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Abstract
Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual
decisions. In most cases, these correlations have been observed by comparing α power for
different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such
covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus
neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG
components in a two alternative forced choice visual discrimination task. EEG components,
discriminative of stimulus class, are identified using a linear multivariate classifier and only the
variability of the components for correct trials (regardless of stimulus class, and for nominally
identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a
significant relationship between the mean and variance of the pre-stimulus α power and the
variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This
relationship is not seen for a later EEG component that is also discriminative of stimulus class and
which has been previously linked to the quality of evidence driving the decision process. Our
results suggest that early perceptual representations, rather than temporally later neural correlates
of the perceptual decision, are modulated by pre-stimulus state.
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1. Introduction
Perceptual decision making is often described as the simplest form of a cognitive process, in
that it involves transforming sensory evidence into a decision and behavioral response
(Heekeren et al., 2004; Smith and Ratcliff, 2004; Gold and Shadlen, 2007). Substantial work
has looked to identify and characterize the neural processes underlying perceptual decision
making, with a focus on the neural correlates of processes that occur post-stimulus. For
instance, experiments in non-human primates have shown neurons in the lateral intraparietal
area (LIP) demonstrate activity indicative of evidence accumulation (Shadlen and Newsome,
2001; Gold and Shadlen, 2007; Liu and Pleskac, 2011). Analogous studies using
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neuroimaging in humans have focused on, amongst other areas, dorsal lateral prefrontal
cortex (dLPFC) functioning as a comparator of decision alternatives (Heekeren et al., 2004,
2006; Philiastides et al., 2011; Ostwald et al., 2012).

Not all aspects of a perceptual decision are characterized by the post-stimulus activity. The
state of the subject prior to stimulus presentation is also a factor in understanding how the
perceptual decision evolves. Several groups have measured pre-stimulus oscillatory activity
as a way to index the state of the subject prior to the presentation of the stimulus. Pre-
stimulus oscillations in the α band (8-12 Hz) have been shown to correlate with visual
discrimination performance (Babiloni et al., 2006; Thut et al., 2006; Hanslmayr et al., 2007;
Van Dijk et al., 2008; Hanslmayr et al., 2011). Pre-stimulus power is hypothesized to reflect
top-down control of attention (Wyart and Tallon-Baudry, 2009) with increased pre-stimulus
α power representing a low attentional state resulting in reduced decision accuracy. Recent
studies have shown a correlation between pre-stimulus α power and subjective rating of
attention toward a visual discrimination task (Macdonald et al., 2011). Pre-stimulus α phase
has also shown to be predictive of visual awareness and perception (Busch et al., 2009;
Mathewson et al., 2009).

Studies using electroencephalography (EEG) and magnetoencephalography (MEG)
investigating pre-stimulus α within the context of perceptual decision making typically
analyze data with respect to behavioral responses–e.g. segregating correct and error trials
and characterizing the difference in the power spectrum or phase distributions (Van Dijk et
al., 2008; Busch et al., 2009). Relatively little work has been done to investigate the
variation of pre-stimulus α power when there is no difference in behavioral decision
performance or when stimuli are nominally identical. It is possible that constituent neural
processes are affected by pre-stimulus attentional state, though by the time the decision is
made this relation is not observable in behavior or is confounded by other factors.

In this paper we investigate the relationship between pre-stimulus α power and post-
stimulus discriminating components in a two alternative forced choice (2-AFC) decision
making task. Unique to our approach is that we do not use behavioral data to separate trials
for conducting our analyses, instead we investigate how pre-stimulus α power relates to
post-stimulus neural components for cases in which the decisions are correct and the stimuli
nominally identical.

2. Materials and Methods
2.1. Subjects, Experimental Design and Data Acquisition

Previous work by our group has used EEG to identify the timing of neural components
which reflect the constituent processes of perceptual decision making (Philiastides and
Sajda, 2006b; Philiastides et al., 2006; Philiastides and Sajda, 2007; Ratcliff et al., 2009;
Sajda et al., 2009). In this previous work we identified a set of post-stimulus neural
components that reflected, amongst other processes, an early perceptual component,
correlating with sensory evidence, and a late discriminating component indexing the quality
of the evidence entering the decision process itself (i.e., decision evidence). In this paper, we
conducted the same experiment presented in (Philiastides and Sajda, 2006b), however
collecting more data and conducting a new analysis with respect to pre-stimulus alpha power
relative to the trial-to-trial functions of post-stimulus discriminating EEG components. Here
we briefly summarize the experimental design and data acquisition. Additional details can
be found in (Philiastides and Sajda, 2006b).

