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Abstract 

In recent years functional neuroimaging techniques such as fMRI, MEG, EEG and PET have 

provided researchers with a wealth of information on human brain function. However none of 

these modalities can measure directly either the neuro-electrical  or neuro-chemical processes 

that mediate brain function. This means that metrics directly reflecting brain ‘activity’ must be 

inferred from other metrics (e.g. magnetic fields (MEG) or haemodynamics (fMRI)). To 

overcome this limitation, many studies seek to combine multiple complementary modalities and 

an excellent example of this is the combination of MEG (which has high temporal resolution) 

with fMRI (which has high spatial resolution). However, the full potential of multi-modal 

approaches can only be truly realised in cases where the relationship between metrics is 

known. In this paper, we explore the relationship between measurements made using fMRI and 

MEG. We describe the origins of the two signals as well as their relationship to 

electrophysiology. We review multiple studies that have attempted to characterise the spatial 

relationship between fMRI and MEG, and we also describe studies that exploit the rich 

information content of MEG to explore differing relationships between MEG and fMRI across 

neural oscillatory frequency bands. Monitoring the brain at “rest” has become of significant 

recent interest to the neuroimaging community and we review recent evidence comparing MEG 

and fMRI metrics of functional connectivity. A brief discussion of the use of magnetic resonance 

spectroscopy (MRS) to probe the relationship between MEG/fMRI and neurochemistry is also 

given. Finally, we highlight future areas of interest and offer some recommendations for the 

parallel use of fMRI and MEG.  
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1. Introduction: 

Recent years have seen the field of systems neuroscience revolutionised by functional 

neuroimaging. Techniques such as positron emission tomography (PET), functional magnetic 

resonance imaging (fMRI), magnetoencephalography (MEG) and electroencephalography  

(EEG) combined with sophisticated analysis algorithms now provide researchers with 

unprecedented information on the mechanisms of human brain function. However, the non-

invasive nature of neuroimaging methods means that, in most cases, the precise metric of brain 

‘activity’ that is sought can only be inferred from another, indirect, measurement. For example, 

in fMRI a change in brain ‘activity’ is inferred via measurement of local changes in 

haemodynamics – this necessarily assumes a relationship between ‘activity’ and the 

haemodynamic response. In EEG or MEG, measurements of electrical current in the brain are 

inferred via measurement of extracranial electric (EEG) or magnetic (MEG) field. Here the 

measurement of interest (neural current) must be estimated based on projection of extracranial 

field data onto the brain. The indirect nature of assessment of brain ‘activity’ is a fundamental 

limitation of non-invasive functional neuroimaging and increasingly, researchers attempt to 

overcome this issue by combining multiple complementary imaging modalities.  

 

The combination of non-invasive measurements of electrical activity (via MEG or EEG) with 

fMRI provides an excellent example of multi-modal fusion. fMRI allows characterisation of the 

spatial signature of brain activity with sub-millimetre spatial resolution (e.g. (Heidemann et al., 

2012)). However, the latency and longevity of the haemodynamic response limits temporal 

resolution to ~5s. MEG and EEG ostensibly offer more direct insight into electrical brain activity 

since the measured fields are induced directly from synchronous neuronal current flow. 

Temporal resolution is limited only by the speed of sampling of the magnetic or electric field (up 

to 12 kHz in modern MEG systems) and so electrical activity can be characterised on the 

millisecond timescale at which the brain operates. However, spatial information must be 

inferred via modelling of extra-cranial field measurements and projection of those measured 

fields onto the brain; this is a mathematically ill posed problem which limits spatial resolution, 

and resulting timecourses of neural current typically represent the integrated activity across a 

relatively large tissue volume. MEG offers a significant advantage compared to EEG in this 

regard since, unlike the electric field, the magnetic field is not distorted by the inhomogeneous 

and poorly defined conductivity profile of the brain/skull/scalp, meaning that models of extra-

cranial fields (i.e. forward models) are potentially of greater accuracy in MEG. MEG also offers a 

higher signal-to-noise ratio and (typically) more scalp based sensors compared to EEG (~ 300 

compared with typically ~64 in EEG). These factors combined give MEG an improved spatial 

resolution and sensitivity compared to EEG. This said, EEG also offers significant advantages; in 
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particular, EEG signals can be measured inside an MRI system, facilitating simultaneous 

measurements of BOLD and electrophysiology (see e.g. (Gonçalves et al., 2006)). Such 

measurements offer the potential to investigate, e.g. relationships between the inter-trial 

variance of BOLD and EEG signals, within single subjects (see e.g. (Mullinger et al., 2013)). This 

is not (at present) possible with parallel MEG/fMRI experiments where comparisons must be 

limited to spatial, temporal, cross subject or cross task condition correlation. It is clear therefore 

that both parallel MEG/fMRI, and simultaneous EEG/fMRI offer complementary 

advantages/disadvantages to investigate relationships between the BOLD signal and 

electrophysiology. 

 

For the purpose of the present review, we limit ourselves to the discussion of parallel 

MEG/fMRI studies. In practice, fusion of MEG and fMRI data is not trivial. Firstly, comparison of 

MEG and fMRI signals in brain space requires solution of the ill posed inverse problem and this 

typically introduces a degree of spatial ambiguity. Moreover, even if accurate localisation is 

possible,the projected signal is rich in information, with time and phase locked event related 

fields observable alongside neural oscillatory processes (i.e. the magnetic fields generated by 

rhythmic activity in large neural cell assemblies). Oscillations occur across a wide range of 

frequencies between 0 and 200Hz (commonly labelled δ (1- 4Hz), θ (4 – 8Hz), α (8 – 13Hz), β 

(13 – 30Hz), γ (> 30Hz)). Within specific brain regions, following a stimulus or task, it is possible 

to measure changes in oscillatory power, phase and power-phase coupling. In fact, multiple 

characteristic oscillatory effects are often observed in response to a single event, separated in 

frequency and/or time. In addition to oscillatory effects, ‘evoked’ responses are also observed. 

