connections of 18 connected areas are shown
(only five colors are assigned, grouping the 18 fibers based on the connections to the five
lobes for visualization purposes).

Thalamus-cortex connections
The parcel combinations designed for the thalamus-cortex (thalamocortical and
corticothalamic) connections are tabulated in Table 1. Fig. 2 shows several thalamic
projection tracts generated by the dynamic programming, including the ventroposterior
nucleus to the post-central gyrus, the mediodorsal nucleus to the prefrontal lobe/orbital
gyrus, and the ventrolateral nucleus to the inferior frontal gyrus. The connections between
the specific thalamic nuclei and the cortical areas are well-described from past histological
studies, and the combinations of these parcels were based on this knowledge. However, we
would like to point out that there were sets of connections that have been described in the
past, but dynamic programming could not find consistent paths among the 19 subjects.
These included connections between the anterior nucleus and the cingulate gyrus, the lateral
geniculate nucleus (LGN) and the cuneus, the superior occipital gyrus, the pulvinar and the
cuneus, the precuneus, the lingual gyrus, and the superior occipital gyrus, which have
tortuous trajectories. The results of the LGN – visual cortex tracking from the 19 subject are
shown in Fig. 3 as a demonstration of the failure. In this population-averaged map, it can be
seen that, approximately half of the streamlines have shorter and erroneous paths. The
comparison with FACT is not shown because FACT returned null results for many of these
connections.

Corticospinal tracts
Although many cortical areas are known to have projections to the brainstem, we
reconstructed only the projections from the motor cortex. Fig. 4A/4B and 4C/4D show the
reconstruction results for the corticospinal tract using the dynamic programming and FACT.
It is widely known that deterministic approaches fail to reveal connections to the lateral
cortex, as shown in Fig. 4C and 4D. The lateral connections delineated by the dynamic
programming method agreed with the anatomical knowledge; they penetrate the corona
radiata and the posterior limb of the internal capsule (Fig. 4B).

Corticopontine tracts
It is known that all cortical regions have connections to the pons and they all penetrate the
cerebral peduncle. Fig. 5 shows the reconstruction results from the cerebral peduncle (1st

seed parcel) to 17 defined cortical areas (2nd seed parcel). However, dynamic programming
failed to find consistent connections to two posterior regions of the hemisphere among the
19 subjects, including the precuneus and the superior occipital gyrus.

Test-retest reproducibility and population averages
The reproducibility of FA measurements was performed by superimposing each trial result
on the FA maps. The results of two trials for 18 pontine tracts (total of 36 for both
hemispheres) are shown in Fig. 6, in which the error bars indicate standard deviations in the
19 healthy subjects. The average coefficients of variance (standard deviation/average) of the
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FA values over 19 subjects (cross-subject variability) were 4.5% ±/−2.2%. The average test-
retest difference was 0.6% ±/− 0.5% over the 36 tracts. The average streamline distances
over 19 subjects were 2.62 ±/−0.74mm, slightly larger than the pixel size (2.2mm) (Fig. 7).
There were no tracts with more than a two-pixel distance, on average, although there were
several tracts (CP_CU_L, CP_CU_R, CP_FU_L, CP_LG_L, and CP_PrCU_L) in which the
distances reached three pixels in some subjects.

Probabilistic tract atlases based on the dynamic programming results
Fig. 8 shows probabilistic atlases of the pontine tracts in the MNI coordinates. The 18
pontine tracts are combined into five groups based on their projections to five different lobes
for visualization purposes.

Discussion
In this study, we applied a path-finding algorithm to reconstruct various known white matter
tracts using conventional DTI data. Our algorithm is based on dynamic programming, which
determines the optimal path between the beginning and destination parcels by efficiently
searching over all paths that connect the seed parcels and identifying the path that has the
lowest cumulative cost of all points along the path.

In previous studies, the limitations of deterministic tract reconstruction approaches,
combined with DTI, have been widely discussed. The line propagation by the deterministic
approach relies on several thresholds; the degrees of FA and curvature are most commonly
used. When the line propagation is applied to brain regions with complicated fiber anatomy,
it tends to be terminated by the thresholds due to decreased FA or sharp angle transitions
(false-negative). Depending on the fiber angles of the multiple fiber populations, the
propagation could continue following artificial “averaged” fiber angles (false-positive). If
this method is combined with the ROI-driven, knowledge-based approach, we often find that
there are no connections between the two specified regions that are known to be connected,
because the propagation is either terminated on the way or deviated from the real path and
could not reach the multiple specified ROIs. The most notable limitation is the lack of
trajectories of the commissural and projection fibers that reach to the lateral cortical regions.
This is believed to be due to the large association fibers running along the anterior-posterior
orientations, erasing the anatomical information of the lesser commissural and projection
fiber populations running along the lateral orientations.