Twelve subjects (four women and eight men, age range 21-37 years) participated in the
experiment. Data for six of the twelve subject were taken from our previous study
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(Philiastides and Sajda, 2006b). All subjects had normal or corrected to normal vision and
reported no history of neurological problems. Informed written consent was obtained from
all participants in accordance with the guidelines and approval of the Columbia University
Institutional Review Board. We used a set of 20 face images (from the Max Planck Institute
face database) and 20 car grayscale images obtained from the web (image size 512×512
pixels, 8 bits/pixel). They were all equated for spatial frequency, luminance, and contrast.
All images had identical magnitude spectra and their corresponding phase spectra were
manipulated using the weighted mean phase (WMP) technique (Dakin et al., 2002) to
generate a set of images characterized by their percentage of phase coherence, which was
used as a measure of task difficulty. Although WMP is limited in that it does not provide a
uniform sampling of phase space when manipulating the image structure (Ales et al., 2012),
this limitation does not present a problem in this study since we are merely looking at trends
which require monotonicity and not a uniform manipulation of phase space. Six different
phase coherence levels were used in this study (20%, 25%, 30%, 35%, 40%, and 45%). Each
image subtended 22° × 22° of visual angle. Stimuli were presented on an LCD (800 × 600
pixels) and controlled by a Dell Precision T7500 Workstation using E-Prime 2.0 software.

The experimental paradigm consisted of a 2-AFC perceptual decision making task in which
subjects were asked to decide whether the presented image contained a face or a car. Within
each block of trials, face and car images of all phase coherence levels were displayed in
random order. Each image was presented for 30 ms, followed by an inter-stimulus-interval
(ISI) that was randomized in a range of 1500-2000 ms. Each block consisted of a total of
144 images, with 12 images at each phase coherence level for each of the face and car
stimulus categories. Each experiment consisted of a total of four trial blocks.

EEG data was acquired in an electrostatically shielded room using a Sensorium
Electrophysiological Amplifier (Vermont, USA) having 60 Ag/AgCl scalp electrodes. All
channels were referenced to the left mastoid with chin ground and input impedance less than
15kΩ. Data were sampled at 1000 Hz and preprocessed using a 0.5 Hz fourth-order
Butterworth highpass filter to remove DC drifts and 60 and 120 Hz notch filters to minimize
line noise artifacts. These filters were applied non-causally (using MATLAB “filtfilt”) to
avoid phase related distortions. Though the temporal bandwidths of the filters are small
compared to the frequencies and temporal separation of the evoked activity of interest, we
nonetheless checked the effect of a non-causal versus causal application of the filters (using
MATLAB “filter”). We found no evidence of significant “smearing” of activity across the
stimulus time boundary and all results where essentially identical for causal and non-causal
filtering.

Trials with excessive eye blink and motion artifacts were rejected (< 10% of total trials) by
visual inspection. All trials for which subjects failed to respond on time (reaction time limit
was set to 1200 ms) were excluded from further analysis. For the top three coherence levels,
after starting with a total of 96 trials for each coherence level, the average number of trials
(across subjects) for single-trial analysis after trial rejection was 79.4 (35%), 86.1 (40%),
and 87.3 (45%) respectively.

2.2. Single-Trial Discrimination
Single-trial analysis using logistic regression was performed to classify EEG activity
corresponding to the different image type (i.e. face vs. car). We used a sliding window
method (Parra et al., 2002) to obtain the variation of discrimination performance across the
post-stimulus time period. A training window of width 30 ms was used and the window
onset varied across the epoch in 50 ms increments from the stimulus onset to 800 ms post-
stimulus. The classifier was subsequently retrained by shifting the training window in finer
steps of 10 ms around the time ranges found to be most discriminating. This method enabled
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observation of the temporal progression of task-relevant components and localization of the
window with maximal discrimination between faces and cars. For a time window starting at
post-stimulus time τ, we use logistic regression to estimate a spatial weighting vector wτ,
which defines the direction (in EEG sensor space) that maximizes discrimination. The
estimated regression function can be expressed as:

where X is an N × T matrix of EEG data (N channels and T time points) and the estimated
mean vector yτ is a discriminating component at time offset τ. Our previous study
(Philiastides and Sajda, 2006b) revealed two face vs. car discriminating components: an
early discriminating component around 170 ms post-stimulus and a late component between
300 to 450 ms post-stimulus. The discriminator performance was quantified by the area
under ROC curve, referred to as Az value, using leave-one-out (LOO) cross validation. To
validate the significance of each discriminating component, we used a label permutation
method (1000 permutations for each time window) to compute an Az value for the null
distribution (i.e. no discriminatory information) leading to the corresponding Az thresholds
for the p = 0.05 significance levels. This permutation test was done at every coherence level
of each individual subject. Only components having p < 0.05 level were considered in
subsequent analyses. We also constructed forward models of our discriminating components

(1)

where aτ is the electrical coupling of the discriminating component yτ identified for time
window τ that explains most of the measured scalp EEG at time τ (Parra et al., 2002).

