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Abstract
Magnetoencephalography and electroencephalography (M/EEG) measure the weak
electromagnetic signals originating from neural currents in the brain. Using these signals to
characterize and locate brain activity is a challenging task, as evidenced by several decades of
methodological contributions. MNE, whose name stems from its capability to compute cortically-
constrained minimum-norm current estimates from M/EEG data, is a software package that
provides comprehensive analysis tools and workflows including preprocessing, source estimation,
time–frequency analysis, statistical analysis, and several methods to estimate functional
connectivity between distributed brain regions. The present paper gives detailed information about
the MNE package and describes typical use cases while also warning about potential caveats in
analysis. The MNE package is a collaborative effort of multiple institutes striving to implement
and share best methods and to facilitate distribution of analysis pipelines to advance
reproducibility of research. Full documentation is available at http://martinos.org/mne.
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1. Introduction
By non-invasively measuring electromagnetic signals ensuing from neurons, M/EEG are
unique tools to investigate the dynamically changing patterns of brain activity. Functional
magnetic resonance imaging (fMRI) provides a spatial resolution in the millimeter scale, but
its temporal resolution is limited as it measures neuronal activity indirectly by imaging the
slow hemodynamic response. On the other hand, EEG and MEG measure the electric and
magnetic fields directly related to the underlying electrophysiological processes and can thus
attain a high temporal resolution. This enables the investigation of neuronal activity over a
wide range of frequencies. High-frequency oscillations, for example, are thought to play a
central role in neuronal computation as well as to serve as the substrate of consciousness and
awareness (Fries, 2009; Tallon-Baudry et al., 1997). Low-frequency modulations, some of
them possibly associated with resting-state networks observed with fMRI, can also be
successfully captured with MEG (Brookes et al., 2011; Hipp et al., 2012).

However, the processing of M/EEG data to obtain accurate localization of active neural
sources is a complicated task: it involves segmenting various structures from anatomical
MRIs, numerical solution of the electromagnetic forward problem, signal denoising, a
solution to the ill-posed electromagnetic inverse problem, and appropriate control of
multiple statistical comparisons spanning space, time and frequency across experimental
conditions and groups of subjects. This complexity not only constitutes a challenge to MEG
investigators but also offers a great deal of flexibility in data analysis. To successfully
process M/EEG data, comprehensive and well-documented analysis software is therefore
required.

MNE is an academic software package that aims to provide data analysis pipelines
encompassing all phases of M/EEG data processing. Multiple academic software packages
for M/EEG data processing exist, e.g., Brainstorm (Tadel et al., 2011), EEGLAB (Delorme
and Makeig, 2004; Delorme et al., 2011), Field-Trip (Oostenveld et al., 2011), NutMeg
(Dalal et al., 2011) and SPM (Litvak et al., 2011), all implemented in Matlab, with some
dependencies on external packages such as OpenMEEG (Gramfort et al., 2010) for
boundary element method (BEM) forward modeling or NeuroFEM for volume based finite
element method (FEM) (Wolters et al., 2007) forward modeling. Many analysis methods are
common to all these packages, yet MNE has some unique capabilities. Among these are a
tight integration with the anatomical reconstruction provided by the FreeSurfer software, as
well as a selection of inverse solvers for source imaging.

MNE software consists of three core subpackages which are fully integrated: the original
MNE-C (distributed as compiled C code), MNE-Matlab, and MNE-Python. The
subpackages employ the same Neuromag FIF file format and use consistent analysis steps
with compatible intermediate files. Consequently, the packages can be combined for a
particular task in a flexible manner. The FIF file format allows storage of any type of
information in a single file using a hierarchy of elements known as tags. The original MNE-
C, conceived and written at the Martinos Center at Massachusetts General Hospital, consists
of command line programs that can be used in shell scripts for automated processing, and
two graphical user interface (GUI) applications for raw data inspection, coordinate
alignment, and inverse modeling, as illustrated in Fig 1. MNE-C is complemented by two
more recent software packages, MNE-Matlab and MNE-Python. Both are open source and
distributed under the simplified BSD license allowing their use in free as well as in
commercial software.

The MNE-Matlab code provides basic routines for reading and writing FIF files. It is
redistributed as a part of several Matlab-based M/EEG software packages (Brainstorm,
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FieldTrip, NutMeg, and SPM). The MNE-Python code is the most recent addition to the
MNE software; it started as a reimplementation of the MNE-Matlab code, removing any
dependencies on commercial software. After an intensive collaborative software
development effort, MNE-Python now provides several additional features, such as time–
frequency analysis, non-parametric statistics, and connectivity estimation. An overview of
the analysis components supported by the various parts of MNE is shown in Table 1. The
comprehensive set of features offered by the Python package is made possible by a group of
dedicated contributors at multiple institutions in several countries who collaborate closely.
This is facilitated by the use of a software development process that is entirely public and
open for anyone to contribute.

From a user’s perspective, moving between the components listed in Table 1 means moving
between different scripts in a text editor. Using the enhanced interactive IPython shell (Pérez
and Granger, 2007), a core ingredient of the standard scientific Python stack, all MNE
components can be interactively accessed simultaneously from within one environment. For
example, one may enter ‘!mne_analyze’ in the IPython shell to launch the MNE-C GUI to
perform coordinate alignment. After closing the GUI, they could return back to the Python
session to proceed with the FIF file generated during that step. An extensive set of example
scripts exposing typical workflows or elements thereof while serving as copy and paste
templates are available on the MNE website and are included in the MNE-Python code.

The MNE software also provides a sample dataset consisting of recordings from one subject
with combined M/EEG conducted at the Martinos Center of Massachusetts General
Hospital. These data were acquired with a Neuromag VectorView system (Elekta Oy,
Helsinki, Finland) with 306 sensors arranged in 102 triplets, each comprising two
orthogonal planar gradiometers and one magnetometer. EEG were recorded simultaneously
using an MEG-compatible cap with 60 electrodes. In the experiment, auditory stimuli
(delivered monaurally to the left or right ear), and visual stimuli (shown in the left or right
visual hemifield) were presented in a random sequence with a stimulus-onset asynchrony
(SOA) of 750 ms. To control for subject’s attention, a smiley face was presented
intermittently and the subject was asked to press a button upon its appearance. These data
are provided with the MNE-Python package and they are used in this paper for illustration
purposes. This dataset can also serve as a standard validation dataset for M/EEG methods,
hence favoring reproducibility of results. However, induced responses, recovered by time–
frequency analysis, are illustrated in the present paper using somatosensory responses to
electric stimulation of the median nerve at wrist. These data (see (Sorrentino et al., 2009) for
details) were recorded with a similar MEG system as the MNE sample data. In addition to
the provided sample data, MNE-Python facilitates easy access to the MEGSIM datasets
(Aine et al., 2012) that include both experimental and simulated MEG data. These data are
continuous raw signals, single-trial or averaged evoked responses, with either auditory,
visual, or somatosensory stimuli presented to the subjects.

The goal of this contribution is to describe the MNE software in detail and to illustrate how
to implement good analysis practices (Gross et al., 2013) as MNE pipelines. We also
explicitly mention potential caveats in different stages of the analysis. With this work, we
aim to help standardize M/EEG analysis pipelines, which will improve the reproducibility of
research findings.

The structure of the paper follows the natural order of steps performed when analyzing M/
EEG data, from preprocessing to statistical analysis of source estimates, including methods
such as time–frequency analysis and functional connectivity estimation. We first present an
overview of standard analysis methods before detailing the recommended MNE analysis
strategy.
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2. Standard M/EEG data analysis components
2.1. Data inspection and de-noising

As the first step of a general M/EEG analysis workflow, the raw data need to be inspected
for interference and artifacts, which includes detecting dysfunctional, noisy and “jumping”
channels. While the software provided by M/EEG vendors is generally useful for reviewing
the data, both MNE-C and MNE-Python offer raw data visualization tools that facilitate the
identification of such bad channels. Besides inspecting the raw sensor time courses for
artifacts, spatial patterns may add valuable information. These patterns can be displayed at
each time instant as a contour map generated from interpolations over channel locations.
These kinds of topographic visualizations are especially useful when assembled to movies,
such that the dynamics of the magnetic field and potential patterns appearing, disappearing,
and reappearing can be better understood. While it is also possible to employ automatic
artifact rejection procedures right from the beginning, e.g., using signal space separation
(Taulu, 2006), it is a good practice to inspect the data visually at an early stage of
processing.