These typically comprise transient deflections of the measured signal that are time and phase 

locked to stimulus onset and offset. A good example of the complex neuromagnetic response is 

the robust effect elicited by a simple finger movement; in the contralateral motor cortex one 

observes both a decrease in oscillatory power in the beta band and a simultaneous movement-

related increase in power in the gamma band. This is followed by an increase in beta power 

(above baseline) following movement cessation, known as the post movement beta rebound 

(PMBR). This type of multifaceted response is typical, and complicates MEG/fMRI data fusion 

since it remains largely unclear which, if any, MEG detectable effects are driving the fMRI signal. 

This is a critical point since the fusion of MEG and fMRI to obtain high spatial and temporal 

resolution is only useful if the two signals reflect directly the same underlying 

neurophysiological events. With this in mind, recent years have seen the combination of MEG 

and fMRI open up exciting avenues of research exploring the nature of the haemodynamic 

signal, the electrophysiological signal, and their relationship to one another.  
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In this paper, we will review a body of work on the relationship between MEG and fMRI 

measurements. Section 2 will describe the origins of both the neuromagnetic and 

haemodynamic signals and will highlight theoretical and experimental evidence implying that 

both originate from post synaptic currents. In Section 3 we will discuss some of the key studies 

aimed at correlating MEG and fMRI measures, placing particular emphasis on neuronal 

oscillations. Recent years have seen a paradigm shift in fMRI towards approaches which seek to 

elucidate brain regions exhibiting temporally correlated haemodynamic signals, known as 

networks of functional connectivity. Current MEG literature has attempted to mirror such 

findings and in Section 4 we will review the aspects of the MEG signal that appear to correlate 

with fMRI measures of connectivity. Electrophysiological and haemodynamic effects are both 

controlled via neurochemical mechanisms, and in Section 5, we will review briefly some of the 

experimental findings that attempt to correlate both MEG and fMRI to neurotransmitter levels 

measured using magnetic resonance spectroscopy (MRS). Finally, in Section 6, we will draw 

these observations together and offer opinions on the relationship between MEG and fMRI, and 

on the future of parallel studies. 

 

2. Signal Origins 

The principal origins of both MEG (Cohen, 1968) and blood oxygen level-dependent (BOLD 

(Ogawa et al., 1990)) fMRI signals are summarised in Figure 1. 

 

2.1. MEG 

MEG measures the magnetic fields induced above the scalp surface by current flow in the brain. 

There are two principal sources of current in the brain, post synaptic (dendritic) and axonal; 

theoretical evidence suggests that the measurable magnetoencephalogram originates largely 

from post synaptic current flow. There are two reasons for this: 1) dendritic current flow is a 

good approximation to a current dipole for which field falls with distance as 1/(distance)2; 

whereas axonal currents are quadrupolar and field falls as 1/(distance)3. Since MEG detects 

magnetic field at a relatively large distance, the contribution of dendritic current will be larger. 

2) The dipole moment of a single dendrite (approximately 20fAm) is insufficient to generate a 

detectable extra-cranial magnetic field, as is the quadrupole moment of a single axonal current. 

In fact, for a detectable field, some tens of thousands of dendritic currents must flow in 

synchrony. The extended temporal duration of dendritic current (an order of magnitude greater 

than action potentials (Ahonen et al., 1993)), coupled with the greater abundance of dendrites 

means that synchrony in dendritic current flow is more likely than in axons. Synchronicity must 

however be coupled with constructive superposition of the fields from multiple dipoles to 

generate a measurable signal. This makes stellate cells unlikely to contribute to the measured 
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field due to their symmetrically arranged dendrites. It follows that current flow in the dendrites 

of cortical pyramidal neurons (where dendrites run asymmetrically, and perpendicular to the 

cortical surface) is the most likely origin of the measurable MEG signals (Ahonen et al., 1993, 

Hamalainen et al., 1993).  

 

This theoretical argument is supported by simultaneous measurements involving invasive 

electrophysiology (measured via implanted cortical electrodes) and MEG. Zhu et al. (Zhu et al., 

2009) compared multi-unit activity (MUA, which is largely of axonal origin), LFPs (which are 

thought to derive principally from post synaptic events) and MEG recordings in monkey 

somatosensory cortex in response to fingertip stimulation. Response latencies measured with 

the three metrics differed, but MEG and LFP were better matched than MEG and MUA. Further, 

the MEG and LFP normalised response amplitudes showed no significant difference, and both 

were significantly larger than MUA, thus supporting the argument that MEG reflects post 

synaptic events.  

 

2.2. BOLD 

Electrical activity in the brain triggers a complex chain of events which ultimately results in a 

measurable change in MR signal. The neurochemical processes which accompany 

electrodynamic changes act on the local vasculature, causing changes in cerebral blood flow, 

cerebral blood volume, oxygen extraction and metabolism (Belliveau et al., 1991, Kwong et al., 

1992, Ogawa et al., 1992). These effects combine to generate changes in relative levels of 

oxyhaemoglobin and deoxyhaemaglobin and this causes changes in transverse relaxation rate 

(T2*) local to the site of neuronal activity which is the basis of the BOLD fMRI signal (Ogawa et 

al., 1990). This transient increase in MR signal is usually termed the BOLD haemodynamic 

response function (HRF). The haemodynamic parameters mentioned above are thought to be 

very tightly spatially coupled to electrodynamics which gives BOLD its excellent spatial 

resolution. However, it takes several seconds for the HRF to peak following stimulus onset and 

likewise several seconds to return to baseline following stimulus cessation; further, the precise 

timing varies across subjects and brain regions (Handwerker et al., 2004). This gives BOLD poor 

temporal resolution that is limited by the physiology of the response itself and not by 

limitations of hardware. 

 

The convoluted dependence of the BOLD signal on haemodynamic and neurovascular coupling 

parameters means that it cannot be viewed as a quantitative metric of brain activity. A change in 

the BOLD signal could arise from a change in neuronal activity, neurovascular coupling, 

haemodynamic state or a combination of these. In addition, the BOLD response is affected by 
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measurement parameters including magnetic field strength, echo time (TE), repetition time 

(TR) and the imaging sequence used. Previous studies have shown that the complex 

dependency of BOLD on neurovascular coupling can cause unexpected results, for example if 

basal blood flow is very high, the BOLD change to a stimulus may be lost (Gauthier et al., 2011).  

fMRI is also very susceptible to physiological noise, for example studies have shown that both 

the cardiac and respiratory cycles generate BOLD artifacts (e.g. (Dagli et al., 1999, Birn et al., 

2006)). Despite its qualitative nature, it is generally accepted that the BOLD response is, in 

effect, an index of energy demand in the brain, with a positive response indicating increased 

energy usage due to local cortical processing. In considering the relationship between MEG and 

BOLD, it is therefore instructive to consider the physiological origins of this energy demand.  