It has been shown that these lateral trajectories can be reconstructed by using HARDI-type
data acquisition and data processing, such as diffusion spectrum imaging (DSI), Q-ball
imaging, or spherical harmonic deconvolution (see, e.g., a recent review by (Tournier et al.,
2011)). These methods potentially would provide more accurate information about tract
trajectories. However, there are important practical disadvantages to these approaches. First,
the HARDI acquisition usually uses more than 60 diffusion-encoding orientations, which
would typically require at least seven-to-eight minutes of scan time, while many clinical
DTI can afford only five minutes or less. The higher the number of orientations, the more
difficult it becomes to incorporate into routine scans. More importantly, b-values are
required to be at least 3,000 s/mm2 and as high as 30,000 s/mm2. This would lead to a
substantial amount of signal loss and, thus, a lower SNR. The high b-value also requires a
longer echo time, which further reduces the SNR. Higher degrees of eddy current and
motion artifacts are also troublesome, which are difficult to correct due to the poor SNR of
the raw images. To improve the poor SNR, HARDI acquisition typically employs a much a
longer scan time (signal averaging) and a lower spatial resolution. Due to these practical
difficulties, the majority of diffusion studies currently rely on conventional DTI protocols
with a smaller number of diffusion-weighting orientations (< 30) and smaller b-values (<
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1,000 s/mm2). Our approach, which is based on the conventional DTI data, therefore, has
practical importance.

One important question about the combination of the DTI and a path-finding approach is
whether the results are accurate (i.e., validity). To evaluate the accuracy, we need to define a
gold standard. The difficulty of the validation of tractography stems from the ambiguity of
the gold standard. MRI signals are based on voxel-by-voxel-averaged properties of water
molecules. The voxel-by-voxel DTI information and tractography results depend on imaging
parameters, such as image resolution, employed b-values, and signal-to-noise. Even if the
same object is scanned, different imaging parameters would lead to different results, while
the underlying neuroanatomy remains the same. MRI-based methods obviously cannot
observe a single-neuron connection. We could define “brain connectivity” as the biological
target of the study, but the notion of “connectivity” is vague and difficult to establish as a
gold standard against which accuracy could be measured.

In this study, we consider tractography by dynamic programming as a region-growing or
segmentation tool with which a group of voxels are defined that are estimated to belong to a
white matter bundle of interest. This can also be considered a brain-mapping tool, with
which a group of equivalent voxels is defined across different subjects. The defined voxels
by this approach are related to the existing anatomical knowledge, and therefore, can be
linked to a body of literature about their anatomy and functions. This is possible because the
reconstruction is guided by the ROI sets defined in the BPM, based on the existing
anatomical knowledge. Of course, this is an assumption that may not hold for severe
pathological cases, in which the trajectory of the tract of interest is altered. For example,
even if a tract is destroyed by stroke or tumor, the dynamic programming still identifies a
path. Therefore, this approach should be applied only to cases with a mild amount of
pathology.

If this approach is valid, then an important question is its reliability as a tool. The tool would
be reliable if it has a high level of precision (test-retest reproducibility). The tool also has the
potential to be a sensitive tool if the variability among the normal subjects is small, and thus,
it would have a high statistical power to detect cross-subject differences.

The test-retest reproducibility of the tract reconstruction by dynamic programming was
measured in terms of FA value, and tract distances between two trials. The spatial
reproducibility and FA values of test-retest results were excellent; within one pixel for
spatial reproducibility, and 0.6% for FA values. However, there were four tracts that on
average deviated by more than 4 mm. We consider the test-retest reproducibility of these
tracts fair. For cross-subject variability among the normal population, the FA measures have
a 4.5% variability, on average, and again, the values depend heavily on the tract of interest.
As expected, the tracts with a large amount of variability in spatial matching, such as the
corticopontine tracts from CU, LG, PrCU, and SPG, tend to have larger cross-subject
variability in the FA values. This could be due to the more tortuous trajectories of these
tracts and the resultant decrease in measurement reproducibility, but we cannot deny the
possibility of real biological variability among the subjects.