After this initial inspection and removal of bad channels and data segments, it is
recommended to apply more formal noise suppression methods. Although it may not always
be obvious, the selection of a noise rejection procedure invariably implies some assumptions
about the nature of the signals and noise. For MEG data, some procedures correct for sensor
and environmental noise by employing a noise-covariance matrix estimated from data
acquired in the absence of a subject. Alternatively, a “subject noise” covariance can be
estimated from pre-stimulus intervals available in evoked-response studies. If the goal is to
study ongoing, task-free, or instantenous single-trial activity, the separation of subject noise
from the signal of interest is less plausible. In this case, the conservative choice of
employing the empty-room noise-covariance matrix is a safe option. The inverse solution
methods discussed later support both options.

2.2. Source localization
After effective noise reduction, sensor-level data may already indicate the probable number
and approximate locations of active sources. In order to actually localize such sources, that
is, to propose unique solutions to the ill-posed biomagnetic inverse problem, different
techniques exist. Each of these techniques has its own modeling assumptions and thus also
strengths and limitations. Therefore, the MNE software provides a selection of different
inverse modeling approaches. Importantly, in all of these approaches, the elementary source
employed is a current dipole, motivated by the physiological nature of the cerebral currents
measurable in M/EEG (Hämäläinen et al., 1993). Different source modeling approaches are
set apart by the selection of constraints on the sources and other criteria to arrive at the best
estimate for the cerebral current distribution as a function of time.

2.2.1. Dipole methods—A classic source localization approach assumes that the signals
observed can be explained by a small number of equivalent current dipoles (ECD). In
particular, time-varying dipole fitting (Scherg and Von Cramon, 1985), has been very
successful in characterizing both basic sensory responses, more complex constellations of
sources in cognitive experiments, and abnormal activity, e.g., in epileptic patients. While the
resulting models can be compellingly parsimonious and easy to interpret, the assumption of
a small set of focal activations is not always warranted given the nature of the neural
processes under investigation. For example, complex cognitive tasks and ongoing
spontaneous or “resting state” activity is likely to involve multiple brain regions where the
spatial extent of the activity may be too large to be properly accounted for by a current
dipole. In addition, the use of cortical constraints maybe too restricting for the ECD
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approach because, unlike in a volumetric model with unrestricted source locations, the
dipole may not move freely to best account for extended activations, see, e.g., (Hari, 1991).

2.2.2. Distributed solutions—Some of the problems of multiple dipole fitting, including
the reliable estimation of the dipole location parameters, can be overcome by using a
distributed source model that simultaneously models a large number of spatially fixed
dipoles whose amplitudes are estimated from the data. To solve this highly under-
determined problem, one employs a cost function which consists of a least-squares error or
“data” term, favoring a solution which explains the (whitened) measured data in the least-
squares sense, and a “model term” favoring a particular current distribution. In Bayesian
terms, this corresponds to modeling measurement noise as a multivariate Gaussian
distribution in combination with a source prior, which can be directly related to the model
term in the cost function (Wipf and Nagarajan, 2009). While it is beyond the scope of this
paper to discuss the relative merits, drawbacks, and mathematical formulations of the
various inverse methods described below (and implemented in MNE), we urge readers to
carefully consider the underlying assumptions and technical issues outlined in the
publications covering these methods.

One popular source prior is exemplified in the minimum-norm estimates (MNE, Wang et al.
1992; Hämäläinen and Ilmoniemi 1994). In this approach, among all the current
distributions that can explain the data equally well, the one with the minimum ℓ2-norm is
favored. This norm yields small, distributed estimates of cerebral currents (compared to e.g.,
an ℓ1 norm, which favors a few, large-amplitude currents) to explain the observed sensor
data. This MNE approach has subsequently been refined to take into account cortical
location and orientation constraints (Lin et al., 2006a), motivated by the neurophysiological
knowledge on the primary sources of the MEG and EEG signals. The most significant
contributions to the M/EEG signals originate from postsynaptic currents in the pyramidal
cells in the cortex and the net direction of these currents is oriented perpendicular to the
cortical surface (Dale and Sereno, 1993). Incorporating this knowledge to the model implies
using individual anatomical information acquired with structural magnetic resonance
imaging (MRI). The current estimates can then be constrained to the cortical mantle while
the orientations of the currents can be further restricted to be perpendicular to the local
cortical surface (Lin et al., 2006a). To quantify the statistical significance of the current
estimates, noise normalization techniques have been developed (Dale et al., 2000; Pascual-
Marqui, 2002) yielding a dimensionless statistical score instead of dipole amplitudes in units
of Ampere-meter (Am). Mathematically, MNE is closely related to several other inversion
approaches (Mosher et al., 2003).

A practical benefit of ℓ2 solutions is that they yield physiologically plausible, temporally
smooth estimates (without discontinuous ‘jumps’). This comes at the cost of giving up some
spatial precision. To avoid smeared ℓ2 estimates, sparsity-promoting priors such as ℓ1-norm
prior may be desirable. Those generate more focal minimum-norm solutions, historically
refered to as minimum-current estimates (MCE) (Matsuura and Okabe, 1995; Uutela et al.,
1999). Both assets, temporal smoothness and focality, can also be combined using structured
norms such as the ℓ21 mixed-norm (Ou et al., 2009; Gramfort et al., 2012). These norms can
also be used to model non-stationary activations in the time–frequency domain (Gramfort et
al., 2013). The work of Wipf and Nagarajan (2009) offers a unifying view using a Bayesian
perspective on some of the solvers implemented in the MNE software such as MNE,
sLORETA, and the γ-MAP method.

2.2.3. Beamformers—Another class of distributed approaches, often referred to as
scanning methods, is exemplified by so-called adaptive beamformers, such as MUSIC
(Mosher and Leahy, 1998), LCMV (Veen et al., 1997), SAM (Robinson and Vrba, 1998),
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and DICS (Gross et al., 2001). These methods scan a grid of source locations, independently
testing each of them for its contribution to the measured signal, similar to a radar beam.
Such techniques, some of which are implemented in the MNE software, are almost
exclusively computed on volumetric grids, as opposed to cortical surfaces commonly used
with MNE. It should be emphasized, however, that even if the results are often referred to as
images they should be more appropriately called pseudo images, since they do not represent
a distributed estimate of the cerebral electric currents that explain the measured M/EEG.
Furthermore, the scanning techniques are most often applied to MEG only, since their
efficacy depends on the accuracy of the forward model, which is generally less precise for
EEG than for MEG. Moreover, single-source beamformers yield erroneous localizations if
several regions exhibit highly correlated activity, which is the case, e.g. for the bilateral
auditory evoked responses. However, beamformers have been successfully employed in the
analysis of ongoing spontaneous activity, where source correlations are in general so low
that the performance of a beamformer does not significantly degrade (Gross et al., 2001).
Also, alternative beamformer formulations can alleviate the limitations of single-source
beamformers (Wipf and Nagarajan, 2007).

2.3. Statistics
Once activity estimates have been obtained, whether they are on the cortical surface or on a
volume grid, a number of statistical measures can be used to determine their significance.
This statistical analysis may consider, e.g., significance of activity with respect to a baseline,
or differences across hemispheres, between conditions, between subjects, or between subject
groups, e.g., patients and normal controls.

Several factors determine which statistical approach is the most appropriate. Parametric
methods are widely used and they build on underlying assumptions (typically Gaussian) on
the distribution of the data to determine statistical significance, dynamic Statistical
Parametric Map (dSPM) estimates of significant activity being one prominent example
(Dale et al., 2000). When utilizing parametric methods, it is important to ensure that the
underlying model assumptions are satisfied, otherwise the obtained results could be
inaccurate (see Pantazis et al. (2005) for discussion).

A more general class of statistical approaches comprises non-parametric methods, which do
not rely on assumptions about the distribution of the data. Permutation methods, in
particular, exploit the exchangeability of conditions under the null hypothesis to estimate the
null distribution by resampling the data (Nichols and Holmes, 2002).

The appropriate statistical treatment depends on many factors, such as whether the neural
activity is represented as raw sensor signals, distributed source estimates, or parameters of
equivalent current dipoles. Moreover, any given temporal waveform can be represented in
terms of frequency content over an entire epoch, or that changes as a function of time. Some
analysis choices can increase the apparent dimensionality of the data considerably, and thus
attention should be paid to the problem of multiple comparisons. This is a major reason that
statistical analysis methods for M/EEG are evolving, and different forms of nonparametric
approaches (Nichols and Holmes, 2002; Pantazis et al., 2005), topological considerations
(Maris and Oostenveld, 2007), and variance control (Ridgway et al., 2012) are being
actively investigated. A comprehensive discussion of the validity of these approaches is
beyond the scope of this paper. Our statistical approach outlined below will focus on the
relatively new non-parametric cluster-based statistical measures available in MNE, which
provide the capability for statistical tests with minimal assumptions about the data
distributions.
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2.4. Functional connectivity
While the localization of activity using inverse modeling and successive statistical tests can
give us information on which brain regions are involved in a task and to what degree the
amount of activity depends on other factors, e.g., experimental conditions, such an analysis
typically does not reveal how the brain regions relevant to the task are interrelated, apart
possibly from the temporal sequence of activity in different regions.