 

Attwell and Laughlin (Attwell and Laughlin, 2001) estimated that in human grey matter 

approximately 74% of ATP consumption was associated with repolarisation following synaptic 

currents, and that energy demand is not dominated by spiking activity (Cruetzfeldt, 1975). This 

calculation is in general agreement with experiments based upon simultaneous recording of 

electrophysiology and BOLD. Combined electrophysiology and fMRI is relatively popular to 

explore the coupling between the neuronal activity and haemodynamic response, although most 

literature is limited to the study of experimental animals (Logothetis et al., 2001, Shmuel et al., 

2006, Goense and Logothetis, 2008, Goloshevsky et al., 2008). Multiple studies have 

demonstrated that the BOLD response is more closely coupled to LFP rather than MUA 

(Logothetis et al., 2001, Niessing et al., 2005, Shmuel et al., 2006, Goense and Logothetis, 2008). 

In addition, Logothetis and colleagues (Logothetis et al., 2001) showed that spiking activity was 

not a good indicator of the BOLD response and linearity was seen between BOLD and LFP 

responses. Shmuel and colleagues (Shmuel et al., 2006) found correlation between negative 

BOLD responses and a reduction in neuronal activity measured using LFP in the visual cortex of 

monkeys. Additionally, linearity between BOLD and somatosensory evoked potentials due to rat 

forepaw stimulation has been demonstrated (Goloshevsky et al., 2008). Evaluation of these 

relationships in humans is difficult due to the invasive procedure; however invasive recordings 

are occasionally undertaken when patients undergo surgery and studies in general further 

imply a close relationship between LFP and BOLD (Conner et al., 2011, Harvey et al., 2013). 

Conner et al (Conner et al., 2011) investigated the spatial variation of LFP/BOLD coupling using 

electrocorticography. LFP-BOLD coupling was dependant on frequency band and brain region 

but generally, positive correlations were seen in the gamma band, and negative correlation in 

the beta band. This general pattern was also shown by Mukamel et al. (Mukamel et al., 2005). 
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The generally close relationship between BOLD and LFP, which is predominantly post synaptic 

in origin, is critical in the context of the present paper since it shows that fMRI signals, like MEG 

signals, are thought to largely result from a dendritic (rather than axonal) origin. The 

combination and/or comparison of MEG and fMRI therefore make theoretical sense. 

 

 

 

 

3. Task driven studies using MEG and fMRI: 

The fact that MEG and fMRI signals are likely to originate from similar underlying physiological 

processes suggests that, despite the two signals exhibiting fundamentally different properties 

(Figure 1), a close relationship is highly probable. In this section we examine two principal 

modes of comparison between MEG and fMRI; spatial similarities and temporal/spectral 

relationships. 

 

3.1. Spatial Relationships 

The spatial relationship between brain areas identified as exhibiting a task induced signal 

change by BOLD fMRI and MEG is of significant interest, particularly in applications such as pre-

surgical planning (Grummich et al., 2006) where spatial precision is paramount. However, the 

question of whether BOLD and neuromagnetic signals originate from the same brain location is, 

to an extent, confounded by the limits of spatial resolution, and the differences between MEG 

and fMRI.  

 

In MEG, the spatial signature of changes in neural current across the cortex is inferred via 

projection of magnetic field data into brain space. This projection forms a mathematically ill-

posed problem (the MEG inverse problem) and this places a fundamental limit on the spatial 

accuracy of MEG. Over the last two decades there have been significant advances in this field of 

research, which have been key to providing insights into the spatial relationship between MEG 

and fMRI. There are many algorithms available for MEG source estimation, with examples  

including Minimum Norm (Hämäläinen and Ilmoniemi, 1994), LORETA (Pascual-Marqui et al., 

1994), FOCUSS (Gorodnitsky et al., 1995), MUSIC (Mosher et al., 1992), beamforming (Robinson 

and Vrba, 1998, Sekihara et al., 2001), CHAMPAGNE (Wipf et al., 2010) and many others. The 

similarities and differences of these reconstruction techniques have been discussed elsewhere 

(e.g. (Vrba and Robinson, 2001, Hamalainen and Hari, 2002, Singh, 2006)) and it is out of the 

scope of this article to provide an extensive review of these techniques. However it is critical to 

note that, in general, the ill-posed nature of the problem requires that a specific set of 
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assumptions is made prior to projection, meaning that the derived spatial signature likely 

depends on the methodology used for source reconstruction. For example, beamforming (Van 

Drongelen et al., 1996, Van Veen et al., 1997, Robinson and Vrba, 1998, Gross et al., 2001a, 

Sekihara et al., 2001) is known to suppress and/or mis-localise spatially separate sources that 

exhibit high temporal correlation; while minimum norm reconstructions (Hämäläinen and 

Ilmoniemi, 1994) can lead to inaccuracies in radial depth estimation. In addition, most 

algorithms employ a point dipole model of cortical current, which is an excellent approximation 

in the case where a small volume of tissue is generating the measured field; however, this model 

breaks down for coherent activity across large tissue volumes and this can limit spatial 

accuracy. A further problem for source reconstruction originates from the rich nature of the 

MEG signal: As described above, there are multiple aspects to the MEG signal that all have 

different signal to noise ratios (SNRs) and potentially different spatial origins. The spatial 

accuracy in reconstructing these aspects is not necessarily comparable. For example, a 

reconstructed gamma band signal is not necessarily equivalent in spatial accuracy to a 

reconstructed beta band signal, even in the same subject, due to differences in SNR between the 

two effects. Likewise, different signal features may not necessarily adhere to the same 

assumption set (e.g. beamforming may be effective in reconstructing neural oscillations, but the 

assumption regarding temporal correlation may break down for evoked signals). It therefore 

follows that judicious selection and appropriate understanding of the projection algorithm is 

critical if an unbiased view of spatial similarities and/or differences between MEG and fMRI is to 

be generated.  

