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In the multimodal neuroimaging framework, data on a single subject are collected from inherently different
sources such as functional MRI, structural MRI, behavioral and/or phenotypic information. The information
each source provides is not independent; a subset of features from eachmodality maps to one or more common
latent dimensions, which can be interpreted using generative models. These latent dimensions, or “topics,”
provide a sparse summary of the generative process behind the features for each individual. Topic modeling,
an unsupervised generative model, has been used to map seemingly disparate features to a common domain.
WeuseNon-NegativeMatrix Factorization (NMF) to infer the latent structure ofmultimodal ADHDdata contain-
ing fMRI, MRI, phenotypic and behavioral measurements. We compare four different NMF algorithms and find
that the sparsest decomposition is also themost differentiating between ADHD and healthy patients.We identify
dimensions that map to interpretable, recognizable dimensions such as motion, default mode network activity,
and other such features of the input data. For example, structural and functional graph theory features related
to default mode subnetworks clustered with the ADHD-Inattentive diagnosis. Structural measurements of the
default mode network (DMN) regions such as the posterior cingulate, precuneus, and parahippocampal regions
were all related to the ADHD-Inattentive diagnosis. Ventral DMN subnetworks may have more functional con-
nections in ADHD-I, while dorsal DMNmay have less. ADHD topics are dependent upon diagnostic site, suggest-
ing diagnostic differences across geographic locations. We assess our findings in light of the ADHD-200
classification competition, and contrast our unsupervised, nominated topics with previously published super-
vised learning methods. Finally, we demonstrate the validity of these latent variables as biomarkers by using
them for classification of ADHD in 730 patients. Cumulatively, this manuscript addresses how multimodal data
in ADHD can be interpreted by latent dimensions.

© 2013 Elsevier Inc. All rights reserved.
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Introduction

StructuralMRI, functionalMRI (fMRI), phenotypic andbehavioral in-
formation all are examples of multimodal data that can be used tomea-
sure different aspects of a patient. A challenging problem inmultimodal
imaging is the integration of EEG and fMRI data, both measures of neu-
ronal activation. Finding a mapping between the observed and latent
feature spaces is not a trivial process. These features are on very differ-
ent spatial and temporal domains, and are subject to different sources of
artifacts. Despite this, advances have been made in this mapping with
methods such as multiway partial least squares (Martınez-Montes
et al., 2004), ICA-based methods (Calhoun et al., 2009; Eichele et al.,
2009; Liu and Calhoun, 2007;Mantini et al., 2010), canonical correlation
analysis (Sui et al., 2011), and Bayesian-ICA hybrid approaches
(Lei et al., 2010).

When combining other data sources that are not measures of
neuronal activity, such as structural imaging, phenotypic information,
or behavioral data, this problem becomes evenmore difficult. Although
these information sources are distinct in the general case, they likely all
share some common information. Because of this, investigating the la-
tent dimensions of multimodal data allows observations from different
modalities to be linked together. When contrasting healthy and dis-
eased patient groups, identifying the latent dimensions could suggest
a generative model of the disease itself.

Generative models such as Hidden Markov Models (Rabiner, 1989),
Restricted Boltzmann Machines (Smolensky, 1986), and Latent
Dirichlet Allocation (Blei et al., 2003) (LDA) can be used to infer the un-
derlying joint probability distribution by which the observations are
generated. Non-negative matrix factorization (NMF) is a related tech-
nique that can be mapped directly to LDA when applying non-
informative priors with maximum-likelihood estimation (Gaussier
and Goutte, 2005; Girolami and Kabán, 2003). NMF can also be viewed
as a positively-constrained version of independent component analysis
(ICA) (Højen-Sørensen et al., 2002; Hyvärinen and Oja, 2000).

NMF and ICA are both matrix decomposition methods; NMF is a
parts-based representation where the basis images, W, are constrained
to be positive, while ICA is a holistic decomposition that instead
constrains each basis to be statistically independent, thus permitting
negative basis values and encoding values. When applying these tools
to imaging data, the results are drastically different. For example, run-
ning ICA on images of faces produces ghostly-appearing faces for the
basis functions, while performing NMF on the same sets of images
would yield identifiable body parts, such as a pair of eyes or a mustache
(Lee et al., 1999).
In the NMF framework a matrix, V, is broken down into a product
using multiplicative updates, given by V ≈ WH (Lee et al., 1999). This
technique has been applied widely elsewhere to genetics (Devarajan,
2008; Kim and Park, 2007; Qi et al., 2009), document retrieval
(Molgaard et al., 2007), document clustering (Xu et al., 2003) and
image classification (Guillamet et al., 2003; Liu and Zheng, 2004). We
apply it here to our multimodal data, including the demographic
variables in our model.