Functional connectivity estimation methods analyze the relationship between a number of
time series with the goal of recovering the structure and properties of the network that
describes the functional dependencies between the underlying brain regions. Connectivity
estimation in M/EEG is typically performed on non-averaged data (often after subtracting
the evoked responses from the single trials) in either the sensor or the source space. The
latter requires the application of an inverse method to obtain a source estimate for each trial,
which is computationally more demanding but has the advantage that the connectivity can
more directly be related to the underlying anatomy, which is difficult or even ambiguous for
sensor-space connectivity estimates. Connectivity estimation in the sensor space also has the
problem that the linear mixing introduced by the forward propagation from cortical currents
to the sensors, often referred to as “spatial leakage” or, misleadingly, as “volume
conduction”, can have a confounding effect on connectivity estimates. For connectivity
analysis, data can be segmented in consecutive epochs, e.g., 1 or 2 s, after filtering. This has
the benefit of using the same analysis pipeline used for task-based data, which is particularly
convenient as it allows an automatic rejection of corrupted time segments using the epoch
rejection mechanisms.

MNE provides functions for connectivity estimation in both the sensor and source space.
The supported methods are bivariate spectral measures, i.e., connectivity is estimated by
analyzing pairs of time series, and they depend on the phase consistency across epochs
between the time series at a given frequency. Examples of such measures are coherence,
imaginary coherence (Nolte et al., 2004), and phase-locking value (PLV) (Lachaux et al.,
1999). The motivation for using imaginary coherence and similar methods is that they
discard or down weight the contributions of zero-lag correlations, which are largely due to
the spatial spread of the signals, both in the sensor space and in the source estimates
(Schoffelen and Gross, 2009).

MNE supports several measures that attempt to alleviate this problem of spurious
connectivity due to zero-lag correlations. An alternative, complementary approach is the use
of statistical tests to contrast the connectivity obtained for different experimental conditions
or groups of subjects. For seed-based connectivity estimation in source space, the non-
parametric statistical tests implemented in MNE are ideally suited for this task as they
control the familywise error rate and do not require knowledge of the distribution under the
null hypothesis, which is often difficult to obtain for connectivity measures. For example,
this approach was recently used to analyze long-range connectivity differences in
populations with autism spectrum disorder (Khan et al., 2013). All connectivity measures in
MNE can be computed either in the frequency or the time– frequency domain. The use of
time–frequency connectivity estimates is especially useful for event-related experiments as
they enable the investigation of connectivity changes over time relative to the stimulus
onset.

It is important to note that even when using measures that can suppress spurious zero-lag
interactions and when contrasting between conditions, connectivity results should be
interpreted with caution. Due to the bivariate nature of the supported measures, there can be
a large number of apparent connections due to a latent region connecting or driving two
regions that both contribute to the measured data. Multivariate connectivity measures, such
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as partial coherence (Granger and Hatanaka, 1964), can alleviate this problem by analyzing
the connectivity between all regions simultaneously, c.f. Schelter et al. (2006). However,
multivariate measures are currently not supported in MNE, as connectivity estimation is one
of the most recent additions to MNE. The inclusion of bivariate measures serves as a first
step toward connectivity estimation supporting multivariate and effective connectivity
measures (Friston, 1994), such as Wiener-Granger causality (Wiener, 1956; Granger, 1969),
which estimates directionality of influence. When analyzing connectivity in source-space, it
is also important to recognize that the spatial spread of the inverse method can cause the
connectivity between conditions to be significantly different even though there may not be a
significant difference in the actual connectivity. We refer to Haufe et al. (2012) for a recent
simulation study that analyzes this issue.

Connectivity analysis in MNE has been implemented with processing efficiency in mind.
For example, forward operator calculation distributes computation across multiple CPU
cores. Filtering routines can operate in parallel across multiple CPU or GPU cores.
Functional connectivity estimation uses a pipelined processing approach to reduce memory
consumption, and the computational cost of time–frequency transforms has been reduced by
taking advantage of linearity. Statistical clustering routines and permutation methods take
advantage of the underlying connectivity structure, and use parallel processing to optimize
performance. This makes MNE ideally suited for the complex, computationally demanding
tasks involved in processing sensor-space and source-space data.

3. The MNE way: using MNE software for analysis
In this section, we provide a detailed description of the M/EEG analysis steps supported by
the MNE software. The description covers all components of MNE, i.e., MNE-C, MNE-
Matlab, and MNE-Python. The outline of this section closely follows Table 1, which
provides an overview. Specifically, we cover preprocessing, discuss forward and inverse
modeling, describe the surface based registration process (also known as morphing) for
group studies, explain the time–frequency transforms implemented, discuss connectivity
estimation in sensor and source space, and finally describe the non-parametric statistical
tests offered.

3.1. Preprocessing
The MNE software contains graphical as well as command line -based tools supporting data
preprocessing. For visual inspection, MNE-C provides a raw data browser. MNE-Python
can also visualize raw data traces as well as show their rank and power spectrum using
windowed fast Fourier transforms (FFTs) (Welch, 1967) (Fig. 2).

3.1.1. Filtering—Often the signal of interest and interference occupy different frequency
bands. MNE-C supports bandpass, low-pass, and high-pass filtering. The GUI also allows to
preview the filtered data, so one can investigate the impact of the filter on the signal. The
Python toolbox extends these options to include band-stop and notch filtering, optionally
using multi-taper methods (Mitra and Bokil, 2008), which can be useful for suppressing
power-line artifacts which are typically confined to narrow frequency bands (Fig. 2). In
addition, a filter-assembler function allows for tailoring custom filter kernels to the needs of
particular datasets. In order not to introduce temporal shifts, all filters are implemented as
zero-phase filters, which is achieved by applying the filters in the forward and backward
direction. Still, care should be taken about the consequences of filtering for subsequent
analysis, e.g., in auto-regressive (AR) modeling commonly used for causality estimation
(Florin et al., 2010; Barnett and Seth, 2011). Filters with infinite and finite impulse
responses (IIR and FIR, respectively) are both supported. To reduce the time needed for the
filtering operations, parallel processing is used to process several channels simultaneously.
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The FFTs required in the FIR filter implementation can also be computed on the graphics
processing unit (GPU), which can further reduce the execution time due to the highly
parallel architecture of a GPU.

3.1.2. Artifact rejection—An important concern in preprocessing is to reduce
interference from endogenous (biological) and exogenous (environmental) sources. Artifact
reduction strategies generally fall in two broad categories: exclusion of contaminated data
segments and attenuation of artifacts by use of signal-processing techniques (Gross et al.,
2013). The MNE “ecosystem” provides rich facilities supporting both approaches in concert.
When generating epochs, single epochs can be rejected based on visual inspection using the
raw data browser GUI, or automatically by defining thresholds for peak-to-peak amplitude
and flat signal detection (Fig. 3). The channels contributing to rejected epochs can also be
visualized to determine whether bad channels had been missed by visual inspection, or if
noise rejection methods have been inadequate.

Instead of simply excluding contaminated data from analysis, artifacts can sometimes be
removed or significantly suppressed. For this purpose, MNE provides two complementary
signal-processing approaches: signal space projection (SSP; Uusitalo and Ilmoniemi, 1997)
and independent component analysis (ICA) (Jung et al., 2000).

3.1.3. Signal-Space Projection (SSP)—The idea behind SSP is to estimate an
interference subspace and to use a linear projection operator which is applied to the sensor
data to remove the interference from the data. The underlying assumption of SSP is that the
noise subspace is orthogonal or at least sufficiently different from the signal subspace of
interest to avoid signal loss in the projection. In practice, SSP is often determined by
principal component analysis (PCA) of data with noise or prominent artifacts and then using
the strongest principal components to construct the projection operator. With MEG data, the
noise subspace can be estimated from empty-room data to suppress environmental artifacts.
SSP operators can also be constructed from time segments contaminated by endogenous
artifacts induced by electrical activity of the heart and or the eyes, i.e., the magneto/
electrocardiogram (M/ECG) or magneto/electrooculogram (M/EOG), respectively. The
latter includes both eye movements (saccades) and blinks. MNE-Python offers automated
routines for heartbeat and blink detection. The Python visualization function allows the user
to verify the output of this automatic procedure while the MNE-C graphical user interface
(GUI) mne browse raw additionally allows manual specification of time windows
contaminated by artifacts. When applied to the data, SSP operators reduce the rank of the
data and also affect the spatial distribution of the signals. Therefore, projection operators
have to be taken into account when computing the inverse solution. This implies that SSP
operators that have been applied to the data at any stage of the analysis pipeline cannot be
discarded, which is the reason why MNE stores them in the data files.