 

It is tempting to ascribe differences between localisation of fMRI and MEG signals solely to 

inaccuracies in MEG forward and inverse models; however we should point out that errors in 

localisation can arise from other sources. Spatial comparison necessarily requires coregistration 

of MEG and fMRI functional data to the same anatomical coordinate space. This requires 

coregistration of fMRI data to an anatomical image and accurate knowledge of the MEG sensor 

geometry relative to the brain anatomy. The former can be problematic due to differences in MR 

sequences between the functional acquisition and the anatomical image commonly used for 

overlaying results. Specifically, echo planar images typically used for fMRI are low bandwidth 

and therefore highly susceptible to spatial distortion and/or dropout caused by field 

inhomogeneity and gradient non-linearity. MEG data are co-registered to the brain anatomy via 

the use of fiducial markers. Usually, markers comprise electromagnetic coils which are localised 

relative to the MEG system by energising them and modelling the resultant fields. They are 

subsequently localised relative to the head surface, either by digitisation and surface matching 

(Adjamian et al., 2004), or by MR acquisition - replacing the coils with MR visible markers. In 
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both cases significant errors can result, from movement of the markers on the skin, inaccuracies 

in digitisation, or susceptibility artifacts giving a systematic error in MRI. In addition to these 

experimental errors, the BOLD response itself can demonstrate mislocalisation of the actual site 

of neuronal activity: for example pooled oxygenated blood in large veins may yield a significant 

BOLD response distal to the true site of neuronal activity (a particular problem at low field) 

(Bandettini and Wong, 1997). Taken together, the above evidence implies that a high degree of 

ambiguity is involved in spatial comparisons between fMRI and MEG. 

 

Despite the difficulties, there have been a number of efforts to examine the co-localisation of 

MEG and BOLD signals. Indeed, a wide range of disparate MEG-derived signals have 

demonstrated a close spatial relationship with BOLD, including task induced changes in 

oscillatory power in multiple frequency bands from theta to gamma, as well as the phase locked 

evoked response (Moradi et al., 2003, Brookes et al., 2005, Winterer et al., 2007, 

Muthukumaraswamy and Singh, 2008, Zumer et al., 2010, Stevenson et al., 2011, Stevenson et 

al., 2012). For example, Singh and colleagues (Singh et al., 2002) measured the spatial signature 

of BOLD and induced oscillatory power changes in MEG in response to two cognitive tasks, 

showing a good spatial relationship between BOLD and the focal locations of event related 

power changes in alpha band signals. The principal results of this study are reproduced in 

Figure 2 which shows the group fMRI and MEG beamformer maps for a letter fluency task. Table 

1 summarises further studies reporting spatial discrepancies (measured as Euclidian distance) 

between peaks in MEG and BOLD responses. All studies demonstrate a reasonably close spatial 

relationship, with mismatches of < 30mm.  Although spatial discrepancies of this order are 

substantial, they cannot easily be attributed to a fundamental difference in signal origins, given 

the limitations in accuracy of the techniques employed, as described above. 

 

The evidence from using MEG and fMRI independently to assess Euclidean distance between 

sources therefore implies that spatial relationships exist between these modalities. Other 

studies go beyond this, and use fMRI spatial information to inform the reconstruction of MEG 

data (Dale et al., 2000, Fujimaki et al., 2002, Ahlfors and Simpson, 2004, Babiloni et al., 2004, 

Sato et al., 2004, Im et al., 2005, Henson et al., 2010, Ou et al., 2010). For example Henson and 

colleagues use a parametric empirical Bayesian framework for fMRI constrained MEG source 

reconstruction. This enables the use of fMRI based priors to solve the MEG inverse problem. 

Interestingly, the authors found higher model evidence when employing fMRI priors to inform a 

minimum norm solution, implying a degree of spatial concordance. (However, the same study 

found no such improvement when using a multiple sparse priors (MSP) inverse model). Most 

importantly, this study and others like it exemplify more principled and statistically rigorous 
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frameworks in which to test the existence of significant spatial relationships between MEG and 

fMRI. This said, studies aimed at data fusion in this way must still bear in mind the potential for 

systematic errors in localisation, as described above. 

 

3.2.  Temporal and Spectral relationships 

Given the difficulties in relying only on spatial aspects of task induced fMRI and MEG signals to 

compare modalities, it is instructive to include temporal and spectral analyses to provide insight 

into the aspects of electrophysiology that are most closely aligned with the BOLD response. An 

example is provided by (Zumer et al., 2010) who examine the correlation between temporally 

deconvolved BOLD responses and the MEG response to a visual stimulus across a wide range of 

frequency bands. This study (the main results from which are given in Figure 3A/C) summarises 

a general finding that a high degree of negative correlation is observed between stimulus 

induced BOLD responses and induced changes in neuronal oscillatory amplitude in the low 

frequency bands (e.g. alpha and beta). This low frequency negative correlation is complemented 

by a significant positive correlation in the mid and high gamma range. MEG results bear distinct 

similarities to results acquired using invasive electrode recording of LFP signals in the auditory 

cortex of conscious epilepsy patients during natural auditory stimulation. These results, 

published by Mukamel and colleagues (Mukamel et al., 2005), are captured in Figure 3B for 

comparison. Notice the general similarities between MEG and LFP, with negative correlation at 

low frequency and positive correlation at high frequency. This change in polarity may reflect a 

difference in functionality, e.g. low frequency responses may represent long range thalamo-

cortical or cortico-cortical interaction whereas high frequency responses more likely represent 

localised networks. It is interesting to note also the differences in the curves in Figures 3A and 

B: the fall in correlation in MEG at high frequency is likely to relate to the loss of SNR. The 

difference in the frequency at which a cross over between negative and positive correlation is 

observed (~50Hz for MEG and ~25Hz for LFP) could result from many factors including 

differences between LFP and MEG, differences between cortical areas or stimulation type. 

Nevertheless these results show direct parallels between MEG and LFP, and also the 

relationship of both to fMRI.   