There are several ways to apply this automated tractography tool to actual studies. First, the
tract reconstruction can be applied to each subject to obtain subject-specific reconstruction
results, from which tract size and voxel properties (e.g., FA, MD, and other diffusivity
measures) can be measured. Conversely, the probabilistic atlas can be applied to each
subject, from which affected tracts can be estimated.
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Conclusion
In conclusion, we developed a new automated tractography tool using a path-finding
algorithm. The reconstruction is driven by anatomical knowledge stored in the BPM, which
is warped to each subject’s data. A total of 52 tracts were reconstructed using this approach.
The reconstruction was repeated using data from two repeated measurements of 19 healthy
subjects. A high level of test-retest reproducibility was observed. Tract-specific FA values
were measured from the 19 subjects, and a small degree of variability was found. The
reconstruction results of 52 tracts from the 19 subjects were normalized to the MNI
coordinates and probabilistic maps were created. The BPMs for the automated
reconstructions of the 52 tracts and reconstruction results in the MNI space are available for
download from www.mristudio.org. The proposed tool and the atlases (both the BPM and
probabilistic coordinates) could be useful resources for tract-specific anatomical evaluation
of brain MRI.
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Highlights

• Dynamic programming (DP) was applied to tractography based on DTI data.

• DP finds the most probable path between two specified brain regions.

• DP delineates large tracts that could not be reconstructed by streamline methods.

• For accurate path generation, knowledge-based ROI sets are built.

• Fifty two tracts were reconstructed in the MNI space for white matter atlases.
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Fig 1.
Comparison of commissural fibers reconstructed by dynamic programming (Fig 1A) and the
conventional deterministic method (Fig 1B) in the coronal view. The corpus callosum, pre-
central gyri, putamen, and caudate were visualized as landmarks. Fig 1C: Visualization of
commissural fibers of six connected lobes, including the frontal lobe (wheat), pre-central
gyrus (hot pink), post-central gyrus (blue), parietal lobe (cyan), occipital lobe (red), and
temporal lobe (green). The temporo-temporal fibers did not conform to the anatomical
criteria.
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Fig 2.
Three thalamic projection tracts generated by the dynamic programming. Fig 2A:
Connection between the ventro-posterior nucleus and the post-central gyrus. Fig 2B:
Connection between the medio-dorsal nucleus and the pre-frontal gyrus. Fig 2C: Connection
between the ventro-lateral nucleus and the inferior frontal gyrus. The thalamus, putamen,
caudate, and connected cortical areas were visualized as landmarks.
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Fig 3.
Population-average results of the LGN – visual cortex.
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Fig 4.
Comparison of the cortico-spinal tract reconstructed by dynamic programming (Fig 3A and
3B) and the conventional deterministic method (Fig 3C and 3D). The CST, thalamus,
putamen, caudate, corpus callosum, and pre-central gyri were visualized as landmarks.
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Fig 5.
Visualization of cotico-pontine tracts connecting the cerebral peduncle and six brain lobes,
including the frontal lobe (wheat), the pre-central gyrus (hot pink), the post-central gyrus
(lime), the parietal lobe (blue), the occipital lobe (red), and the temporal lobe (dark green).
The cerebral peduncle (blue surface) was visualized as the seed area.
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Fig 6.
Reproducibility of FA measurements between two trials for 18 pontine tracts (total of 36 for
both hemispheres). Error bars indicate standard deviations for 19 healthy subjects.
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Fig 7.
Average streamline distances between two trials for 18 pontine tracts (total of 36 for both
hemispheres). Error bars indicate standard deviations of test-retest streamline distances over
19 healthy subjects.
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Fig 8.
Two-dimensional sections of the probabilistic maps of the cortico-pontine tracts. Spatial
probabilities of six tracts, which respectively spread to six brain lobes, are represented by six
color bars.
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Table 1

Names of reconstructed tracts and ROI sets for guiding the tracking.