MNE makes it easy to create and handle SSP operators. Projectors can be manually
assembled from within the raw data browser or automatically using commands and
functions provided by the toolboxes. Once operators have been created and included in a
measurement files, MNE defaults to handling the operators efficiently. That is, it will not
modify the original data immediately but instead apply the operators automatically on
demand as evoked responses and the inverse solutions are computed. This also enables the
user to explore the effects of particular SSPs and selectively drop projection vectors in cases
where signal of interest is being lost. MNE can also display the effects of SSPs on the
strengths of the signal generated by a dipole at each cortical site.

3.1.4. Independent component analysis (ICA)—Besides SSP, MNE supports
identifying artifacts and sources using temporal ICA. The assumption behind ICA is that the
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measured data are the result of a linear combination of statistically independent time series,
commonly named sources. ICA estimates a mixing matrix and source time series that are
maximally non- Gaussian (kurtosis and skewness). Once these time series are uncovered,
those reflecting, e.g., artifacts, can be dropped before reverting the mixing process. The ICA
procedure in MNE is based on an implementation of the FastICA algorithm (Hyvärinen and
Oja, 2000) that is included with the scikit-learn package (Pedregosa et al., 2011). To reduce
the computation time and to improve the unmixing performance, dimensionality reduction
can be achieved using the randomized PCA algorithm (Martinsson et al., 2010).

To integrate data from different channel types that can have signal amplitudes orders of
magnitude apart, the noise covariance matrix can be used to whiten the data first. The ICA
can be computed on either raw or epoched data. Also, one can either interactively select
noise-free sources or perform a fully automated artifact removal. ICA sources can be
visualized using MNE functions that generate trellis plots (Becker et al., 1996) (cf. Fig 4).
The ICA sources can be exported as a raw data object and saved into a FIF file, hence
allowing any sensor-space analysis to be performed on the ICA time series: time–frequency
analysis, raster plots, connectivity, or statistics. For example, one can create epochs of ICA
sources around artifact onsets and identify noisy ICA components by averaging.

MNE handles ICA in a similar manner as an SSP operator; The ICA decomposition can be
stored in a FIF file to be accessed later. The unmixing matrix and the selection of the
independent sources can then be reviewed and updated as required without having to modify
or duplicate the original data. Once the matrices are available, applying them to the data is
about as fast as applying SSP projectors.

3.1.5. Combining SSP and ICA—Although SSP and ICA both address the same family
of problems, they can be combined in useful ways. The orthonormal basis, as used in SSP,
may give a plausible model of environmental noise, but not necessarily so of highly skewed
physiological artifact components for which ICA is expected to achieve more accurate
signal–artifact separation. On the other hand, the ICA model does not have an explicit noise
term. Non-biological artifacts may not be that reliably modeled or detected using ICA, either
due to their noise-like distribution, or for not meeting the stationarity requirement in ICA. In
practice, it is therefore recommended to first apply empty-room SSP projections and then
treat physiological artifacts using ICA. Using MNE-Python covariance objects, optionally
equipped with SSP vectors, ICA can take such projections into account when modeling,
transforming, and inverse-transforming data.

3.2. Forward modeling
3.2.1. Computation of the magnetic field and and the electric potential—The
physical relationship between cerebral electric currents and the extracranial magnetic fields
and scalp surface potentials measured by MEG and EEG is governed by Maxwell’s
equations. Importantly, the frequencies of the neural electrical signals are sufficiently low to
warrant the use of the quasi-static approximation, i.e., the time-dependent terms in
Maxwell’s equations can be omitted (Plonsey, 1969; Hämäläinen et al., 1993). Therefore,
the MEG/EEG forward problem amounts to providing an accurate enough solution of the
quasi-static version of Maxwell’s equations. The problem is further simplified by the fact
that we can assume that the magnetic permeability of the head is that of the free space and,
therefore, only need to consider the distribution of electrical conductivity.

To solve the forward problem, one needs an approximation of the distribution of the
electrical and magnetic properties of the head, the specifications of the elementary source
model and the source space, the locations of the EEG electrodes on the scalp and the
configurations of the MEG sensors. The elementary source model in MNE is the current
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dipole, and the electrical conductivity is assumed to be piecewise constant. With the latter
approximation we can employ the boundary element model (BEM), see, e.g., (Mosher et al.,
1999). MNE supports single- and three-compartment BEMs; the latter has to be employed
when EEG data are present (Hämäläinen and Sarvas, 1989). The three compartments need to
be nested and correspond to the scalp, the skull, and the brain (cf. Fig. 5). MNE implements
the BEM using the linear collocation method (Mosher et al., 1999) with the isolated skull
approach (Hämäläinen and Sarvas, 1989) to improve numerical precision. Alternative BEM
formulations exist (Mosher et al., 1999; Kybic et al., 2005; Gramfort et al., 2010; Stenroos
and Sarvas, 2012) but are not presently implemented in MNE. The default electrical
conductivities used by MNE are 0.3 S/m for the brain and the scalp, and 0.006 S/m for the
skull, i.e., the conductivity of the skull is assumed to be 1/50 of that of the brain and the
scalp.

MNE relies on FreeSurfer for the automatic segmentation of the skull and the scalp surfaces.
The segmentation can be done from the same T1 MRI used for the FreeSurfer pipeline,
which gives the cortical surface segmentation, but also from flash MR images to improve
the fidelity of skull segmentation. The triangulations used by MNE usually have 5120
triangles for each of the three surfaces.

In addition to the BEM layers, the forward solver needs the properties of the sensors. For
EEG, one only requires the electrode locations, and thus MNE supports all EEG systems
with a compatible file format (BrainVision, EDF, eximia). For MEG, the locations,
orientations and pick-up loop geometries are needed for all sensors. All major MEG vendors
(Neuromag, CTF, 4D, KIT) are supported; the different MEG sensors (magnetometers, axial
and planar gradiometers) are implemented with help of a “coil definition” file, which
contains the information about the individual pick-up coil geometries. Specifically, the
output of the kth MEG sensor, bk, is approximated by the weighted sum

(1)

where B ⃗(⇉; ⇉s, ⇉s) is the magnetic field at ⇉, generated by a unit current dipole at ⇉s
pointing to direction ê, wkp are scalar weights, ⇉kp are locations within the pick-up coil
loops comprising the MEG sensor, and ňkp are the corresponding unit vectors normal to the
plane of the pick-up loop. This equation states that the output of an MEG sensor is
proportional to the sum of the magnetic fluxes threading the sensing coil loops of the flux
transformer of a sensor. The integration over the coil loops is performed numerically rather
than analytically using the integration points {⇉kp, ňkp} and weights wkp. The winding
direction of the loops is taken into account in wkp.

The coil definition file contains the numerical integration data for all supported sensor types.
Three different accuracies of integration are provided: “minimal”, which usually ignores the
finite size of the coil loops, “normal”, which provides sufficient accuracy for practical
purposes, and “accurate”, which is the best available accuracy. In addition to the primary
sensors on the helmet, the compensation, or reference, magnetometers and gradiometers
present in the CTF, 4D, and KIT systems are included in the forward model as well. If the
data file to be processed indicates that “virtual gradiometers” have been created using the
reference sensors, the forward calculation applies an automatic correction for this noise
rejection scheme.

3.2.2. The source space—When working with distributed source models (see Section
3.3) the locations of the elementary dipolar sources need to be specified a priori to compute
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the forward operator, also known as the gain matrix. This ensemble of dipole locations is
called the source space. MNE can handle both volumetric and surface source spaces. For a
volumetric source space one must specify the grid spacing, e.g., 5 or 7 mm between
neighboring points in 3D space, whereas for a surface-based source space one must specify
the surface and the subsampling scheme. In this latter case, MNE by default uses the surface
between the gray and the white matter, although this can be changed, e.g. by using a
FreeSurfer “mid” surface that is equidistant from white/grey matter interface and pial
surface. Subsampling could be done by decimating the surface mesh but preserving surface
topology as well as spacing and neighborhood information between vertices can be difficult.
Therfore, MNE uses a repeatedly subdivided icosahedron or octahedron as the subsampling
method. Once a subdivision step has been accomplished, the resulting polyhedron is
overlaid on the cortical surface inflated to a sphere and the cortical vertices closest to the
vertices of the the polyhedron are included to the source space. For example, an icosahedron
subdivided 5 times, abbreviated ico-5, consists of 10242 locations per hemisphere, which
leads to an average spacing of 3.1 mm between dipoles (assuming a surface area of 1000
cm2 per hemisphere). Such a source space is presented in Fig. 6. As there is no actual
surface decimation, the cortical orientation used for orientation-constrained models is
obtained by taking the normal of the high-resolution surface at the selected vertices. In
addition, MNE also offers the option to perform a numerical averaging of the normals over a
small patch around each selected vertex.