 

There are a number of studies that have attempted to further probe the relationship between 

MEG and BOLD via parametric variation of stimulus parameters. E.g. Stevenson and colleagues 

(Stevenson et al., 2011) investigate BOLD and β-band responses to graded visual stimuli (i.e. 

variation of Michelson contrast), showing that BOLD signal increases non-linearly with contrast  

(see also (Tootell et al., 1995)) whilst beta band power loss during stimulation was 

approximately equal regardless of visual contrast. This was in contrast to the visual gamma 



12 
 

band response, which increased monotonically with stimulus contrast, (see also (Hall et al., 

2005)). Such findings have led to a hypothesis that the BOLD response may comprise a more 

direct reflection of gamma oscillations than of lower frequency effects (Logothetis et al., 2001, 

Hall et al., 2005, Niessing et al., 2005). However, MEG based evidence is beginning to show that 

significant demarcation exists between BOLD and gamma oscillations; for example recent work 

(Muthukumaraswamy and Singh, 2008, 2009) reported that gamma amplitude in primary visual 

cortex exhibits substantial variation with spatial frequency, whereas BOLD responses do not. 

Likewise, further work (Swettenham et al., 2013) shows that unlike visual gamma oscillations, 

BOLD responses are relatively insensitive to stimulus parameters such as colour. Overall, 

evidence suggests that the relationship between fMRI and neural oscillations (at least in visual 

cortex) is a complex one. It is unlikely that a simple one-to-one relationship exists between 

haemodynamics and oscillations in any individual frequency band (Winterer et al., 2007) and 

further experimentation is required to better elucidate existing relationships. 

 

4. Functional Connectivity Approaches 

4.1.  Functional Connectivity MRI 

In recent years there has been a paradigm shift in fMRI analysis with the increased use of 

“functional connectivity” approaches, the aim being to show that spatially separate regions 

demonstrate a ‘functional relationship’, usually measured as a statistical interdependency 

between signals. Functional connectivity, assessed by fMRI (fcMRI), typically examines temporal 

correlation between BOLD signals from separate regions. This is often done with the brain 

apparently at rest (i.e. in the absence of a defined task). Biswal et al. (Biswal et al., 1995) found 

that left and right motor cortices demonstrate correlated BOLD timecourses in the absence of a 

stimulus. This early work initiated a large number of studies which have led to the discovery 

that the brain can be divided into to a relatively small number of highly robust spatially well-

defined networks of connectivity (Beckmann et al., 2005, Damoiseaux et al., 2006) some 

associated with sensory function and others with cognitive or attentional processes. Functional 

connectivity between brain regions is now generally accepted as being key to healthy brain 

function; moreover, abnormalities in connectivity have been observed in a number of 

pathological cases (Tian et al., 2006, Seeley et al., 2009, Liu et al., 2013a, Liu et al., 2013b). The 

current use of fcMRI is now wide-ranging, from clinical studies in Alzheimer’s disease (Liu et al., 

2013b) and Parkinson’s disease (Liu et al., 2013a), to the study of neurodevelopment (Jolles et 

al., 2011) and the effect of pharmacological agents (Liao et al., 2012). Indeed, this area of 

neuroimaging research has grown dramatically of late, with publications increasing four-fold in 

the past four years (source PubMED, publications in 2008 and 2012, functional connectivity in 

the title/abstract and MRI featured). 
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The robust and spatially distinct nature of measured networks of functional connectivity 

provides a new platform upon which to investigate relationships between fMRI and MEG. This 

platform ameliorates some of the confounds associated with spatial comparisons listed above: 

for example, spatial comparisons can be made not just between unimodal regions measured 

across modalities, but between whole brain networks, each comprising multiple nodes. 

Furthermore, comparisons can be made over multiple networks within a single study. Most 

importantly, cross modality studies of functional connectivity provide novel information on the 

electrophysiological processes that underpin temporal correlation between BOLD timecourses, 

and therefore should provide insights into the electrophysiological correlates of BOLD signals. 

 

4.2. Studies of MEG Measures of Connectivity 

The utility of MEG to measure connectivity has been shown by a large number of previous 

studies (examples include (Tass et al., 1998, Ioannides et al., 2000, Gross et al., 2001a, Gross et 

al., 2002, Nolte et al., 2004a, Ramnania et al., 2004, Schlögl and Supp, 2006, Jerbi et al., 2007, 

Gow et al., 2008, Nolte et al., 2008, Schoffelen and Gross, 2009)). However, the use of MEG to 

investigate the large scale distributed networks often observed in fMRI is relatively recent, with 

studies focussed on confirming that such networks are electrophysiological in origin, and are 

not a haemodynamic artefact (e.g. arising from connected vascular territories). Functional 

connectivity metrics for MEG are complicated by the richness of the MEG signal. In fcMRI, 

functional connectivity assessment is largely confined to correlation between BOLD 

timecourses; however, in MEG there are many potential metrics for interaction (Schölvinck et 

al., 2013). Coupling between band limited oscillatory power envelopes is perhaps the simplest 

metric and has been used successfully to elucidate long range statistical dependency between 

MEG signals. For example, Liu and colleagues (Liu et al., 2010) demonstrated cross hemisphere 

beta band power correlations between MEG sensor measurements. Coupling between 

oscillatory phase has also been employed; for example, Gross et al. (Gross et al., 2001b) 

proposed a popular method to assess coherence between cortical sources and this has been 

used to identify networks of connectivity in Parkinsonian patients (Timmermann et al., 2002). 

There are also many other ways to image connectivity including phase lag index (Stam et al., 

2007, Hillebrand et al., 2012), imaginary coherence (Nolte et al., 2004b, Sekihara et al., 2011), 

synchronisation likelihood (Stam and van Dijk, 2002) and others. It is beyond the scope of this 

review to list all of the possible metrics for functional coupling in MEG; however this 

abbreviated list provides some indication of the myriad metrics that are available. 