In this paperwe useNMF to identify latent dimensions inmultimod-
al data, finding “topics” across phenotypic, behavioral, structural and
functional MRI onto which all the multimodal data map. Each dimen-
sion would contain a subset of the original features, providing both a
sparse summary of a subject's information, as well as a mapping across
modalities. We apply this technique to the ADHD-200 dataset (Mennes
et al., 2013) containing MRI, fMRI, behavioral and phenotypic informa-
tion from Attention Deficit Hyperactivity Disorder (ADHD) youth and
typically developing (TD) patients. We identify the latent dimensions
behind this multimodal dataset, and demonstrate how these latent
features additionally can be used for classification of ADHD. Although
our results are specific to ADHD, the methods are applicable to multi-
modal data in general. These topics are directly interpretable, relating
to specific domains such as the default mode network (DMN) which
has been implicated previously in ADHD.

As opposed to supervised discriminative models where the features
predict a diagnosis (ADHD vs. healthy controls), we use an unsuper-
vised generative model to map multimodal features to a common
space. We do not limit this mapping to exclusively imaging features,
but include in our latent variablemodel the behavioral and demographic
features. We hypothesize that topics which link the diagnosis to
imaging and phenotypic variables may nominate biomarkers related
specifically to the disease state, while topics not containing the diagno-
sis variable can still illuminate the relationship of features across
modalities.

Default mode network

The default mode network (DMN), represents a collection of distrib-
uted brain regions that oscillate coherently at low frequency duringpas-
sive resting state when an individual is not focusing on external stimuli
(Raichle et al., 2001). The brain regions that comprise the DMN nodes
are intrinsically functionally correlated with one another (Biswal et al.,
1995), and are connected via direct and indirect anatomic projections
(Greicius et al., 2004). DMN low frequency oscillations are typically
attenuated during goal-oriented tasks, and activity strength in task
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related brain regions (e.g. dorsal anterior cingulate cortex (dACC)) tend
to be anticorrelated with DMN. Changes in the DMN have become hall-
mark indicators of pathogenesis in a number of conditions including
Alzheimer's disease (Greicius et al., 2004), depression (Sheline et al.,
2009), and autism spectrum disorder (for review see Buckner et al.,
2008).

Recently, a number of studies have demonstrated both struc-
tural and functional changes in the DMN associated with ADHD
(e.g. Yu-Feng et al., 2007). It has been speculated that ADHD indi-
viduals may have diminished ability to continuously sustain atten-
tion on a task due to interference by the DMN (Fassbender et al.,
2009; Sonuga-Barke and Castellanos, 2007). Fair et al. (2010) sug-
gested that this may be due to different rates of maturation of the
DMN (Fair et al., 2010).

ADHD

ADHD is a highly complex disorder marked behaviorally by prob-
lems with sustained attention and task prioritization. Its spectrum of
clinical features typically is expressed along the domains of persistent
inattention (ADHD-I), hyperactivity-impulsivity (ADHD-H) or a combi-
nation of both (ADHD-C) (American Psychiatric Association, 2000),
often affecting cognitive, emotional, and motor processes (Cortese,
2012). The clinical diagnosis in children is made after gathering infor-
mation from parent and teacher surveys and ratings on ADHD-specific
behavioral rating scales. In order for the diagnostic criteria to be met,
the clinical features must be present in at least two settings and the
core symptoms must actually interfere with daily life at school, home,
and/or work (American Psychiatric Association, 2000).

Despite its high prevalence in children (∼5%) (Swanson et al., 1998),
the precise neural, genetic and cognitive underpinnings of ADHD re-
main unclear. While the heritability of ADHD also is well established, a
clear link between genes and the heterogeneous clinical features of
ADHD remains elusive, and it is likely that multiple neural pathways
and factors lead to the phenotypic expression of ADHD and its three
subtypes. It is possible that identification of quantitative neuroimaging
biomarkers would improve detection and diagnosis, thus providing
the impetus for the machine learning (ML) contest. Further, an im-
proved understanding of the interactions of both the neuroimaging
and other biomarkers may offer clues of the physiological basis of the
disease.

ADHD-200 competition

Towards this aim, the ADHD 200 global ML competition (http://fcon_
1000.projects.nitrc.org/indi/adhd200/index.html) challenged the neuro-
imaging and datamining communities to develop a pattern classification
method to predict ADHD diagnosis based on a combination of structural
MRI, resting state functional MRI (rs-fMRI), and demographic metrics. To
provide data for this competition, one of the largestmultisite data consor-
tiumswas initiated to provide open access to data fromnearly a thousand
children and adolescents with ADHD as well as age-matched controls.
This dataset has been much published on in a short time (Cheng et al.,
2012; Dai et al., 2012; Mills et al., 2012; Olivetti et al., 2012; Tomasi and
Volkow, 2012a,b), allowing a direct comparison of the methodology
and the common problems they all faced.