3.2.3. Coordinate system alignment—The forward solver requires that the boundary-
element surfaces, the source space, and the sensor locations are defined in a common
coordinate system. This is made possible by the co-registration step, which outputs the
rigid-body transformation (translation and rotation) that relates the MRI coordinate system
employed in FreeSurfer and the MEG “head” coordinate system, defined by the fiducial
landmarks (two pre-auricular points and the nasion). In the beginning of each MEG study,
the locations of the fiducial landmarks, the head-position indicator (HPI) coils, EEG
electrodes, and a cloud of scalp surface points are digitized and the MEG head coordinate
system is set up. The position of the MEG sensor array in the MEG head coordinates is
determined in the beginning (and end) of each recording by feeding currents to the HPI coils
and using the MEG sensor array to measure the resulting magnetic fields. In addition, some
systems offer the possibility for recording the head position continuously during the actual
acquisition and compensation methods to bring all the data to a common coordinate frame,
see, e.g., (Uutela et al., 2001; Taulu et al., 2005).

As a result of acquiring the digitization and head position data and possibly applying post-
measurement correction for head movements, all information required for MEG–MRI co-
registration is available in the FIF files. An initial estimate for the coordinate transformation
is obtained by manually identifying the fiducial landmarks from the MRI-based rendering of
the head surface. This initial approximation is then automatically refined by using the
iterative closest-point algorithm (Besl and McKay, 1992) which optimizes the
transformation given the requirement that the digitized scalp surface points must be as close
as possible to the MRI-defined scalp. The accuracy of this step is particularly crucial for
precise source estimation (Hillebrand and Barnes, 2003). The co-registration tools are
available both in MNE-C and MNE-Python.

3.2.4. Summary—As described above, the solution of the forward problem involves a
number of steps with a few parameters that have well-established default values. The
forward computation pipeline in MNE is fully automatic thanks to the underlying FreeSurfer
software. The only manual step is the co-registration, which takes a couple of minutes and
needs to be done only once for each MEG session.
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3.3. Inverse modeling
Although careful sensor-level data analysis can offer important insight into the location and
timing of neural activity, the accurate localization of the underlying neural sources is of
major interest for neuroscientific research. For this purpose, the MNE software implements
several methods for solving the electromagnetic inverse problem using distributed source
spaces, either surface-based or volumetric. MNE employs the same noise-covariance matrix
to whiten the data and the forward solution consistently in all implemented source
estimation methods.

For reconstructing the source current density, the MNE software implements the minimum
norm estimate (MNE), i.e., the Bayesian maximum a posteriori (MAP) estimate with a
Gaussian prior distribution on the source amplitudes (Hämäläinen and Ilmoniemi, 1984;
Dale and Sereno, 1993; Hämäläinen and Ilmoniemi, 1994). In order to account for the depth
localization bias known for MNE, that is, the tendency of MNE methods to favor superficial
sources, the MNE software allows to apply a depth-weighting scheme based on scaling the
source covariance matrix (Fuchs et al., 1999; Lin et al., 2006b). This approach is often
referred to as the weighted minimum norm estimate (wMNE).

The MNE solution can be computed without restricting the source orientations. However,
following the general assumption that the primary sources of MEG and EEG signals are
postsynaptic currents in the apical dendrites of cortical pyramidal neurons, the net current
can be assumed to be normal to the cortical mantle. MNE can constrain the dipole
orientations when a cortical surface source space is employed.

The first option is to fix the source orientations to be normal to the underlying surface,
which can either be computed based on a single source or on the statistics of a cortical
surface patch surrounding the source location. This is known as a fixed-orientation solution
(Dale and Sereno, 1993). Accordingly, there is an option in MNE software to compute the
forward solution for dipoles oriented normal to the cortical mantle only. However, it is
recommended to always compute the gain matrix for all dipole orientations because the
depth weighting parameter for wMNE cannot be set correctly without this information (Lin
et al., 2006b). Alternatively, the fixed orientation constraint can be relaxed (Lin et al.,
2006a). In this loose orientation constraint approach, the variances of the source components
oriented tangentially to the cortical surface are scaled by 0 < β < 1, where β = 0 is equivalent
to the fixed orientation constraint and β = 1 corresponds to free dipole orientations. The
parameter β can also be set automatically and be made location-dependent by using the
cortical patch statistics, i.e., the variance of the cortical normals within the patch
corresponding to each source space point (Lin et al., 2006a) to determine β for each cortical
source site.

In addition to reconstructing the actual current density, the MNE software includes two
methods for computing noise-normalized linear inverse estimates. These methods, namely
dynamic statistical parameter mapping (dSPM) (Dale et al., 2000) and standardized low-
resolution brain electromagnetic tomography (sLORETA) (Pascual-Marqui, 2002),
transform the current density values into dimensionless statistical quantities, which help
identify where the estimated current differs significantly from baseline noise. Moreover, the
noise-normalized methods reduce the location bias of the estimates. In particular, the
tendency of the MNE to prefer superficial currents is reduced, and the width of the point-
spread function becomes more uniform across the cortex (Dale et al., 2000). An example of
a dSPM source estimate is shown in Fig. 7.

In order to include a priori information on the source location coming from other
measurement modalities, the MNE software allows to compute fMRI-guided linear inverse
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estimates (Dale et al., 2000). The fMRI weighting involves two steps. First, the fMRI
activation map is thresholded at a user-defined value to identify significant fMRI
activations. Thereafter, the elements of the source-covariance matrix corresponding to
sources being located in regions falling below the threshold are scaled down by a user-
defined factor (Liu et al., 1998). It is important to note that the fMRI weighting has a strong
influence on the MNE solution, whereas the noise-normalized estimates are less affected.

As an addition to the linear inverse methods, the MNE software also includes estimation of
equivalent current dipoles (ECDs). At present, dipole fitting is limited to a single ECD at a
single time point. The fitting procedure is based on a four-step approach. First, an initial
guess of the ECD location is determined by an exhaustive search through a predefined grid.
Thereafter, a Nelder-Mead simplex optimization is applied and the risk of arriving at a local
minimum is reduced by repeating the optimization using the result of the first minimization
as an initial guess; the best solution (highest goodness-of-fit) is retained. Finally, the ECD
amplitude is computed.

All methods mentioned above can be applied as batch-mode commands or by using the
interactive mne_analyze tool, a graphical user interface provided by the MNE-C code that
can also be used for the visual inspection of the source reconstruction results. Alternatively,
snapshots and movies of the source reconstruction results can be saved for inspection and
processing with a batch-mode command. Python also offers brain visualization capabilities
through the PySurfer package (http://pysurfer.github.com). Both MNE-C and MNE-Python
allow the user to display source maps in a customizable fashion. MNE-Python extends some
of these capabilities by making it much easier to automate generation and annotation of
figures via scripting of graphical calls.

In addition to the inverse methods mentioned above, the MNE-Python package contains a
set of imaging methods based on spatio–temporal sparse priors, which allow reconstruction
of spatially sparse, i.e., ECD-like source estimates with a distributed source model. These
priors are applied either in the time domain, e.g., the minimum current estimate (MCE)
(Matsuura and Okabe, 1995; Uutela et al., 1999), the γ-MAP estimate detailed in (Wipf and
Nagarajan, 2009), and the mixed norm estimate (MxNE) (Ou et al., 2009; Gramfort et al.,
2012), or in the time–frequency domain, e.g., the time–frequency mixed norm estimate (TF-
MxNE) (Gramfort et al., 2013) (Fig. 8). Furthermore, an implementation of the linearly
constrained minimum variance (LCMV) beamformer (Veen et al., 1997) in the time domain
is part of the repertoire of MNE-Python, see Fig. 9.