 

4.3. Relationship between fMRI and MEG: Measures of Functional Connectivity 
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The relationship between the BOLD response and changes in MEG oscillatory power during a 

task implies that if the large scale distributed networks observable in fMRI were to be measured 

in MEG, then assessment of band limited power correlation would be informative. This has been 

shown to be the case, and there is now good evidence emerging showing that significant 

statistical interdependencies exist between source reconstructed MEG signals at spatially 

separate nodes of fMRI networks. Specifically, if one takes the band limited amplitude envelope 

of MEG data at some seed location within a node of an fMRI network, one generally finds that 

across the whole brain, the highest correlation often occurs within a separate node of that same 

fMRI network. One of the first demonstrations of this (de Pasquale et al., 2010) used source 

space reconstruction and correlation between band limited power envelopes in the theta (3.5–

7Hz), alpha (8-13Hz), beta (14-25Hz), gamma (27-70Hz) and broad (1- 150Hz) frequency 

bands. They found networks in MEG that demonstrated similarities with default mode and 

dorsal attention networks commonly found in fMRI. Further expansion of these findings came 

from Brookes et al. (Brookes et al., 2011a) who used a seed based correlation approach to show 

that temporally down-sampled amplitude envelopes are correlated across the left-right motor 

cortices, mirroring the findings of Biswal and colleagues (Biswal et al., 1995). Dependence on 

frequency band was also investigated with the strongest correlation evident in the beta band. 

These findings were also mirrored by Hipp et al. (Hipp et al., 2012), who have extended this to 

auditory and visual networks, as well as attentional networks that have been previously well 

characterised by fMRI. Analogous to the progression of analysis techniques in fcMRI, 

independent component analysis (ICA) has been developed as a way of identifying networks in 

MEG data (Brookes et al., 2011b). Again, the down-sampled Hilbert envelope was used as an 

input to a temporal ICA analysis framework. This allowed identification of several temporally 

independent components, which were known to exist within clusters of voxels that form 

distributed spatial patterns. These patterns exhibit significantly higher spatial correlation to 

BOLD networks than matched surrogate data, implying a degree of spatial concordance for 

some networks. This ICA approach has also been applied to task positive data (Brookes et al., 

2012, Luckhoo et al., 2012, Hall et al., 2013).  

 

Evidence therefore suggests that a degree of spatial similarity exists between patterns of 

haemodynamic and electrophysiological connectivity. Networks observed in MEG are not 

perfect spatial matches to those observed in fMRI and the differences, which are often 

overlooked, may be just as important as the similarities. One example of such differences is the 

sensorimotor network, where the supplementary motor area (SMA) displays high correlation 

with left and right motor cortices in fMRI but is rarely seen in MEG. This discrepancy could 

reflect a genuine difference between the sensorimotor network observed in fMRI and MEG due 
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to the different signal origins. However, it could also relate to technical limitations of MEG not 

being able to accurately reconstruct the sources present in the SMA. Indeed, although network 

metrics offer some advantages over spatial matching of task dependent regions, spatial 

matching of networks remains confounded because the spatial smoothness and (more 

generally) the ill posed inverse problem necessarily generates spatial imprecision. 

 

One interesting aspect of these investigations is the finding that the best spatial match between 

fMRI and MEG networks occurs, in many cases, via assessment of neural oscillations in the beta 

frequency band (Figure 4B). This finding should be treated somewhat cautiously, since it is well 

known that the SNR of MEG data falls with increasing frequency; furthermore, the high gamma 

band can be affected by muscle artifacts (see (Hall et al., 2013) for specific examples of this). In 

the resting state, data are necessarily unaveraged and thus SNR and muscle artifacts are more 

likely to have an effect. It is therefore possible that the preference for beta band in connectivity 

analyses may be brought about by increased signal to noise in this frequency range. However, 

this caveat aside, the finding of frequency dependence in MEG functional connectivity analyses 

may offer useful insights into the relationship between fMRI and MEG, and more importantly 

the fundamental role of neural oscillations in the brain.  

 

An increasing body of literature suggests that neural oscillations might perform a key role in 

binding separate brain regions together and promote information transfer between distant foci 

(Engel and Singer, 2001, Buzsáki and Draguhn, 2004, Roopun et al., 2008). Moreover, a model 

has been proposed (Donner and Siegel, 2011) in which decreased beta/increased gamma 

amplitude is suggested to represent local neural processing, whereas increased beta power is 

associated with ‘integrative processes’ across larger networks. This model is in agreement with 

the general finding in task positive studies that local increases in activity (as evidenced by a 

positive BOLD response) are associated with increased gamma amplitude and decreased low 

frequency (including beta) amplitude (see Figure 3). Further, the model may also explain the 

finding that the closest MEG correlate to functional connectivity between networks occurs in the 

beta band (Figure 4). This model is therefore supported by much of the available evidence from 

traditional (task based) comparisons of fMRI and MEG as well as more recent functional 

connectivity comparisons. It offers the exciting possibility to unite these two areas, and 

ultimately to generate a framework against which future multi-modal studies can combine data 

from fMRI and MEG in a principled way. 
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5. Relationship Between Neurotransmitters and fMRI/MEG: 

Neuronal activity is mediated by a delicate balance of excitatory and inhibitory 

neurotransmitters. Aspects of this neurotransmission can be measured using magnetic 

resonance spectroscopy and it is informative, in order to further understand the origins of MEG 

and BOLD, to review briefly this literature. 

 

5.1. MEG and MRS Studies 

Studies relating MEG responses to neurotransmitters have focussed mainly on gamma-

aminobutyric acid (GABA) (Edden et al., 2009, Muthukumaraswamy et al., 2009, Gaetz et al., 

2011, Muthukumaraswamy et al., 2013). Muthukumaraswamy et al. (Muthukumaraswamy et al., 

2009) found a significant positive correlation between peak frequency of induced gamma band 

oscillations in visual cortex (in response to a stationary grating) and baseline GABA 

concentration in the occipital lobe (Figure 5). This relationship was also shown by (Edden et al., 

2009). Gaetz and colleagues (Gaetz et al., 2011) reported similar effects in the motor system: 

participants performed a button press task and the frequency of gamma oscillations was 

positively correlated with GABA/NAA. In addition, the amplitude of the PMBR was positively 

correlated with GABA/NAA. These results were said to support the theory that the PMBR is a 

period of GABAergic inhibition. Other studies have used pharmacological intervention to 

manipulate endogenous GABA levels in order to observe the effects on MEG signals (Hall et al., 

2010, Hall et al., 2011, Muthukumaraswamy et al., 2013). Diazepam is a GABA-A receptor 

modulator and has been shown to have a cross-frequency impact on MEG power (Hall et al., 

2010) and to increase the beta band power loss during movement, but leave PMBR and 

movement related gamma increase unchanged in response to finger movement (relative to pre-

drug baseline) (Hall et al., 2011). Tiagabine has also been used to increase the synaptic GABA 

concentration by blockade of the GAT1 uptake receptor (Muthukumaraswamy et al., 2013). 