This competition was remarkable for many reasons, including the
large sample size for the training set (491 TD, 285 ADHD), the number
of contributing data centers (8), and the number of international teams
competing (21). Even more remarkable, however, were the results of
the competition. In general, it was much easier to classify TD than
ADHD, with high specificity and low sensitivity from all the teams. The
scoring system used within the competition was biased toward this, as
it gave more “points” for diagnosing correctly TD than ADHD-subtype.
However, even when equal weightings were used, diagnostic accuracy
was still much greater for TD children.
Surprisingly, the top placing team from University of Alberta
was disqualified on the grounds of not using any neuroimaging data
in a neuroimaging competition, predicting their results on the pheno-
typic variables alone (Brown et al., 2012). After testing various fMRI
measures (temporally-meaned fMRI signal per voxel, voxel-projected
timecourses into PCA space, low-frequency voxel Fourier components,
voxel weightings on functional connectivity maps derived from ICA)
in competition with phenotypic information (site, age, gender, handed-
ness, IQ measures) with multiple machine-learning algorithms (linear
SVM, cubic SVM, quadratic SVM, and Radial Basis Function (RBF)
SVM classifiers, the Alberta team selected a logistic classifier that used
only the diagnostic information to classify on the test-set. This classifier
obtained the highest prediction-accuracy within the competition of
62.5%.

Following the disqualification, the official top-scoring team from
Johns Hopkins University predicted using a voting scheme across four
different algorithms (Eloyan et al., 2012). They used as features func-
tional connectivity data from the motor cortex,as well as seed-voxel
correlation analysis. Structural features were not used. The most accu-
rate of their four algorithms used a CUR matrix decomposition of the
functional scans (Mahoney and Drineas, 2009) along with gradient
boosting method, which they suspected of capturing the residual
motion that was not removed by the motion correction during prepro-
cessing. Another of their algorithms used Latent Dirichlet Allocation to
identify subsets of imaging featureswhichwere then used for classifica-
tion. This team created in total four different algorithms which they
combined to vote on the diagnosis for each subject. The most accurate
algorithm in a hold-out set was used as the tie-breaking vote.

Our group from UCLA/Yale used structural, functional, and pheno-
typic informationwithin each site to predict ADHD, yielding a 55% accu-
racy with 33% sensitivity and 80% specificity (Colby et al., 2012). We
generated nearly 200,000 neuroimaging features from each subject's
data—ranging from structural attributes such as cortical thickness, to
functional connectivity and graph theoretic measures. In this analysis
we ranked features, and found that caudate volume was one of the
highest-ranked structural features. We used SVM based recursive fea-
ture elimination (SVM-RFE) as awrappermethod based on themultiple
SVM-RFE (mSVM-RFE) extension described by (Duan et al., 2005),
which imposes a resampling layer on each recursion pass such that
the weights used for feature ranking/dropping are stabilized by averag-
ing across results for multiple subsamples. We generated accuracy
curves that related the number of features and error using a 10 fold
cross validation approach. Features that together resulted in minimum
error were selected for our feature set. Further details can be found in
Colby et al., 2012. Diagnostic functional features included graph theoret-
icmeasures related to changes in defaultmode network (DMN) activity,
consistent with the hypothesis that ADHD subjects are impaired in their
ability to inhibit the DMN consistently for task execution (Fair et al.,
2010). Because of intra-site variability we selected features and trained
classifiers within each site, instead of pooling observations together
across sites.

In published studies of ADHD classification using imaging data not
obtained from the ADHD-200 competition, the classification accuracies
were an astonishing 85% (Zhu et al., 2005), which made the classifica-
tion results of the ADHD-200 competition seem rather lackluster by
comparison. Brown et al. (Brown et al., 2012) posited that the ADHD-
200 competition had produced inferior results compared to other neu-
roimaging studies for three possible reasons. 1.) Most neuroimaging
classification studies focused on binary classification, which is a compu-
tationally simpler task than trinary competition as in this study (TD,
ADHD-Combined, ADHD Inattentive). Because there is likely to be sim-
ilarities between the two subtypes of ADHD, training a classifier to dis-
tinguish among such subtle conditions is likely to result in higher error
rates than when distinguishing between a diseased population and
healthy controls. In addition, the scoring system used in ADHD-200
placed a higher priority on classifying TD children than ADHD, which