2.3. Alpha-Power Analysis
The most prominent modulation of alpha rhythm is usually found over the parieto-occipital
regions of the head (Klimesch et al., 2007; Romei et al., 2010). However, due to volume
conduction, the sensorimotor μ rhythm, which shares the same frequency band as α rhythm,
can be mixed with parieto-occipital α at the level of the scalp recordings and thus be picked
up from posterior EEG channels. We therefore used independent component analysis (ICA)
to estimate spatial filters that can disentangle different sources in α band. All processing was
performed using the infomax algorithm implemented in the EEGLab toolbox (Delorme and
Makeig, 2004). Specifically, we applied ICA to the preprocessed EEG to separate sources of
μ rhythm, which characterized the activity relevant to finger movement, and sources of α
rhythm that was relevant to face detection. The aim of ICA is to estimate the unmixing
matrix W, so that the linear transformation of the EEG matrix X is an estimate of the source
matrix S (i.e. S=WX), where each source is made to be as mutually independent as possible.
Each column of W−1 represents the spatial distribution of one source component across all
sensors.

Only one independent component was selected for each subject, with selection based on the
frequency and spatial properties of the independent components (Lou et al., 2008).
Specifically, first we estimated the power spectra of all independent components (ICs) and
computed the signal-to-noise ratio (SNR) of the α oscillation, which is defined as the ratio
of EEG power in the α band to the mean power of the adjacent frequency bands (5-15 Hz).
To obtain an optimal α SNR for individual subjects, a subject-specific α frequency band was
selected as the central frequency of α band peak in the power spectral density ±2 Hz.
Initially, the top five ICs with the highest SNR were selected. Subsequently, we refined the
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selection to chose the IC having the largest magnitude of spatial weights over occipital-
temporal electrode sites. This distribution of spatial weights would be most consistent with
the topology of both of our early and late face-vs-car discriminating components.

To estimate the power of α oscillations on a single-trial basis, stimulus-locked epochs from
the selected IC components were extracted from 500 ms before to 500 ms after stimulus
onset. Data was filtered at the subject-specific α frequency band. We next calculated the
analytic signal, xa(t), to construct the amplitude envelope of the α oscillation. Denoting x(t)
as the real-valued EEG signal within a narrow frequency band, we can express the analytic
signal as xa(t) = A(t)ejϕ(t), where

is the amplitude envelope. The imaginary part  can be found by applying the Hilbert
transform to the original signal. The amplitude envelope, A(t), represents the instantaneous
magnitude of the oscillation and thus can be used to estimate how the power of the signal
varies over time (Macdonald et al., 2011). In this study, pre-stimulus α power was
characterized by the averaged power in the 500 ms interval preceding stimulus onset, which
is computed by the mean of the squared amplitude. The power estimates of individual
subjects were normalized by their baseline (defined by the power from 1000 ms to 800 ms
before stimulus onset).

2.4. Relating Variability of Pre-stimulus Alpha-power to Post-stimulus EEG components
To investigate the relationship between pre-stimulus α and post-stimulus EEG component
variability we sorted trials, for each coherence level, based on single-trial discriminating
component amplitudes. Figure 1 illustrates the trial-to-trial variability of the optimal early
and late components for one subject at 45% phase coherence. For our logistic regression
model, the output of the discriminating component y is defined as the logit function of the
probability that the Bernoulli random variable equals 1, where we assign the labels so that
faces are labeled as 1 and cars as 0. Since there are only two categories in our paradigm,
extremely high and low probabilities indicate strong evidence for the stimulus category.
From the inverse of logit function, given by,

we know that large absolute values of the discriminating component represent high
probabilities of discrimination. When the absolute values of y equal 0, 1 and 2, the
probabilities are 0.50, 0.73 and 0.88 respectively, which roughly represents poor
(insignificant), marginal (significant) and good (substantial) discrimination (Figure 1). Each
post-stimulus component is a linear projection of the data where the absolute value of the
component magnitude y is the distance of the trial from the discriminating hyperplane
defined by the projection. The greater the value ∣y∣ the further the trial is from the
discrimination boundary and the more probable, under the discriminatory model, the trial is
a face or a car. We can thus view ∣y∣ as a measure of the evidence for a face vs car decision
given the EEG data. We segregated correct trials using the absolute value of the optimal
EEG discriminating component regardless of the class labels (face or car), and computed the
difference of pre-stimulus α power for each group.
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3. Results
We first analyzed the behavioral data to check whether the manipulation of phase coherence
in the images significantly affected subjects’ accuracy. All subjects were able to correctly
identify more than 90% of images in easiest trials (45% coherence) but performed at
approximately chance for the most difficult trials (20% coherence). Results showed that
phase coherence level was positively correlated with detection accuracy (p = 1.79 × 10−11,
t(46) = 8.84), and negatively correlated with reaction time (p = 1.38 × 10−4, t(46) = −4.16),
indicating phase coherence level of the stimulus had strong effect on subjects’ perceptual
decisions. To check whether subjects might exploit low level features or learn idiosyncrasies
in the low coherence images we also compared detection accuracy and reaction time
between blocks for the difficult trials. At 30% coherence level, no significant difference was
found in detection accuracy or reaction time (repeated-measures ANOVA, p = 0.42 and p =
0.08 respectively).