Tiagabine induced an elevated baseline beta power; increased movement related beta decrease 

and reduced PMBR in response to finger movement (relative to pre movement baseline). These 

results, taken collectively, begin to elucidate a neurochemical mechanism underlying neural 

oscillations, with combined evidence pointing towards beta oscillations as a good indicator of 

GABAergic inhibition, at least in the motor system.  

 

5.2. BOLD and MRS Studies 

A greater number of studies investigate the relationship between BOLD and neurotransmitter 

levels. Chen and colleagues (Chen et al., 2005) demonstrated that elevated endogenous GABA 

levels, elicited using vigabatrin in rats, reduced stimulus induced BOLD responses to forepaw 

stimulation. In humans, several studies have looked at the correlation of GABA with positive 



17 
 

BOLD responses. For example Muthukumaraswamy and co-workers (Muthukumaraswamy et 

al., 2009) measured BOLD responses to a static grating showing that BOLD change was 

negatively correlated with GABA concentration (Figure 5). Donahue et al. (Donahue et al., 2010) 

looked at BOLD, CBV and CBF responses to an 8Hz reversing checkerboard and baseline GABA 

in visual cortex. Significant negative correlation was seen between the BOLD signal change and 

GABA/Cr ratio, in agreement with Muthukumaraswamy. A separate study (Northoff et al., 2007) 

found that resting GABA measurements from the anterior cingulate cortex (ACC) correlated 

with negative BOLD responses in the ACC caused by affective picture judgement and perception. 

A more recent study (Muthukumaraswamy et al., 2012) looked at the haemodynamic response 

function obtained from a static visual grating paradigm and its relationship with basal GABA 

concentration. The amplitude of the HRF was shown to be negatively correlated with GABA 

concentration, and the HRF width was positively correlated. The change in HRF shape is 

suggestive of a change in the neurovascular coupling rather than a neuronal source. These 

studies support a logical conclusion that increased GABAergic inhibition results in decreased 

BOLD response magnitude.  

 

Relatively few studies have assessed the role of glutamate in the BOLD response to a stimulus 

(Duncan et al., 2011, Falkenberg et al., 2012). Duncan et al. (Duncan et al., 2011) found that 

glutamate levels in the perigenual ACC were positively correlated with BOLD signal change in 

the supragenual ACC. Falkenberg and colleagues (Falkenberg et al., 2012) measured basal 

glutamate in the left and right dorsal ACC and BOLD during an auditory cognitive control task. 

The BOLD response as a function of task difficulty depended on basal glutamate levels: low 

glutamate levels led to increased BOLD response with task difficulty, but subjects with high 

glutamate levels demonstrated higher BOLD responses for the easier tasks across many brain 

regions. Again these studies support the notion that increased glutamate, in general, leads to 

increased BOLD responses. Future studies are now required to understand how glutamatergic 

neurotransmission affects MEG signals; such studies will likely facilitate further insight into 

relationships between MEG and fMRI. 

 

6. CONCLUSIONS 

For many researchers, multi-modal imaging using MEG and fMRI in parallel offers the obvious 

and exciting possibility of measurement of neurophysiological processes with excellent spatial 

resolution provided by fMRI, and excellent temporal resolution provided by MEG. The ability to 

track neural dynamics which such precise resolution may reflect a ‘holy grail’ of functional 

neuroimaging; however, we would argue that a direct combination of fMRI and MEG signals is 

only useful if 1) we have good evidence that the two modalities reflect the same underlying 
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neurophysiological process and 2) a physical framework by which to combine information from 

the two techniques is available. Such a framework can only be the result of a good 

understanding of the relationship between the measured signals and for this reason, the 

primary purpose of this article was to review current evidence relating to that relationship.  

 

We have presented both theoretical and experimental evidence showing that both the measured 

MEG and fMRI signals are primarily driven by post synaptic (or dendritic) cellular processes. 

However, MEG and fMRI signals are disparate in nature, being reflective of electrophysiology 

and haemodynamics respectively. Their relationship is further complicated by a fundamental 

lack of understanding as to the role of the measurable electrophysiological signals as well as the 

neurovascular coupling that mediates the BOLD response. That said, collective evidence from 

multi-modal studies across over a decade of research is beginning to generate a picture that 

may offer insight, not only into the relationship between fMRI and MEG, but rather into the 

fundamental role of many of the measurable processes themselves.  

 

In this paper we have reviewed evidence that suggests spatial concordance between the BOLD 

response and MEG metrics including oscillations and evoked responses.  These spatial relations 

have been shown to exist using ‘traditional’ analyses (measuring of task related change in 

unimodal brain areas) and also using functional connectivity approaches. Aside from 

demonstrating the expected (given the origin of the two signals) spatial agreement, these 

observations, coupled with a cross spectral assessment, offer more subtle insight into how 

different aspects of the MEG signal relate to the haemodynamic response. For instance, 

assessment of correlation between stimulus induced responses in unimodal brain areas shows 

evidence for a general trend towards negative correlation between BOLD and low frequency 

neural oscillations, and a concomitant positive correlation between BOLD and high frequency 

oscillations. Although we must stress that, riding on top of this trend are subtle disparities; e.g. 

parametric variation of stimulus parameters having different effects on gamma and BOLD 

signals, the general trend would appear to fit with the model of Donner and Siegel suggesting 

that an increase in local processing is signified by an increase in gamma oscillations and a 

decrease in beta oscillations. Further, we have seen evidence from functional connectivity 

studies potentially suggesting the involvement of beta band oscillatory processes in the large 

scale functional connectivity network patterns that are observed in BOLD fMRI. This potentially 

suggests a role for beta band oscillations in information transfer between spatially separate 

nodes of known cortical networks: it fits with the notion that neural oscillations are involved in 

long range communication, and again is in agreement with a model suggesting positive beta 

amplitude may be indicative of integrative processes across distal brain regions.  
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The relationship between BOLD and MEG signals is undoubtedly complex and the observations 

and arguments presented here remain far from a quantitative understanding. However, we are 

now in a position to generate testable hypotheses. Furthermore, the richness of the MEG signal 

is constantly being exploited with novel metrics continually being devised. For example, 

imaging of signal complexity or entropy (Robinson et al., 2013) offers a potential new way to 

provide further insight into the relationships between neuroimaging signals. 