http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html)
http://fcon_1000.projects.nitrc.org/indi/adhd200/index.html)
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meant that the best “classifier”might not have the greatest overall clas-
sification accuracy. 2.) The ADHD-200 competition used a hold-out
dataset which was entirely independent and separate from the testing
set. Although in most publications 10-fold cross-validation is used to
separate the training and testing sets of data, these usually are not
kept in a “lock-box” during the model selection procedure. Models can
still be trained, features can be selected, and parameters can be opti-
mized across the cross-validation error, leading to the testing set
being biased (Kerr et al., submitted for publication). This means that a
true, lock-box validation set is likely to produce lower classification ac-
curacy than a hold-out set from a cross-validation set that likely has
played a role in the model selection and training. 3.) The ADHD-200
dataset was likely much more difficult to classify upon because of the
heterogeneity and large sample size. For example, there were 8 sites
used for the classification training and testing, each with different scan-
ners used to acquire the data. In addition, two sites contributed only
healthy controls and one site did not submit any training data
(Brown), which undoubtedly affected the way the algorithms treated
Site during classification.
Fig. 1. TopicModeling ofMultimodal Features in ADHD: a conceptual illustration. The structural
in turn generate each subject'smultimodal dataset. By learning the topics, we get amapping acr
V has n feature rows and m observation columns. If V contained a collection of multimodal feat
images” and encodings, such that Viμ ≈ (WH)iμ = ∑k = 1

K WikHkμwhere theWmatrix contains
matrix” H is of dimensions k × m, for row i and column μ.
While the task of optimal feature subset selection is difficult for any
dataset, it becomes even more complex when classification is per-
formed on multimodal data, where the features themselves are repre-
sented in different subspaces and may vary in number over many
orders of magnitude. In particular, it is highly likely that a better selec-
tion of features could lead to improved methods for isolating and
excluding noise, which could have improved the overall predictive
capability of classifiers that used neuroimaging features in addition to
demographic data.

Generative vs. discriminative methods

As opposed to supervised classification algorithms where features
are used to discriminate between certain states (ADHD vs. healthy con-
trols) and redundant features are effectively eliminated, generative
models of multimodal data map features to each other even when
they are unrelated to the diagnosis. These groupings are the latent di-
mensions onto which a subset of the multimodal features all map. This
is shown in Fig. 1. This is similar to saying that the observed features
MRI, functionalMRI, and phenotypic observations are all generated by latent topics, which
ossmultimodal features and a generativemodel behind the observed data. The datamatrix
ures (total features by patients), then NMF would decompose the data into a set of “basis
the basis set of multimodal features (topics) and is of dimension n × k, and the “encoding
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from all modalities are all created by common set of latent topics, where
each topic is a subset of features from across modalities. In comparison,
discriminative algorithms identify and combine the strongest informa-
tion sources to predict a single outcome. Because their primary
objective is to map features to a diagnosis, they are mute on the
relationship of features to each other when the features themselves
are unrelated to the disease.

Using the ADHD-200 competition dataset, we present our results
from unsupervised topic-modeling and discuss how they relate to
previously-published supervised classification models. Although this
application uses a generative model, we validate this construct by
using latent features within a discriminative model to predict ADHD. If
these topics were merely random subjective constructs, using them to
summarize the raw multimodal observations would prove futile to
“diagnose” ADHD. If, however, they were meaningful constructs, then
patients' latent feature scores would be a sparse summary of all ob-
servedmultimodal features, which could then be used for classification.
This would be analogous to the feature selection or dimension reduc-
tions step undertaken in most machine learning models.

Methods

Subject demographic profiles

We limited this study to the original training dataset, to allow direct
comparison to the published studies. This left 7 total Sites. We use 748
subjects, of whom472had been diagnosed as healthy controls. The sub-
jects ranged in age from 7.1 years of age to 21.8 years, with a mean age
of 12.4 years. The full demographic summary tables within Site are
shown in Table 1. The diagnosis rate of ADHD varied across the 7 sites,
of which 2 had only healthy controls. The diagnostic subtypes for
ADHD and the medication status for the patients are shown in Table 2.
The IQ information within each site is shown in Table 3. The ADHD in-
formation is shown in Table 4. Finally, we break down the demographic,
IQ and behavioral information within diagnosis in Tables 6–11, which
are listed supplementally in the Appendix A.

Features

We used fMRI data that was preprocessed and made publicly avail-
able by the Neurobureau using tools from FSL (http://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/) and AFNI (http://afni.nimh.nih.gov/afni). The full details
of the preprocessing pipleline are available at http://www.nitrc.org/
plugins/mwiki/index.php/neurobureau:AthenaPipeline. Briefly, fMRI
data were slice time corrected (AFNI 3dTshift), motion corrected
(AFNI 3dvolreg), registered to MNI-152 space with 4mm3 resolution
(FSL FLIRT), denoised to statistically control for nuisance signals from
the ventricles and white matter (AFNI 3dDeconvolve), and bandpass
temporal filtered between .008 and .09Hz (AFNI 3dFourier). For the
functional data, we used the 12-dimensional motion parameters, the
number of independent components intrinsically estimated for each
subject by FSL Melodic, and a measure of functional connectivity
based upon pairwise regional timeseries correlation of 90 regions of in-
terest defined by Grecius and colleagues (Shirer et al., 2012). We
Table 1
Summary statistics by site.