Figure 2 shows the average Az values across all subjects (N = 12) at each time point from
100 ms to 700 ms post-stimulus. As expected based on our previously reported analysis
(Philiastides and Sajda, 2006b), for each individual subject there are two prominent face vs.
car discriminating components, an early and late component, that were above the
significance level of p = 0.05 estimated from a permutation test. Trials with phase coherence
30% and below were discarded from further analysis since they did not reach this threshold.
Averaged forward models of early and late components across subjects are also given in
Figure 2. Both scalp maps are consistent with our previously reported results (see Figure 5b
in (Philiastides and Sajda, 2006b)).

We used ICA to increase the SNR of the α band EEG prior to performing our pre-stimulus
analysis. For all subjects we identified ICs (see Methods) representing α activity and having
high magnitude spatial weights in occipitotemporal electrode sites. Note that the spatial and
frequency patterns of the subject-specific components are qualitatively quite similar, though
the slight quantitative differences between subjects justify the need for optimizing the spatial
and temporal filters on a subject-by-subject basis. We also typically found an additional one
or more ICs for which their power spectrum had a peak in the α band, but none of these
other components had a spatial distribution that was consistent with an occipitotemporal
electrode distribution–i.e. they were more typical of a μ rhythm component having
substantial weighting over lateralized motor cortex.

The topology of the individual subjects’ α ICs can be compared to the forward models of the
individual subjects’ early and late post-stimulus discriminating components. Though our IC
selection criterion chose ICs with high α in occipitotemporal electrode sites, no other spatial
information was used in selection. Nonetheless we observed a topographic similarity
between the α activity and discriminating component scalp maps and note that for these
comparisons the sign of the spatial weights of the forward models is irrelevant, as it is
merely due to the choice of class labels during face-vs-car discrimination (see Methods).
Figure 3 displays the topographies of a selected IC and forward models of early and late
discriminating components of one subject.

To investigate how early and late discriminating components are correlated with behavioral
decisions, we computed choice probabilities for both components using a method similar to
previous studies (Britten et al., 1996; Philiastides and Sajda, 2006b). Specifically we used
logistic regression to estimate the spatial weights, however this time using the behavioral
responses as class labels (a face choice or a car choice). This was done using trials at 30%
phase coherence since these contained the largest fraction of errors and therefore represented
the largest difference between labeling trials based on stimulus or behavior. Trials without
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responses were discarded. Higher choice probability represents stronger association between
neuronal and behavioral responses. As shown in Figure 4, the choice probabilities of the late
components were above significance level of p = 0.05 for most of the subjects and were
higher than those of early components for all subjects. Low choice probabilities of subject 9
and 10 is likely due to their strong bias toward one category for low coherence trials.

Figure 5a shows the mean of the pre-stimulus α power at each phase coherence level when
grouped by early discriminating component magnitude. At each coherence level, we ran a
repeated-measures ANOVA to test three levels of the independent variable: low (∣y∣ < 1),
medium (1 < ∣y∣ < 2),and high (∣y∣ > 2) magnitudes of discriminating components. For more
difficult trials (i.e. 35% coherence trials) we found a significant difference of the means of
the pre-stimulus α power between three discriminating component magnitude groups (p =
2.8 × 10−6, F(2,22) = 24.17, effect size η2 = 0.69). Additional paired comparisons were
performed between groups using Tukey’s HSD test, which compared the differences of
group means with the critical HSD value (e.g. HSD = 0.24 for α = 0.05). Results showed
that the mean of the pre-stimulus α power was significantly different between discriminating
component magnitudes (left panel of Figure 5a). Similar test was conducted on medium
difficulty trials (40% coherence). Effect of discriminating component magnitude was still
observed (p = 9.6 × 10−3, F(2,22) = 5.78, η2 = 0.34), but difference was only observed
between high-low magnitude groups and medium-low magnitude groups after multiple
comparison correction (middle panel of Figure 5a). No significant difference was observed
on easy trials (45% coherence, p = 0.22, F(2,22) = 1.61, η2 = 0.13). The results of the
ANOVA are summarized in Table 1. We also find that effect sizes decreased when the task
becomes easier. To further demonstrate the effect of the difficulty level on the correlation
between pre-stimulus α power and post-stimulus discriminating component, we ran a two-
way repeated-measures ANOVA with factors of difficulty (3 coherence levels) and
discriminating component magnitude (3 levels). Results also showed a significant
interaction between coherence levels and ∣y∣ levels (p = 0.012, F(4,44) = 3.64) (Nieuwenhuis
et al., 2011).