 

Parallel MEG/fMRI studies such as those summarised here have generated a wealth of 

information. However, it is becoming increasingly clear that input from other related 

measurements is necessary if further direct insight is to be gained into the basis of MEG and 

fMRI signals. In this context, some of the most important evidence to date has derived from the 

growing literature on combining MEG and/or fMRI with MRS. Recent studies have begun to 

elucidate how basal levels of GABA and glutamate covary with haemodynamic and 

electrophysiological signals, shedding potential light on the aspects of neurochemistry that 

drive functional signals. However, particularly in the case of glutamate, these basal proton MRS 

metrics may not be good measures of neurotransmitter pools, still less of neurotransmitter 

activity. Future studies using carbon-13 MRS may help in this regard, as they enable the rates of 

neurotransmitter cycling (glutamate/glutamine and GABA/glutamate/glutamine) to be 

determined and these are much better estimators of excitatory and inhibitory neurotransmitter 

activity.  

 

For many, the key question is “which technique should I use for my study – MEG or fMRI?” To 

this we arrive at the rather obvious answer that, in studies directed towards precise spatial 

characterisation of brain regions or networks, BOLD is a better alternative, despite its indirect 

nature (one caveat being that in patient groups where the local vasculature is significantly 

perturbed, BOLD can be misleading (see for example (Rossini et al., 2004)). For high temporal 

resolution, MEG is preferable. However, the true power of neuroimaging techniques to provide 

new information on brain function and dysfunction lies not in their individual use, but rather 

their integration. Such integration must be aimed beyond simply gaining high temporal 

resolution from MEG and high spatial resolution from fMRI but rather towards exploiting the 

relative advantages of these techniques and others (MRS, concurrent EEG/fMRI). At present, 

functional neuroimaging offers a wealth of non-invasive methods to probe aspects of brain 

function including haemodynamics (fMRI), electrophysiology (MEG/EEG), and neurochemistry 

(MRS). It is by combining these technologies within carefully designed experimental paradigms 
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that we may test current models relating to the signals we measure, and ultimately realise the 

potential of functional imaging for genuine insight into functional brain physiology.   
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Table 1: Spatial relationship between BOLD fMRI and MEG responses 

Author Stimulus MEG Signal Separation 

(mm) 

(Stevenson et al., 2011) Visual 
β-ERD 9 ± 2 

β-ERS 14 ± 2 

(Stevenson et al., 2012) Median nerve 
β-ERD 29 ± 6 

β-ERS 13 ± 2 

(Winterer et al., 2007) 

Visual, button 

press to indicate 

LHS/RHS stimulus 

α-ERD, L visual 16.2 

α-ERD, R parietal 10.3 

β-ERD, L motor 21.8 

γ-ERD, L motor 16.9 

θ-ERD, R motor 24.1 

θ-ERD, R ACC 28.7 

(Brookes et al., 2005) Visual 

sustained field 8 ± 12 

γ-ERD  9 ± 15  

α-ERD 11 ± 9 

(Muthukumaraswamy and 

Singh, 2008) 
Visual 

γ 6 ± 1 

(Moradi et al., 2003) Visual Evoked field 3 ± 2 

(Zumer et al., 2010) Visual β-ERD/γ-ERS 13 ± 3 

 

  



28 
 

Figure Captions 

 

Figure 1: Schematic diagram showing the origins of both the MEG and BOLD signals. From an 

initial stimulus a neuronal response is generated which induces a magnetic field and a vascular 

response via chemical and metabolic signalling. The magnetic fields generated by the neuronal 

response are detected in MEG. The changes in the deoxyhaemaglobin levels (dHb) due to 

vascular changes (blood flow (CBF), volume (CBV) and oxygen consumption (CMRO2) are 

detected in BOLD fMRI. 

 

Figure 2: Spatial relationship between MEG and fMRI for a letter fluency task. (a) is the group 

fMRI results and (b) is the group beamformer image (peak across all frequency bands is shown 

for each voxel). Figure reproduced from Singh et al. 2002 Task-Related Changes in Cortical 

Synchronization Are Spatially Coincident with the Hemodynamic Response. NeuroImage 16:103-

114   

 

Figure 3: a) Timecourses of neural oscillatory amplitude in visual cortex in response to a simple 

visual stimulus. Different colours correspond to different frequency bands. b) Correlation 

between deconvolved BOLD and MEG responses, plotted as a function of frequency c) 

Equivalent correlation, measured invasively in human auditory cortex in epilepsy patients 

undergoing natural stimulation (watching a movie). Figures 3a and 3b reproduced from Zumer 

et al. 2010 Relating BOLD fMRI and neural oscillations through convolution and optimal linear 

weighting. NeuroImage 49:1479-1489.  Figure 3c reproduced from Mukamel et al. 2005 

Coupling Between Neuronal Firing, Field Potentials, and fMRI in Human Auditory Cortex. Science 

309:951-954. 

 

Figure 4: (i) The  spatial relationship between fMRI and MEG measures of functional networks. 

(ii) Frequency dependence of correlation between two notes of the sensorimotor network. Real 

data is shown in red, matched simulated data in green, and the blue shaded region indicates the 

95% confidence interval, Figures adapted from Brookes et al. 2011 Investigating the 

electrophysiological basis of resting state networks using magnetoencephalography Proc Natl 

Acad Science 108:16783-16788. 

 

Figure 5: The relationship between GABA, stimulus induced peak gamma frequency and BOLD 

change. Figure reproduced from Muthukuraswamy et al (2009) Resting GABA concentration 
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predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans, 

Proc Natl Acad Science 106:8356-8361 

 