Site Site ID N A

Kennedy Krieger Institute Site 3 83 0
NeuroImage Sample Site 4 48 0
New York University Child Study Center Site 5 216 0
Oregon Health & Science University Site 6 79 0
Beijing University Site 1 194 0
University of Pittsburgh Site 7 89 –

Washington University in St. Louis Site 8 50 –
derived 90 × 90 functional connectivity matrices and analyzed them
with the Brain Connectivity Toolbox (https://sites.google.com/site/
bctnet/), calculating four graph theory properties for each node:
positive/negative strengthand the positive/negative participation coef-
ficient (Rubinov and Sporns, 2011).

For the structural analysis Freesurfer (Fischl, 2012) was used to
parcellate and segment each subject's T1 MP-RAGE anatomical scan
into 68 cortical regions (34 per hemisphere, based on the Desikan–
Killiany atlas) and 40 subcortical regions. For each of the cortical
regions, the curvature index, folding index, Gaussian curvature, gray
matter volume, mean curvature, surface area, thickness average, and
thickness standard deviation were used to describe the behavior and
form of each region. For each of the subcortical regions, we character-
ized the volume, normalized mean intensity, and the normalized
standard deviation of the intensity.

The phenotypic data contained: the diagnosis (TD, ADHD-
Combined, ADHD-Hyperactive/Impulsive, ADHD-Impulsive), handed-
ness (left/right/ambidextrous), gender, IQ scores and Instrument used
to assess intelligence, ADHD Behavioral measures and the instrument,
and the patients' medication status. All categorical observations were
coded as factors. For example, each site variable was coded as a binary
variable where ‘1’ indicated a member of that site, and ‘0’ otherwise.
Subjects with more than 12missing structural measurements were ex-
cluded from the analysis. We variance-normalized all variables and re-
moved those variables with excessive missing values. All remaining
missing values were imputed using median imputation. This left 730
total patients with 1068 total features, detailed in Table 5.

Non-negative matrix factorization

We applied the Non-Negative Matrix Factorization (Lee et al., 1999)
(NMF) algorithm to this dataset instead of more commonly used
methods such as ICA, because the NMF constraints yield qualitatively
different, and arguably more meaningful, dimensions of the data. As
its name suggests, NMF requires all values in the decomposition to
be exclusively positive. This is similar to imposing a sparsity con-
straint on both the encodings and basis “images”; because the super-
position of basis images must be linear, and because no values are
allowed to be negative, many values are shrunk towards zero. This
sparsity offers an additional interpretative benefit since, as there
are no “negative” loadings. For categorical features where someone is
either female or not (but not negatively female), this positive encoding
offers a more intuitive explanation of the underlying structure being
evaluated.

Furthermore, ICA is usually applied as a within-modality means of
dimension reduction. For example, ICA is frequently applied either
across a group of fMRI scans or within a single scan to extract plausible
networks, which themselves form a within-modality basis set. These
networks can be used to obtain estimates of functional connectivity.
Instead of applying NMFwithin modality, we are applying it acrossmo-
dality where we provide normalized features and let the algorithm
nominate a multimodal basis set.

The data matrix V has n feature rows andm observation columns. If
V contained a collection of multimodal features (total features by
DHD (%) Righthanded (%) Male (%) Age (SD)

.27 0.9 0.55 10.24 (1.35)

.52 0.88 0.65 16.99 (2.74)

.55 0.99 0.65 11.67 (2.92)

.47 1 0.54 8.84 (1.12)

.4 0.98 0.74 11.98 (1.86)
0.96 0.52 15.11 (2.9)
1 0.54 11.33 (3.57)

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
http://afni.nimh.nih.gov/afni)
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline)
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline)
https://sites.google.com/site/bctnet/)
https://sites.google.com/site/bctnet/)


Table 2
ADHD Statistics by Site.

Typically ADHD ADHD ADHD % Medicated

Developing Combined Hyperactive Inattentive Patients

Kennedy Krieger Institute 0.73 0.19 0.01 0.06 0.27
NeuroImage Sample 0.48 0.38 0.12 0.02 –

New York University Child Study Center 0.45 0.34 0.01 0.20 0.47
Oregon Health & Science University 0.53 0.29 0.03 0.15 0.29
Beijing University 0.60 0.15 – 0.25 0.33
University of Pittsburgh 1.00 – – – –

Washington University in St. Louis 1.00 – – – –

Table 3
IQ information within site.