3.4. Surface-based normalization
While clinical examinations generally consider data from a single patient, neuroscience
questions are often answered by comparing and combining data from a group of subjects. To
achieve this, data from all participating subjects need to be transformed to a common space.
This procedure is called spatial normalization in the fMRI literature. MNE software exploits
the FreeSurfer spherical coordinate system defined for each hemisphere (Dale et al., 1999;
Fischl et al., 1999) to accomplish such normalization. For data defined on a subsampled
version of the cortical tesselation (including source estimates), morphing from one brain to
another comprises three steps. First, to associate all vertices of the high-resolution cortical
tesselation with data, the estimates are spread to neighboring vertices using an isotropic
diffusion process parametrized by the number of iterations. Second, the FreeSurfer
registration is used to linearly interpolate data defined on the subject’s brain to the average
brain; this interpolation is encapsulated in morph maps. Finally, the data defined on the
average brain is subsampled to yield the same number of source locations in all subjects.
The procedure is illustrated in Fig. 10 using dSPM estimates of the auditory N100m
response.
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3.5. Frequency and time–frequency representations
For several types of M/EEG data analysis it is relevant to quantify oscillatory activity as a
function of time and location (Buzsaki, 2006). This is achieved by computing frequency or
time–frequency representations of the data. It is worth noting that “oscillations” usually
refers to the existence of narrow-band signals whereas in neuroscience literature this term is
used more liberally and refers to division of the data to several frequency bands, each of
which may have a substantial width. Depending on the bandwidth and signal characteristics,
the data may thus resemble band-limited noise rather than oscillations at few distinct
frequencies.

Frequency and time–frequency representations include estimation of the power spectra of
empty-room M/EEG data for quality control and to find sources of interference, the
estimation of induced power in the sensor and source spaces, and connectivity estimation.
The MNE-Python package provides functions to compute frequency representations, time–
frequency representations, and power spectra in sensor and source space.

The most fundamental non-parametric frequency-domain representation of the data is the
power spectrum. It can be estimated using the discrete Fourier transform (DFT), which can
be computed efficiently using fast Fourier transform (FFT) algorithms (Cooley and Tukey,
1965). Important parameters in frequency domain transforms are the sampling rate, the
number of samples to use, and the resulting frequency resolution. These factors are directly
related: if the data were acquired with a sampling rate of fs and N real-valued time samples
are input to the DFT, the resulting complex-valued spectrum (representing amplitude and
phase) will consist of N/2 equispaced frequency samples from 0 to fs/2 − fs/N (this assumes
that N is even; the spacing is slightly different when N is odd). Note that the upper bound is
the Nyqvist frequency fs/2, which is the highest frequency that can be faithfully represented
when sampling a continuous signal at a rate of fs. While the lowest frequency of the spectral
estimate is 0, it is important to realize that the data segment has to be sufficiently long to
allow reliable estimation of the low-frequency end of the spectrum. As a rule of thumb, the
length of the data segment should correspond to at least 5 periods (cycles) of the signal at
the lowest frequency of interest. For example, if one is interested in the spectrum around 1
Hz, it is recommended to use data segments at least 5 s long (e.g., for wavelet analysis see
Lin et al. (2004a); Ghuman et al. (2011)).

A problem that is also related to the finite length of the data segment is spectral leakage; a
purely sinusoidal signal will yield a spectrum with one main lobe at the frequency of the
sinusoid and several side lobes. This effect can be mitigated by multiplying the data segment
with a windowing function in the time domain. A Hann window (often called “Hanning
window”) is typically used in MNE software, which gives a good trade-off between the
width of the main lobe and suppression of side lobes. In MNE software, power spectra of
raw data are estimated by averaging the magnitudes of DFTs of data segments with a length
and overlap specified by the user. This procedure is known as Welch’s method for spectral
estimation (Welch, 1967). The resulting source-space power spectrum can be exported as a
file for visualization using mne_analyze or it can be analyzed further.

While the averaging employed in Welch’s method reduces the variance of the estimate and
proper windowing reduces spectral leakage, more accurate spectra can be obtained using the
multi-taper method for spectral estimation (Thomson, 1982). This method also uses DFT but
it employs a set of orthogonal windowing functions, known as Slepian tapers or discrete
prolate spheroidal sequences (DPSS), and then computes a weighted average of the obtained
spectra. By using adaptive weights for each frequency, the multi-taper method can further
reduce spectral leakage, which is particularly useful for signals with a large dynamic range.
Compared to Welch’s method, the multi-taper method obtains a more accurate spectrum at
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the price of an increased computational cost. In MNE, we provide multi-taper functions for
the estimation of power spectra in sensor and source space.

Pure frequency representations assume stationarity, i.e., that the spectrum does not change
over time. For M/EEG data this assumption often does not hold. For example, in event-
related experiments, the spectral composition of the signals evolves rapidly during the
response to the stimulus. For such data, it is more meaningful to compute a time–frequency
representation, which can show the changing spectrum over time. In MNE, time–frequency
representations are obtained using Morlet wavelets, which are constructed by multiplying
complex sinusoids (90-deg phase difference between the real and imaginary parts) at
frequencies of interest with Gaussian windows (Morlet et al. (1982); for a MEG application,
see Lin et al. (2004b); Tallon-Baudry and Bertrand (1999)). The user can adjust the
transformation by specifying the frequencies of interest and the number of cycles in the
wavelets at each frequency; a higher number of cycles results in wider Gaussian windows
and thus better frequency resolution but poorer temporal resolution.

We provide functions to compute time–frequency representations in both sensor and source
space. Fig. 11 shows an example of an induced power change, i.e., averaged power
computed over an ensemble of epochs as opposed to evoked power obtained from averaged
epochs, in response to electric stimulation of the left median nerve at wrist. This analysis
demonstrates a strong stimulus-induced power increase at about 20 Hz and starting about
500 ms after the stimulus. Such rebounds of the oscillatory activity in the somatomotor
system are well known induced responses (Hari and Salmelin, 1997).

When computing source-space power spectra or time–frequency representations with linear
inverse operators (MNE, dSPM, sLORETA), MNE exploits the linearity of the operations to
improve efficiency as there are typically far more source points than sensors. This is
accomplished by computing the DFT in sensor space, applying the inverse operator on the
complex-valued result and taking the magnitude at the source level.

3.6. Connectivity estimation
MNE can compute several bivariate connectivity measures in both the sensor and source
space. The supported measures are all spectral, i.e., they are based on estimates of cross
spectral densities and, depending on the measure, power spectral densities. Currently, the
connectivity module in MNE can compute coherence, coherency (complex-valued
coherence), imaginary coherence (Nolte et al., 2004), phase-locking value (PLV) (Lachaux
et al., 1999), pairwise phase consistency (PPC) (Vinck et al., 2010), which is an unbiased
estimate of PLV, phase lag index (PLI) (Stam et al., 2007), and weighted phase lag index
(WPLI) (Vinck et al., 2011). In addition, the unbiased squared PLI and de-biased squared
WPLI can be estimated (Vinck et al., 2011). Some methods, like imaginary coherence and
WPLI, down weight zero-lag interactions and are therefore less affected by spurious
interactions that exist in M/EEG sensor and source space data due to finite spatial resolution
(Schoffelen and Gross, 2009). The use of the unbiased and de-biased versions of the
estimators is recommended when connectivity is estimated based on a small number of
epochs. We refer to the above references for further details of each measure. The
connectivity can be computed either in the frequency or time–frequency domain using the
appropriate transforms described in the previous section.

To compute reliable connectivity estimates, the spectral estimation has to be performed
using tens or even hundreds of observations. In MNE, the observations are obtained by
dividing the raw data into epochs using event timings. For data that does not have events
associated with them, e.g., recordings of spontaneous brain activity, functions are provided
to generate events at fixed intervals, which enables connectivity computation for such data.

Gramfort et al. Page 16

Neuroimage. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To compute sensor-space connectivity, the epochs can be directly passed to the connectivity
estimation routine. By default, the connectivity measures between all N sensor time series
are computed, which, due to symmetry, results in N(N − 1)/2 connectivity estimates for all
included frequency or time– frequency bins. For some experiments, one may only be
interested in the connectivity between selected pairs of time series, e.g., between a seed and
all other time series. In MNE, the user can specify for which pairs of time series the
connectivity estimation should be performed.

The ability to compute the connectivity estimates for a subset of connections is especially
useful when connectivity is estimated in the source space, where the number of time series is
much larger than in the sensor space and all-to-all connectivity computation can be
prohibitive. In order to estimate source-space connectivity, the epoch data are first projected
to source space by means of one of the inverse methods described earlier. Typically, either
MNE, dSPM, sLORETA, or LCMV should be used as these methods work well for single-
epoch estimates where the SNR is low. Moreover, these linear methods are computationally
efficient. It is important to note that spectral estimates are meaningful only when the source
estimates are signed. Therefore, when performing the inverse computation, the current
component oriented perpendicular to the cortical mantle must be used instead of combining
the components for the three spatial dimensions, which would result in unsigned
(magnitude) estimates. The obtained source estimates, one for each epoch, are then passed to
the connectivity estimation routine.