Tract Name 1st ROI 2nd ROI Waypoint
ROI

NOT ROIs

CC1 AG_L AG_R CC –

CC2 PrCG_L PrCG_R CC –

CC3 CU_L CU_R CC –

CC4 FU_L FU_R SCC GCC, BCC

CC5 IFG_L IFG_R CC –

CC6 IOG_L IOG_R CC

CC7 ITG_L ITG_R SCC GCC, BCC

CC8 LG_L LG_R CC –

CC9 MFG_L MFG_R CC –

CC10 MOG_L MOG_R CC –

CC11 MTG_L MTG_R SCC GCC, BCC

CC12 PoCG_L PoCG_R CC –

CC13 PrCU_L PrCU_R CC –

CC14 SFG_L SFG_R CC –

CC15 SMG_L SMG_R CC –

CC16 SOG_L SOG_R CC –

CC17 SPG_L SPG_R CC –

CC18 STG_L STG_R SCC GCC, BCC

TR1 LGB IOG – Contralateral hemisphere, LG, SCC, cerebellum, MOG, FU, ITG,
MTG

TR2 LGB LG – Contralateral hemisphere, cerebellum, SCC, MOG, IOG, Cu,PCC

TR3 LGB MOG – Contralateral hemisphere, SOG, SCC, LG, FU, AG, Cu, MTG

TR4 MD OG – Contralateral hemisphere, Caud, Put, IFO, Ins, STG

TR5 MD PFC – Contralateral hemisphere, GCC, Caud, MFG, IFG, BCC, MFG

TR6 PN/CN PrCG – Contralateral hemisphere, SCC, BCC, Ins, PoCG, SFG, MFG, IFG

TR7 PN/CN PFC – Contralateral hemisphere, GCC, BCC, ACC, IFG, MFG

TR8 PUL AG – Contralateral hemisphere, SCC, MOG, MTG, STG, SMG, PrCu, SOG,
lOG

TR9 PUL IOG – Contralateral hemisphere, SCC, MOG, LG, MTG

TR10 PUL ITG – Contralateral hemisphere, Put, FU, STG, MTG, CGH, CP

TR11 PUL LG Contralateral hemisphere, cerebellum, lOG, FU, MOG, ITG, PCC,
SCC

TR12 PUL MOG – Contralateral hemisphere, SCC, MTG, LG, lOG, CU

TR13 PUL MTG Contralateral hemisphere, AG, STG, ITG, Hippo, CGH, SCC, Amyg,
IOG, FU, STG

TR14 PUL SMG – Contralateral hemisphere, STG, MTG, AG, SPG, PoCG

TR15 PUL SPG – Contralateral hemisphere, SCC, AG, PrCu, PoCG

TR16 PUL STG – Contralateral hemisphere, Put, Ins, ITG, FU, SMG, AG, lOG, PrCG,
PoCG, Amyg, MOG

TR17 VA SFG – Contralateral hemisphere, Caud, IFG, BCC

TR18 VA IFG – Contralateral hemisphere, Put, STG, MFG, SFG, PrCG, LFOG, Ins
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Tract Name 1st ROI 2nd ROI Waypoint
ROI

NOT ROIs

TR19 VA MFG – Contralateral hemisphere, Put, IFG, SFG, STG, PrCG, Caud

TR20 VL PrCG – Contralateral hemisphere, BCC, SCC, Ins, PoCG, SFG, Put, STG,
MTG

TR21 VL SFG – Contralateral hemisphere, IFG, SOG, BCC, SMG, PrCG

TR22 VP PoCG – Contralateral hemisphere, SCC, PCC, SMG, STG, IFG, PrCG, ACC

CST CST PrCG – Contralateral hemisphere, STG, MTG,ITG, IFG, PoCG, SPG

CPT1 CP AG – Contralateral hemisphere, ITG, MOG, SCC, SOG, SMG

CPT2 CP CU – Contralateral hemisphere, cerebellum, SPG, PrCU, PCC, SCC, SOG,
LG

CPT3 CP FU – Contralateral hemisphere, cerebellum, SCP, MCP, SPG, PrCU, PCC,
SCC, MOG, LG

CPT4 CP IFG – Contralateral hemisphere, Put, STG, MFG, PrCG, MGF, PrCG, LFOG

CPT5 CP IOG – Contralateral hemisphere, cerebellum, SCP, MCP, ITG, FU, AG, SCC

CPT6 CP ITG – Contralateral hemisphere, MCP, cerebellum, Hippo, CGH, MTG, FU

CPT7 CP LG – Contralateral hemisphere, SCC, PCC, CU, Midbrain, SCP, MCP,
CGH, Hippo, Thal

CPT8 CP MFG – Contralateral hemisphere, LFOG, Put, ITG, STG, MTG, IFG, PrCG,
SFG

CPT9 CP MOG – Contralateral hemisphere, SCP, MCP, MTG, SCC, LG, STG, ITG, SCC,
Hippo, CGH, IOG, SOG, AG

CPT10 CP MTG – Contralateral hemisphere, AG, STG, ITG, FU, MOG, MCP, SOG, IOG

CPT11 CP PoCG – Contralateral hemisphere, STG, MTG, ITG, AG, MOG, IOG, MCP

CPT12 CP SFG – Contralateral hemisphere, GCC, BCC, MFG, Caud, ACC

CPT13 CP SMG – Contralateral hemisphere, AG, STG, ITG, MTG, PoCG

CPT14 CP SPG – Contralateral hemisphere, SCC, CGH, PCC, SOG, MOG, AG, PoCG

CPT15 CP STG – Contralateral hemisphere, MTG, ITG, MFOG, IFG, LFOG, MCP, Ins,
Put, PoCG, SMG

*: 1st ROI and 2nd ROI were two seed ROIs defining the beginning and end area of the tract. Waypoint ROI indicate the areas where fibers have
to penetrate. “NOT” ROIs were defined to remove frequently-happening false positives. Fiber types were indicated by the different text colors
(blue - commissural; tan – thalamic radiation; red – cotico-spinal tract; green – cortico-pontine fibers).
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