Instrument Verbal (SD) Performance (SD) Full2 (SD) Full4 (SD)

Kennedy Krieger Institute WISC-IV 112.76 (14.52) 108.54 (11.99) – 109.89 (11.96)
NeuroImage Sample – – – – –

New York University Child Study Center WASI 108.57 (15.96) 105.44 (14.64) – 108.30 (14.36)
Oregon Health & Science University WASI – – – 113.76 (14.02)
Beijing University WISCC-R 116.03 (15.12) 106.66 (15.69) – 113.02 (14.66)
University of Pittsburgh WASI 108.68 (10.89) 112.47 (11.30) 111.83 (9.68) 109.81 (11.53)
Washington University in St. Louis WASI-2 subtest – – – 115.86 (14.30)
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patients), then NMF would decompose the data into a set of “basis
images” and encodings, such that

Viμ≈ WHð Þiμ ¼
XK

k¼1

WikHkμ

where theWmatrix contains the basis set of multimodal features and is
of dimension n × K, and the “encoding matrix” H is of dimensions
K × m, for row i and column μ.

The topics are the individual basis images, which have been
thresholded to remove those features with weightings ≈ 0. Because
NMF indirectly encourages sparsity by its positive constraints, roughly
75% of all weights within the basis images are nearly null. This allows
a clear distinction between multimodal features that contribute to a
topic and features that drop out.

Implementation

We implemented NMF using the statistical programming environ-
ment R (R Development Core Team, 2012) using the package NMFN
(Liu, 2012), and by a separate implementation within Matlab (Lin,
2007). Because our goal was to maximize the sparsity of the latent
features, we compared four different NMF algorithms and ultimately
selected the algorithm providing the sparsest basis set. This was equiv-
alent to selecting the NMF algorithm that produced the maximal
amount of null (zero) values in the basis set. We compared the decom-
positions of four different NMF algorithms: NMF can be formulated as a
minimization problem with linear constraints, which can be solved by
alternating least squares (ALS), multinomial, multiplicative-update.
Table 4
ADHD Diagnostic Test Scores within Site.

Instrument AD

Kennedy Krieger Institute CPRS-LV 52
NeuroImage Sample – –

New York University Child Study Center CPRS-LV 59
Oregon Health & Science University CRS-3E –

Beijing University ADHD-RS 37
University of Pittsburgh – –

Washington University in St. Louis – –
These represent different functions measuring the distance between V
and WH. We additionally implemented the projected-gradient to solve
the alternating non-negative least squares problems to obtain NMF;
this has faster convergence and stronger optimization properties than
themultiplicative update approach.We implementedNMFbyprojected
gradient using the Matlab code in (Lin, 2007).

We selected our final algorithm based upon the sparsity of the
encodingswithin the 20 estimated basis images. This is similar tomaking
the assumption that only a subset of the entire set ofmultimodal features
will be related to each other: by looking at each basis vector, we can
effectively zero-out the features with weights that are close to zero,
and interpret the rest as contributing to a given topic. This is shown in
Fig. 2. Based upon this, without knowledge of the actual features, we se-
lected the ALS results for further analysis. We thresholded basis images,
where each “dimension” corresponded to a multimodal feature, at the
25th percentile. This threshold was selected to eliminate all null-
weight features of the W matrix, and left roughly 263 features (n) per
topic k ∈ K.

We additionally tested how each algorithms' encoding matrix
differed between ADHD and TD patients using a 2-sample t-test on
the associated encoding variable for each topic. This is answering the
question of whether any topics were more likely to be expressed in
the patients than the controls, and vise versa. This also was done to as-
sess whether a sparse feature set was truly a more efficient representa-
tion of the disease. All algorithms gave encoding values with more than
chance difference between patients and controls, but the selected ALS
algorithm, whichwas the sparsest, also had themaximal differentiation
between ADHD and TD patients with 9 of the Topics showing statis-
tically significant (uncorrected) encoding levels between groups.
HD (SD) Inattentive (SD) Hyper Impulsive (SD)

.99 (14.17) 53.30 (14.24) 53.79 (13.52)
– –

.29 (5.49) 59.02 (14.79) 58.16 (14.45)
59.14 (14.76) 57.38 (15.87)

.60 (13.46) 20.52 (7.46) 17.08 (6.89)
– –

– –



Table 5
Multimodal Features Description.

Modality n Description

Phenotypic 26 Demographic, Diagnostic, medication status.
Independent Components 1 Number of independent components found within subject
Motion 12 12-dimensional motion parameters from functional scans
Structural 667 Freesurfer cortical and subcortical measurements
Functional 362 Functional connectivity matrices based upon Grecius atlas
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Validation using machine learning

We next validated the latent features by rerunning NMF on a
dataset that had been stripped of all diagnostic information and
ADHD scale scores, leaving behind only the functional, structural, de-
mographic, and IQ testing information. We set the number of topics
to 20 according to (Smith et al., 2009), although this is a parameter
which could be investigated in future work. After running NMF
with 20 dimensions, we extracted the encodingmatrix, H, of dimension
(20 × 730), for 20 topics and 730 subjects. Each of the 20 values per
subject represent the subject's score within that latent dimension.
These were used as features to predict diagnosis (ADHD vs. TD).