The time series of the averaged envelops at 35% coherence level is plotted in Figure 5b.
Reduction of pre-stimulus α power can be observed for trials with high discriminating
component magnitudes. We also found a decrease in α power after stimulus onset regardless
of the discriminating component magnitude. This is consistent with previous studies of
event-related desynchronization (ERD) (Pfurtscheller, 1977) that can be detected via
frequency analysis (Pfurtscheller and da Silva, 1999). Finally, we also analyzed the
relationship between pre-stimulus α power variance and the discriminating component
magnitude. Similarly to what was found for the mean pre-stimulus α power, Figure 5c
shows that there is a reduction of pre-stimulus α power variance for trials having high
discriminating component magnitude. Similar repeated-measures ANOVA was conducted
for each coherence level, and results were listed in Table 1. We also observed the effect
sizes were decreased with the increase in phase coherence levels from 35% to 45%, but a
two-way repeated-measures ANOVA showed the interaction between coherence levels and
∣y∣ levels was less significant in pre-stimulus α variance (p = 0.054, F(4,44) = 2.52) than in
mean.

Figure 5a presents the correlation with the selected IC; however, it is also interesting to
observe how the difference pre-stimulus α power for early components at low coherence
trials is distributed across all electrodes. We used the same grouping method for trials with
35% phase coherence and computed the power difference on each individual electrodes.
Scalp maps of all subjects were displayed in Figure 6. We can observe that the difference
was mostly in parieto-occipital regions, but it presents a large variation across subjects. The
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power difference is hard to observe in some subjects (e.g. S8) or even negative (e.g. S2),
probably because of the confounding effect from other α band activities.

To investigate whether there were similar associations between pre-stimulus α and the late
EEG discriminating component, we sorted trials based on the late component magnitudes.
No significant mean or variance differences were found at any coherence level (Figure 7, see
Table 1 for repeated-measures ANOVA results). On average, however, we observed a
similar trend between mean and variance. Also, a two-way repeated-measures ANOVA on
35% coherence trials with factors of discriminator magnitude (3 ∣y∣ levels) and early/late
discriminator stage (2 levels: early and late) showed a significant interaction between ∣y∣ and
discriminator stages (p = 0.009, F(2,22) = 5.88), which suggested that early and late
discriminator had different associations with pre-stimulus α power.

To be consistent with previous studies on pre-stimulus α activity, we also investigated
whether variations of pre-stimulus α oscillations are reflected in behavioral performance.
We first analyzed the interaction between pre-stimulus α power and reaction times. Only
correctly identified stimuli were used in this analysis. For each coherence level, all trials
were sorted in ascending order based on their reaction times and divided into three equally-
sized groups (i.e. at tertiles). The averaged pre-stimulus α power of each group was
calculated and is shown in Figure 8. We observed the mean of pre-stimulus α power
increased for long RT trials at the high coherence level (45%), and a significant difference
between long RT and short RT groups was found at 45% coherence level after multiple
comparison correction (repeated-measures ANOVA, p = 0.025, F(2,22) = 4.36, η2 = 0.28).
No significant correlations were found in more difficult trials (35% coherence level p =
0.98, F(2,22) = 0.021, η2 = 0.0019; 40% coherence level p = 0.98, F(2,22) = 0.017, η2 =
0.0015).

We next investigated how accuracy was associated with pre-stimulus α power. Accuracy
was defined as the number of correctly identified stimuli at one coherence level divided by
the total number of trials at the same coherence level. At very low coherence levels, subjects
were performing at chance which resulted in an accuracy of approximately 50%. In contrast,
subjects reached accuracies of more than 90% at high coherence levels. To obtain enough
trials of both correct and incorrect responses for the analysis, we chose different phase
coherence levels for individual subjects such that accuracy was near 70% for all participants.
Subsequently, we estimated the normalized pre-stimulus α power of correctly and
incorrectly identified stimuli for each subject. Using a two-tailed paired t-test, we found that
behaviorally incorrect trials showed significantly stronger pre-stimulus α power (Figure 9a,
p = 0.002, t(11) = −4.01, effect size g = −1.16). We also sorted all trials in ascending order by
the pre-stimulus α power and divided them at tertiles. Detection accuracies of the first and
the third group were then estimated for comparison. To avoid possible problems with
ANOVA for the analysis of categorical data (i.e. accuracy), logistic regression was used for
this analysis (Jaeger, 2008). All trials from these two conditions were fir with logistic
regression models. We found that a reduced model (without pre-stimulus α power factor)

had considerably lower data likelihood (likelihood ratio test, , p = 0.019),
indicating that the group with lower pre-stimulus α power had significantly higher accuracy
(Figure 9b). Both plots in Figure 9 also suggest a negative correlation between pre-stimulus
α power and accuracy.