As noted before, the large number of source-space time series makes all-to-all connectivity
estimation computationally very demanding. An attractive option is therefore to reduce the
number of time series and thus the computational demand by summarizing the source time
series within a set of cortical regions. We provide functions to do this automatically for
cortical parcellations obtained by FreeSurfer, which employs probabilistic atlases and
cortical folding patterns for an automated subject-specific segmentation of the cortex into
anatomical regions (Fischl et al., 2004; Desikan et al., 2006; Destrieux et al., 2010). The
obtained set of summary time series can then be used as input to the connectivity estimation.
The association of time series with cortical regions simplifies the interpretation of results
and it makes them directly comparable across subjects since, due to the subject-specific
parcellation, each time series corresponds to the same anatomical region in each subject. A
result of such an analysis is illustrated in Fig. 12, where the connectivity was computed for
68 cortical regions in the FreeSurfer “aparc” parcellation.

Due to the potentially large number of time series and epochs used for connectivity
computation, an efficient implementation is important. In MNE, we reduce the
computational cost by giving the user the option to compute several connectivity measures
at once, which reduces the computational demand as the spectral estimation only has to be
performed once. Furthermore, parallel processing enabled by modern multi-core processors
can be used to greatly reduce the computation time.

Memory limitations are also important to consider. Assuming an oct-6 source-space
resolution (8196 vertices), 512 frequency points, and double-precision floating point
representation, storing the multi-taper spectral estimate with 7 tapers for a single epoch
requires 224 MB of memory. Therefore, a simplistic implementation which first computes
the spectral estimates leads to excessive memory requirements when the connectivity is
computed over hundreds or even thousands of epochs. In MNE, we avoid this problem by
using pipelined processing which is entirely hidden from the user; the user can write a linear
script which first extracts epochs, computes the inverse for each epoch, and then passes the
result to the connectivity estimation function. However, internally, the actual computation is
delayed in the sense that during the connectivity estimation, single epochs are extracted
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from the raw file, the inverse is applied, and the spectra are estimated. However, for linear
inverses, higher computational efficiency is again achieved by automatically applying the
time–frequency or wavelet transforms in sensor space before applying the inverse to the
transformed data, which (due to linearity of the operations) results in the source-space
spectral estimates. This implementation leads to computationally efficient connectivity
estimation with memory requirements that are independent of the number of epochs, which
makes it possible to estimate source-space connectivity on desktop computers and laptops
with only a few GB of memory.

3.7. Statistics
The non-parametric statistical tests (Maris and Oostenveld, 2007) implemented in MNE are
designed to provide a generic framework for statistical analysis. This framework has been
designed to be flexible enough for the user to configure the clustering structure to reflect the
underlying topological features of interest. For example, the algorithms can be used to
cluster in time, which operates based on temporal adjacency alone, or in the time–frequency
space, which operates by examining temporally and spectrally contiguous regions. Both of
these approaches would be appropriate for dipole fits or region-of-interest activations.
Alternatively, clustering can be performed spatio-temporally, where the spatial adjacency of
sensors or dipole locations in source space would be taken into account to identify spatially
and temporally contiguous regions of significant activity. Since this clustering procedure is
independent of the statistic employed to determine similarity between the observations
defining clusters, another important implication of the non-parametric cluster-statistics
approach is that arbitrary statistical functions can be used in combination with arbitrary
contrasts. Currently, MNE-Python directly supports one-sample t-tests, two-sample t-tests,
one-way F-tests and two-way repeated-measures ANOVA for clustering-permutation tests.
Additional statistical functions are provided by other scientific and numerical Python
packages, but also user-defined functions can be included with ease as demonstrated in the
MNE documentation.

Once significant clusters are obtained, functions are provided to help summarize them. The
temporal center of mass is obtained by weighting each time point by the number of
significant vertices, while the spatial center of mass is obtained by weighting each vertex by
the number of significant time points. The spatial center of mass can then be easily
transformed into MNI Talairach coordinates for simple comparison to previous
neuroimaging studies (Larson and Lee, 2012).

4. Discussion
Data processing, such as M/EEG analysis, can be thought of as a chain or pipeline of
operations, where each step has an impact on the results. In the preceding sections we have
discussed particular choices made in the MNE software to proceed from preprocessing to
advanced applications such as statistics in source space, including surface based registration
for group studies, or connectivity measures between brain regions of interest.

MNE provides a few modules with graphical user interfaces (GUIs) that are valuable in
inspecting and exploration of the data. However, we suggest that all of the processing should
be done with scripts in which all parameters can be defined. The software has been designed
with this concept in mind. Data visualization GUIs are provided in Python for every stage of
processing (raw data, epoched data, evoked data, SSP effects, time–frequency analysis,
source estimates, cluster inspection, etc.), but provide very limited functionality for anything
besides inspecting the data. The idea is that the GUIs should allow users to be comfortable
with (and understand) the effects of the chosen parameters, such as the baseline interval,
regularization of MNE/dSPM/sLORETA inversion, or the amount of smoothing used for
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morphing the source time courses. The downside of this approach is that MNE users are
expected to have basic programming skills to write shell, Matlab, or Python scripts.
However, given the number of code snippets and examples available on the MNE web site, a
user typically ends up copy-pasting blocks of code to assemble their own pipeline. This
choice can still limit the user base and the impact of the software, however, this approach
has clear benefits. First, our experience from analyzing several M/EEG studies indicates that
the processing pipeline needs to be tailored for each study. Even though most pipelines
follow the same logic including filtering, epoching, averaging, etc., the number of options is
large even for such standard steps. Scripting gives the flexibility to set those options and
handle the requirements of different M/EEG studies.

Second, an analysis conducted with the help of scripts leads to more reproducible results.
Indeed, reproducing a statistic or a figure can be done by re-executing a script with the same
input data. Scripting is also a way to prevent errors that users might introduce by
inadvertently changing their behavior in the middle of the analysis, or because they are
running multiple studies simultaneously and for data from one subject they use the
parameters of another study. As the procedures and steps chosen are accurately recorded in a
script, the script is an efficient way to communicate one’s research strategy to colleagues,
who in return may provide more concise feedback targeting the level of program code in
addition to parameter descriptions from a report. This ultimately helps identify bugs and
errors, thereby improving the quality of the particular research project. Nevertheless, it
should be pointed out that analysis steps requiring user interaction, e.g., time-varying dipole
fits, which are presently not incorporated in MNE, can also be made highly reproducible by
proper training and scrutiny (Stenbacka et al., 2002).

Finally, studies that involve processing of data from dozens or hundreds of subjects are
made tractable via scripting. This is particularly relevant in an era of large-scale data
analysis where massive cohorts of subjects may number more than a thousand, cf., the
Human Brain Project or the Human Connectome Project (Van Essen et al., 2012).

Today neuroscientists from different academic disciplines spend an increasing amount of
time writing software to process their experimental data. Data analysis is not limited to
neuroimaging; Nowadays almost all scientific data are processed by computers and software
programs. The practical consequence of this, is that the correctness of the science produced
relies on the quality of the software written (Dubois, 2005). The success of digital data
analysis is made possible by high-quality data, by sophisticated numerical and mathematical
methods, and last but not least by correct implementations. The MNE software, in particular
the MNE-Python project, is developed and maintained to work toward high quality in terms
of accuracy, efficiency and readability of the code. In order to measure and establish
accuracy, the development process requires writing of unit and regression tests to ensure the
installation of the software is correct and that the results it gives match with results
previously obtained across multiple different computing platforms. This testing framework
currently covers about 88% of the MNE-Python code. Besides allowing users to track the
stability and accuracy of the software, this also makes it easier to incorporate new
contributions quickly without inadvertently breaking existing code.

By leveraging this open development approach, MNE has received many contributions from
the community. To control their quality, the policy in MNE development is that any code
contribution must be read by two or more people, the author and one reviewer at minimum.
This practice aims at establishing coding conventions that facilitate code readability and bug
fixing by users as has been demonstrated in other projects (Marchenko et al., 2009; Bhat and
Nagappan, 2006; George and Williams, 2004). Importantly, the entire source code
(including the full development history) is made publicly available by a distributed version
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control system. This makes it straightforward to keep track of the project’s development and
thus handle code changes in a way that minimizes the risk of rendering existing scripts and
analysis pipelines inoperable. Finally, large parts of the source code are commented using
inline documentation that allows for automatically building user manuals in PDF and HTML
formats. The Ohloh.net11 source code analysis project attests that 36% of the source code
consists of documentation and with this, MNE-Python’s extent of documentation scores in
the upper third of the Python projects publicly trackable. See (Aruliah et al., 2012; Prlić and
Procter, 2012) for a more detailed presentation of the best practices for scientific software
development beyond the field of neuroimaging.