Using leave-one-out cross-validation, we used Weka (Hall et al.,
2009) to train a C4.5 decision tree using data from all but one patient
to diagnose the left-out patient (Quinlan, 1993). The identity of the
validation patient was then permuted so that each patient was the val-
idation patient once and only once. At each node, the treewas trained to
split the training data into two daughter populations based on a thresh-
old value for one of the 20 encoding bases vectors, such that the
Kullbeck–Leibler divergence, or information gain, between the two
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Fig. 2. Basis Values resulting from NMF factorization of Feature Matrix using four different N
Update, and Multinomial Estimation. The number represents the total number of encoding d
upon a 2-sample t-test. There were 20 total dimensions extracted using NMF.
daughter populations was maximized. The tree was pruned such that
this information gain and number of training instances per daughter
population was greater than 0.25 and 2, respectively. Due to the fact
that only one of 730 patientswas left out in each of the 730 trees trained
on each training set, we expect this to closely resemble the actual
decision tree used for each validation case.

The topics learned from the data not containing diagnostic informa-
tion are subtly different than those learned on the full dataset. To illus-
trate the learned decision tree with respect to the topics discussed in
this paper, we create a mapping from the “unbiased” features (learned
without diagnostic information), to the biased features (learned with
biased information) using the correlation of the basis vectors. This is
shown in Fig. 7. Between the “biased” dataset and the “unbiased”
dataset, the mapping across topics learned was fairly consistent with a
correlation of roughly 90% between pairs of Topics from each dataset's
NMF. This was established by using the encoding matrix, and identify-
ing topics from the different analyses which had highly correlated
encoding values across patients. This shows a consistency of the NMF
algorithm itself, where Topics across slightly changed datasets can be
matched up.
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imensions which were different (statistically significant) between ADHD and TD, based



Fig. 3. Sample of features selectedwithin topics 10, 12 and 14. For each topic, there were 236 features selected. All 20 topics, each containing 236 features, are available at http://ariana82.
bol.ucla.edu/downloads-2/files/ALSNMFTopics.xlsx for download.

Fig. 4. Phenotypic features selected by topics, across 20 topics. The most common pheno-
typic variables nominated across topics were IQ-related, describing either the IQ scores on
a given test or the IQ test given.
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Results

Among the 20 topics, 9 had statistically significant differences be-
tween ADHD and TD patients within the encoding values (uncorrected
p-values) as shown in Fig. 2. This significance was established across
all Sites, even though some topics were site-specific; many topics
contained “Site Y” variables indicating that being a member of that site
was associated with that particular topic. If we had performed testing
only within the sites identified within the topics, we likely would have
seen more significant tests but, as this was not the primary objective of
the paper, we didn't pursue this testing further.We use this Site-wide sig-
nificance level to help us identify topics that may be associated uniquely
with the disease, but also interpret non-significant topics as well. The
full list of topics is available at http://ariana82.bol.ucla.edu/downloads-
2/files/ALSNMFTopics.xlsx aswell as a supplement to this article, showing
the decompositionwith NMF using ALS.We show3 partial topics in Fig. 3.

Topic distributions

The most frequently selected phenotypic variables across topic was
IQ (32%) followed by Site (27%), as shown in Fig. 4. This was followed
bydiagnostic information,with 10% of thephenotypic variables selected
being diagnosis related (TD, ADHD-HI, ADHD-I) as well as ADHD
testing-related (13%).

The most commonly selected features were cortical structural infor-
mation as shown in Fig. 5, but this may have been because the largest
feature set was cortical; the total number of features in each modality
were: Cortical (545), Subcortical (124), Connectivity (363), Number of
Independent Components (ICs) (1), Motion (12), and Phenotypic (23).

http://ariana82.bol.ucla.edu/downloads-2/files/ALSNMFTopics.xlsx)
http://ariana82.bol.ucla.edu/downloads-2/files/ALSNMFTopics.xlsx)
http://ariana82.bol.ucla.edu/downloads-2/files/ALSNMFTopics.xlsx)
http://ariana82.bol.ucla.edu/downloads-2/files/ALSNMFTopics.xlsx)
image of Fig.�4


Fig. 5. Total feature modality selected within topic. Cortical features were more likely to be present in the topics than others, due to them having a greater representation in the original
dataset.
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When we normalized by the number of features in each modality, we
were able to identity more striking patterns in the distributions where
phenotypic observations, motion parameters, ICs and subcortical
measurements were over-represented in their selection for topics, as
shown in Fig. 6.