Lastly, we investigated the sources that potentially generate the pre-stimulus oscillatory
activity associated with early post-stimulus discriminating component. Specifically we used
the source localization algorithm sLORETA (Pascual-Marqui, 2002) to estimate the source
distribution in the cortex. Since we found that the most significant correlation is between
pre-stimulus α oscillation and optimal early discriminating component at 35% coherence
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level, we classified the trials at 35% for each subject by the magnitudes of early components
and α power of selected IC. Trials having an early component with ∣y∣ below the average
and the pre-stimulus α power of the selected IC above average were combined into one
group, while trials with high ∣y∣ and low α activity were combined into another group. For
each individual subject, current density distributions of both groups were estimated based on
the average spectrum and obtained sLORETA values were subjected to paired tests to
identify the differences between groups in the α band. Randomized SnPM with 5000
permutations was performed to obtain the corrected critical threshold and p-values (Nichols
and Holmes, 2002). As shown in Figure 10, the difference was significant at posterior
cingulate and cuneus (BA30, BA17&18, respectively) (Log of ratio of averages = −1.49, p <
0.01), lateralized to the right side. The lateralization is likely due to right-side bias seen in
face processing (Kanwisher et al., 1997).

4. Discussion
Uncovering the neural correlates of a perceptual decision is likely to lead to a better
understanding of the neural processes underlying more complex decision making. In this
paper we used a simple decision making task to investigate how pre-stimulus activity varies
relative to post-stimulus activity which is discriminative of stimulus category. Specifically
we found that pre-stimulus α power is reduced for trials with high magnitude (i.e. high
absolute value) of the early discriminating component for stimuli presented at low coherence
levels–i.e. images difficult to discriminate. This in turn is consistent with previous work
showing that an increased pre-stimulus α power reflects inhibition or disengagement of
posterior areas (Jensen et al., 2002; Cooper et al., 2003; Tuladhar et al., 2007), which results
in a decrease in visual discrimination performance (Ergenoglu et al., 2004; Van Dijk et al.,
2008). Unique to our work, however, is that we used the variability in the EEG signal using
only correct trials and nominally identical stimuli thereby removing behavioral confounds
associated with different behavioral outcomes (correct vs incorrect responses) and differing
stimulus evidence. As a result, our approach helps provide more concrete support for the
notion that the early discriminating component magnitude indexes the quality of the early
encoding of the stimulus. With the hypothesis that alpha oscillations are likely to be
modulated by a top-down mechanism such as attention (Worden et al., 2000; Medendorp et
al., 2007), our results indicate that the early visual processing is likely to be modulated by
top-down pre-stimulus attention, with the incoming sensory evidence being a function of
both the noise level of the stimulus and the subjects’ attentional state on any given trial. This
is consistent with previous neurophysiological and transcranial magnetic stimulation (TMS)
studies, which suggested occipital α oscillations are likely involved in signal transmission
and information precessing at an early stage of visual processing(Lorincz et al., 2009; Romei
et al., 2010). Previous work using fMRI also has shown that fluctuations in early visual
perception, that can be observed via behavioral performance, are attributable to the
attentional modulations of the sensory processing (Ress et al., 2000).

Interestingly, the correlation between pre-stimulus α power and the late component was not
significant. To better understand this finding it is important to consider that, in the context of
behavioral designs with very brief stimulus durations, the early representation of the
stimulus needs to remain in the system, likely via feedback pathways in the ventral stream
(Di Lollo, 1977; Coltheart, 1980; Keysers and Perrett, 2002; VanRullen and Koch, 2003).
This in turn, suggests that the early sensory evidence is processed further to generate an
internal representation of decision evidence (late component) that ultimately drives the
decision process itself, as shown in Figure 4 that the late component is more predictive of
behavioral responses. This result is also consistent with previous studies that reported early
and late components had qualitatively distinct relationship with behavior (Philiastides and
Sajda, 2006a; Del Cul et al., 2007; Fisch et al., 2009; Wyart et al., 2011). Our results seem
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to suggest that the pre-stimulus attention does not directly affect this additional processing
of the sensory evidence. In addition, this result is consistent with a recent study by
Macdonald et al. (2011), where subjects reported their subjective attentional state and
decision confidence on each trial. Results showed a strong negative association between
subjective attentional state and pre-stimulus α power but no significant relationship between
subjective confidence and pre-stimulus α power. Therefore, we hypothesize that subjective
attentional state is strongly related with sensory evidence, while subjective confidence is
more likely to be linked with the downstream processing of the decision evidence.

In a related finding, our analysis not only showed negative correlation between the mean of
pre-stimulus α power and early discriminating component magnitude, but also increased
variance in α power for trials having low discriminating component magnitude (Figure 5C).
Our hypothesis is that the lack of a difference in the high discriminating component
magnitude group reflects that subjects are more confident in their choice when they pay
more attention–i.e. for a higher optimal discriminating component ∣y∣ they are less likely to
be in a low attentional state and therefore both mean and variance of pre-stimulus α power
are relatively small. It has also been reported that the reduction of α power variance with
attention could be interpreted by a theoretical model as increasing global gain to synaptic
activity induced by the sensory input (Rajagovindan and Ding, 2011). For a low
discriminating component magnitude, two explanations are possible; 1) a low attentional
state or 2) a high attentional state albeit with insu cient information accumulated in the post-
stimulus period to result in accurate decisions. Previous studies have investigated the role of
pre-stimulus α phase deviation for visual perceptual performance and found low phase
coupling (low deviation) in the α band predicted enhanced visual perception (Hanslmayr et
al., 2007) on a single-trial basis. Phase was also shown to be more informative than power in
a study which analyzed the EEG using mutual information (Schyns et al., 2011). One
interpretation is synchronous oscillations in the alpha frequency band inhibits the perception
of shortly presented stimuli and decreased α synchrony reflects a state of enhanced attention
(Fries et al., 2001; Hanslmayr et al., 2007). Our analysis suggests that these fluctuations of
attentional state may be captured not only by phase, but also by amplitude dynamics of α
oscillations.