The MNE community employs a mailing list (mne analysis@nmr.mgh.harvard.edu; requires
an approval to subscribe and post) as the primary support channel, but also makes use of
online services such as Twitter to announce new features and bug fixes, and Github to report
bugs and propose new features. Github is then used to follow the progress made on bug fixes
and added features.

As advocated above, scientific results should be easily reproducible. In addition, applying
existing analysis methods on new data should be straighforward as that fosters new scientific
discoveries. In other words, analysis pipelines should be reusable across laboratories.
Towards that end, the MNE software package and Brainstorm have converged on many
aspects of the standard analysis pipeline, such as the implementation of various noise-
normalization methods. Continued sharing of methods and best practices facilitates research
reproducibility.

In order to maximize the impact of software, care must be taken about the license governing
its use. The MNE-Python and MNE-Matlab code are for this reason provided under the very
permissive Open Source BSD license. This license allows anybody to reuse and redistribute
this code, even for commercial applications. The MNE-Matlab code is for example
redistributed with Brainstorm (Tadel et al., 2011), FieldTrip (Oostenveld et al., 2011),
NutMeg (Dalal et al., 2011) and SPM (Litvak et al., 2011) to read and write FIF files.

Neuroimaging is a broad field encompassing static images, such as anatomical MRI as well
as dynamic, functional data such M/EEG or fMRI. The MNE software relies on other
packages such as FreeSurfer for anatomical MRI processing, or NiBabel (http://nipy.org/
nibabel) for reading and writing images such as standard NIfTI files. Our ambition is not to
make MNE self-contained; the MNE package cannot and does not aim to do everything.
MNE has its own scope and leverages the capabilities of external software in the
neuroimaging software ecosystem. Tighter integration with fMRI analysis pipelines could be
facilitated by NiPype (Gorgolewski et al., 2011) but is first made possible by adopting
standards. That is why all data MNE produces are stored in FIF file format which can be
read and written by various software packages. The MNE-Python code also relies on core
scientific libraries, namely Numpy and Scipy (Milmann and Avaizis, 2011), and works with
standard datastructures (Van der Walt et al., 2011) that are also used in most scientific
Python packages.

Good science requires not only good hypothesis and theories, creative experimental designs,
and principled analysis methods, but also well-established data analysis tools and software.
A scientific discovery is the end of a long chain, which will break at its weakest link. The
MNE software provides a solid foundation for reproducible scientific discoveries based M/
EEG data. As the contributions to the MNE software package continue to grow, the MNE

11http://www.ohloh.net/p/MNE
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software suite should provide increasing value to the neuroimaging community that has not
only helped determine its current form, but continues to shape its future.
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Highlights

• The MNE software provides a complete pipeline for MEG and EEG data
analysis

• MNE covers preprocessing, forward modeling, inverse methods, and
visualization

• MNE supports advanced analysis: time-frequency, statistics, and connectivity

• MNE-Python enables fast and memory-efficent processing of large data sets

• The MNE-Python is open-source software supporting a collaborative
development effort
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Figure 1.
Graphical user interface (GUI) applications provided by MNE-C. Top: mne_analyze for
coordinate alignment and inverse modeling. Bottom: mne browse raw for raw data
inspection and processing.
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Figure 2.
Average power spectral density (PSD) of gradiometer channels estimated with Welch’s
method (Welch, 1967). The red region shows one standard deviation. One can clearly see
the power line artifacts at 60, 120 and 180 Hz, that MNE can suppress with notch filters.
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Figure 3.
A sample evoked response (event-related fields on gradiometers) showing traces for
individual channels (bad channels are colored in red). Epochs with large peak-to-peak
signals as well as channels marked as bad can be discarded from further analyses.
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Figure 4.
Trellis plot of 9 ICA components. The sources 0 to 5 are reorderd by bivariate Pearson
correlation with the ECG channel. The first time series (index 0) displayed in the upper-left
window clearly resembles a cardiac signal. The time series 7 closely matches the EOG
signal.
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Figure 5.
Triangulated nested boundary surfaces used in the MNE BEM forward model: the inner
skull, the outer skull, and the scalp. The segmentations are obtained from T1 or Flash MRIs
using the FreeSurfer package. By default, MNE employs 5120 triangles (2562 vertices) on
each surface.
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Figure 6.
Cortical segmentation used for the source space in the distributed model with MNE. Left:
The pial (red) and white matter (green) surfaces overlaid on an MRI slice. Right: The right-
hemisphere part of the source space (yellow dots), represented on the inflated surface of the
right hemisphere, was obtained by subdivision of an icosahedron leading to 10242 locations
per hemisphere with an average nearest-neighbor distance of 3.1 mm.
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Figure 7.
Source localization of an auditory N100 component using dSPM. The regularization
parameter was set to correspond to SNR = 3 in the whitened data, source orientation had a
loose constraint (β = 0.2), and depth weighting was set to 0.8 (all three default values).
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Figure 8.
Source localization obtained with the time–frequency mixed-norm estimates (TF-MxNE)
(Gramfort et al., 2013) for the right visual condition. The labels of the primary and
secondary visual cortices (V1 in red and V2 in yellow) estimated by FreeSurfer from the T1
MRI are overlaid on the cortical surface.
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Figure 9.
Source localization with LCMV Beamformer. A volumetric grid source space was used with
the left temporal MEG channels to localize the origin of the N100 component in the left
auditory cortex.

Gramfort et al. Page 36

Neuroimage. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10.
Current estimates obtained in an individual subject can be remapped (morphed), i.e.,
normalized, to another cortical surface, such as that of the FreeSurfer average brain
“fsaverage” shown here. The normalization is done separably for both hemispheres using a
non-linear registration procedure defined on the sphere (Dale et al., 1999; Fischl et al.,
1999). Here, the N100m auditory evoked response is localized using dSPM and then
mapped to “fsaverage”.
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Figure 11.
Induced power change in the hand region along the right central sulcus. A total of 111
epochs were used for the computation. The data in each epoch were transformed to the
source space using the dSPM method. The time–frequency representation was obtained
using 23 Morlet wavelets with center frequencies 8–30 Hz. The number of cycles used
increased linearly with the frequency; 4 cycles were used for 8 Hz and 15 cycles for 30 Hz.
Finally, the obtained time–frequency representation was averaged over a region of interest in
the source space, a.k.a. “label”, in the right central sulcus. The power was baseline-corrected
to display percentage of variation (“3” means a 3-fold increase in power compared to the
pre-stimulus baseline).
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Figure 12.
Visualization of connectivity resulting from the presentations of a visual flash to the left
visual hemifield. The connectivity was computed for –200– –500 ms relative to the stimulus
onset over 67 epochs. The inverse was computed using the dSPM method, with a source-
space resolution of 8196 vertices (oct-6). The source estimates were summarized into 68
time series corresponding to the regions in the FreeSurfer “aparc” parcellation. All-to-all
connectivity was computed in the alpha band (8– –13 Hz) using the de-biased squared WPLI
method (Vinck et al., 2011) with multi-taper spectral estimation. Finally, the connectivity
was visualized as a circular graph using a connectivity visualization routine provided in
MNE-Python.
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Table 1

Overview of the features provided by the command-line tools and the compiled GUI applications (MNE-C)
and the MNE-Matlab and MNE-Python toolboxes (✓: supported). All parts of MNE read and write data in the
same file format, enabling users to use the tool that is best suited for each processing step. ECD = Equivalent
Current Dipole; LCMV = Linearly Constrained Minimum-Variance

Processing module MNE-C MNE-Matlab MNE-Python

Filtering ✓ ✓

Signal space projection (SSP) ✓ ✓ ✓

Indep. component analysis (ICA) ✓

Coregistration of MEG and MRI ✓ ✓

Forward modeling ✓

Time–frequency analysis ✓

Dipole modeling (ECD) ✓

Minimum-norm estimation (ℓ2) ✓ ✓ ✓

Mixed-norm estimation (MxNE) ✓

Time–frequency MxNE ✓

Beamforming (LCMV, DICS) ✓

Spatial morphing ✓ ✓ ✓

Connectivity estimation ✓

Statistics ✓
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