We also observed that the association between the pre-stimulus α power and discriminating
component magnitude is related to the phase coherence of the visual stimulus–i.e. the
stimulus dependent difficulty of the task. The mean and variance differences between three
discriminating component magnitude levels were less significant when the phase coherence
increased. Given pre-stimulus α power may indicate attentional state, we hypothesize that,
unlike for low coherence (35%) trials, in high coherence trials (45%) the discrimination task
becomes so easy that the fluctuations in pre-stimulus attention do not play an determinant
role in the fidelity in which sensory evidence is encoded–i.e. the higher signal-to-noise ratio
in the stimulus makes the attentional modulation of sensory encoding less important for the
fidelity of the encoding. It remains possible that the information content of brain activity
differs with alpha/attention levels, which may in fact explain the lack of an effect at the
easiest coherence level. However this goes beyond what can be assessed from this study,
though future experiments could be designed to consider this question using reverse
correlation techniques (Schyns et al., 2009).

We also analyzed how pre-stimulus α power predicts behavioral performance. By
comparing the percentage of correctly responded trials in low and high pre-stimulus α power
state, we observed significant reduction in accuracy for trials with high pre-stimulus α
power. This result is consistent with the report that visual discrimination decreases with an
increase in pre-stimulus α power (Van Dijk et al., 2008). Some previous research reports
that reaction times do not vary systematically with pre-stimulus α power (Van Dijk et al.,
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2008), but on the other hand some studies have also reported that pre-stimulus α activity at
visual cortical sites is positively correlated with reaction times (Zhang et al., 2008; Andino
et al., 2005) potentially resulting from modulation of top-down processing. Reduced α
activity was considered to represent more efficient visual stimulus processing because of
attentional engagement and expectancy (Foxe et al., 1998; Engel et al., 2001; Zhang et al.,
2008). This observation was found in simple target-response and go/no-go tasks, but was not
observed in more difficult visual detection experiments. In our perceptual decision-making
experiment, we only found the positive correlation in easy trials (45% coherence level). Our
hypothesis for why this is the case is that in our experiment the impact of attention is
reflected in the early sensory evidence and encoding as captured by our early discriminating
EEG component. However reaction time also depends on the late discriminating component
that is not correlated with pre-stimulus α activity. Thus in a more complex perceptual
decision making task, such as for our difficult trials, this lack of correlation with the
processing of the stimulus evidence may account for the insignificant correlation between
pre-stimulus oscillatory activity and reaction time. For the easy trials, however, more
stimulus evidence can be obtained so the reaction time could be more correlated with the
attentional engagement, similarly as a simple go/no-go task. In addition to the hypothesis of
top-down modulation of attention, the reported result is also in accordance with recent
proposed theories that increased α activity reflects inhibition or disengagement in posterior
areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). The fluctuations of α activity
indicate inhibitory or excitatory states of visual processing regions (Hanslmayr et al., 2011)
and thereby impact the sensory evidence encoding. Other studies further suggest an active
role of α activity in cognitive processing (Palva and Palva, 2007) and a causal relationship
between pre-stimulus α amplitude and perceptual performance (Romei et al., 2010).

We found that the sources accounting for the difference in pre-stimulus α activity when
comparing high and low early component magnitude were located in cuneus and posterior
cingulate, as well to a less extent in STS and fusiform gyrus (Figure 10). The cuneus has
been linked to early face vs car discriminating components in a EEG/fMRI study
(Philiastides and Sajda, 2007), and is seen generally as playing a basic role in visual
processing and spatial attention (Vanni et al., 2001). Our findings and interpretation are also
consistent with other findings that the posterior cingulate is positively correlated with
momentary lapses in attention (Weissman et al., 2006) and the number of self-reported
stimulus-independent thoughts (Buckner et al., 2008). The suppression of this area is likely
to reflect increased ability of the subject to concentrate on the task, obtaining more sensory
evidence and thus yielding a higher magnitude for the early discriminating component.

In summary, we find that pre-stimulus neural activity can affect neural correlates of post-
stimulus early sensory encoding of nominally identical stimuli during correctly categorized
trials. Our approach has relied on signals which are easily measured via scalp EEG (α power
and face-selective EEG components). It is still unclear, however, whether these results
would generalize for other stimulus categories and/or cases in which discriminating activity
is not easily observed with scalp EEG (e.g. activity resulting from motion selective columns
in area MT during motion discrimination tasks often used in the decision making literature
(Britten et al., 1993; Donner et al., 2009; Siegel et al., 2011)). In addition, no causal
relationship can be inferred from our results, though clearly the relationship between pre-
stimulus attention and stimulus encoding may have a causal component. Nonetheless, our
work sheds new light on both the evolution of the neural activity underlying perceptual
decision making by establishing a link between pre- and post-stimulus neural activity.
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Highlights

- Task-related EEG components are identified using a linear multivariate classifier

- Trial-to-trial variability of prestimulus alpha is correlated with an early
poststimulus component

- No significant correlation is seen with a later component linked with evidence
accumulation

- We conclude that prestimulus alpha modulates sensory encoding during perceptual
decisions

Lou et al. Page 16

Neuroimage. Author manuscript; available in PMC 2015 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Amplitude for the early and late discriminating components of each face and car trial at 45%
phase coherence for one participant (left panel). The corresponding inverse logit function is
plotted in the right panel. Trials are groups by their absolute value of the discriminating
components whereby red, green and blue represent high, middle and low probability of EEG
classification respectively. We use the absolute value of the discriminator output ∣y∣ as a
neural index of the stimulus and decision evidence for the early and late EEG components
respectively.
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Figure 2.
Average single-trial EEG discrimination performance across subjects (N = 12) with 30ms
training window. Bands represent standard error across subjects. For each subject, only
discrimination components passing p < 0.05 were used for further analysis. Az values for
phase coherences 20% and 25% are not shown since their EEG discrimination performance
was worse than that of 30% coherence and never above the p < 0.05 significance level.
Topographies represent the group averaged forward models of early (left) and late (right)
components at time of peak discrimination (referred to as optimal discriminating
components).
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Figure 3.
Example scalp maps for pre-stimulus alpha independent component and post-stimulus early
and late discriminating components, for one subject. Clear is a strong topographic similarity.
Note that the sign difference of the early component is irrelevant in this comparison.
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Figure 4.
Choice probabilities of all twelve subjects using EEG data from optimal early and late
discriminating components. The statistical significance level was computed by a
permutation test with 1000 random permutations of the behavioral responses. Choice
probabilities above 95% confidence intervals were considered statistically significant.
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Figure 5.
Analysis of pre-stimulus α power using the early EEG component discriminator output. (a)
Mean pre-stimulus α power for three different discriminating component magnitude levels
at each phase coherence level. Pre-stimulus α power was significantly lower for trials with
high discriminating component magnitude at the lowest coherence level (35%). The
difference between groups became less significant when the task was made easier–i.e. phase
coherence increased. (b) Time series of instantaneous α band power from −800 to 500 ms at
the 35% phase coherence level. Pre-stimulus α power of trials with high discriminating
component magnitudes showed a strong reduction in instantaneous α power. (c) The
variance of pre-stimulus α power at different coherence levels. Similar to the mean power
responses, the variance of trials with high discriminating component magnitude was lower
than for trials with low discriminating component magnitude. Data are displayed as box
plots: the central mark is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the most extreme data points not considered outliers, and outliers are
plotted individually.
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Figure 6.
Scalp maps of pre-stimulus α power difference for each subject at 35% coherence level.
Normalized pre-stimulus α power difference was computed across all electrodes between ∣y∣
< 1 and ∣y∣ > 2 groups using optimal early components. Higher α activities were observed
for trials with lower ∣y∣ mostly in parieto-occipital regions.
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Figure 7.
Analysis of pre-stimulus α power using the late EEG component discriminator. Neither the
(a) mean or (b) variance showed a significant difference between groups at any coherence
level. Data for each group is displayed as a box plot–additional explanation for plots is given
in Figure 5.
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Figure 8.
Analysis of pre-stimulus α power using reaction time (RT). Trials were sorted by reaction
times in ascending order and divided at 3-quantiles (tertiles). Significant difference on pre-
stimulus α power was only found between long RT group and short RT group for easiest
trials (45% coherence level). Data for each group is displayed as a box plot–additional
explanation for plots is given in Figure 5.
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Figure 9.
Associations between pre-stimulus α power and accuracy. (a) Trials with incorrect
responses showed significantly stronger pre-stimulus α power than those with correct
responses (paired t-test, **p < 0.01). (b) Trials were divided by pre-stimulus α power into
low and high groups. Trials with low pre-stimulus α power resulted in significantly higher
accuracy than those with high α power (likelihood ratio test, *p < 0.05). Data for each group
is displayed as a box plot–additional explanation for plots is given in Figure 5.
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Figure 10.
The sLORETA images showing statistical differences (Log of ratio of averages) between
groups with high and low magnitude of optimal early discriminating components.
Significant differences are seen at posterior cingulate and cuneus (BA30, BA17&18,
respectively) , with less significant differences also observable in STS and fusiform gyrus.
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