Interpreting topics in the DMN context

In the context of the current work, we found a number of structural,
functional connectivity, and graph theoretic metrics occurring with
ADHD test score that are consistent with the DMN in Topic 12. Morpho-
logicmetrics related to the rostral ACC, forexample, clusteredwith ADHD
index score andADHD-I, perhaps related to decreased anticorrelationbe-
tween posterior DMN nodes and rostral ACC that has been noted in both
ADHD adults (Castellanos et al., 2008) and children (Sun et al., 2012).
ADHD score also clustered with changes in caudate and putamen
volume. Recent meta-analyses of structural differences have reported
decreased volume in basal ganglia regions including the caudate,
putamen, and globus pallidus (Ellison-Wright et al., 2008), possibly re-
lated to observations that ADHDsubjects have altered levels of dopamine
(DA) transporter densities in striatal regions (McGough, 2012).

Motion: Topics 10 and 14

Topics 10 and 14 contained 10/12 and 9/12 possible motion param-
eters. These topics also identified a larger number of cortical than
Fig. 6. Relative feature modality selected within topic, relative to the total number of feature
dataset, we see that phenotypic observations, motion parameters, ICs, and subcortical were sel
subcortical features identified, indicating that cortical measurements
may be more susceptible to motion than subcortical. Topic 10 was sta-
tistically different between patients and controls, and did not have any
Site markers. The encoding values for each topic indicate how strongly
that topic is implicated in that subject; the ADHD patients had higher
encoding values than the TD patients, indicating that ADHD patients
were more likely to contain motion-related features from this topic
(p-value b 1.0 e − 04). Topic 14 was not significant between patient
groups, yet included the Site variables 1,3, and 7, indicating that this
was a uniquepattern found in those locations. For both of these features,
the number of ICs from the fMRI analysis was a selected feature.

Validation

The cross-validation accuracy using our C4.5 decision treewas 66.8%
(63.4–70.2%) with a specificity of 50.6% (44.6–56.6%) and sensitivity of
76.2% (72.3–80.1%). All intervals reflect 95% confidence intervals and
were compared to a naïve classifier that classifies everything as the
most common class (TD).

Discussion

Default mode network in ADHD

Topic 12 was statistically different between TD and ADHD and clus-
teredwith the ADHD-I diagnosis. A number of structuralmetrics related
s within that modality. After correcting for features which were over-represented in the
ected heavily within topics.

image of Fig.�5
image of Fig.�6


Fig. 7. Decision tree for discriminating between ADHD patients and healthy controls. The
primary tree split (Topic 15) contained a marker for the Site Pittsburg, which contained
only healthy controls. The second split, Topic 1, contained IQ phenotypic variables. The
third split, Topic 10, contained many motion parameters.
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to DMN nodes were present in the topic including posterior cingulate,
precuneus, and parahippocampal regions. Increasing evidence and
meta-analysis suggests that the DMN actually consists of a series of sub-
networks that communicate and coactivate through overlapping nodes
(Laird et al., 2009). For example, the medial temporal lobe is thought to
provide episodic memory associations that are used while generating
self-referential thought patterns. Although the exact number of subsys-
tems is still debated, the pCC and precuneus are thought to be key DMN
integration nodes. This clustering is interesting given that an overall de-
creased network homogeneity, particularly with respect to precuneus
functional connectivity, has been reported in resting state data from
ADHD children (Uddin et al., 2008).

Nearly half the features in this topic were related to graph theoretic
metrics. Negative strength in the dorsal DMN nodes including pCC and
medial PFC and negative strength (number of connections) related to
the precuneus network clustered with ADHD-I. Despite the low
strength related to the precuneus network, a high participation
coefficient also clustered in Topic 12 with ADHD-I. While this may be
some formof compensationmechanism, the reason for this remains un-
clear. Positive strength inventral DMNnodes, including the retrosplenial
cortex and medial temporal lobe were also part of this cluster. In
interpreting this topic, it appears as though ventral DMN subnetworks
may have more connections in ADHD-I, while dorsal DMN may have
less. Overall, this may be related to the fact that the latency of recovery
of the DMN appears different across the DMN subnetworks (Van De
Ville et al., 2012). Fair et al. (2010) also applied graph measures to
DMNdata in ADHD adolescents and found theDMNwas amore strongly
connected network in TD patients, though these results were below the
threshold of significance (Fair et al., 2010).

Motion topics

The identification of motion artifacts and the presence of highermo-
tion topics in ADHDwas an expected finding given the known relation-
ship between ADHD and motion. In a study using infrared motion
analysis, boys with ADHD were found to have 2.3 times greater head
motion than healthy boys (Teicher et al., 1996). Motion is a known con-
taminant in fMRI andMRI (Friston et al., 1996), andmanymethods exist
to mitigate this artifact (Oakes et al., 2005). Motion correction algo-
rithms in fMRI may, however, induce artifacts of their own when high
levels of motion aren't present (Freire and Mangin, 2001). This could
be problematic in studies where one patient group is expected to
move more than others. Uncorrected data would naturally have higher
levels of noise in the ADHD group, while motion-corrected data may
have artifacts introduced in the TD group. The motion topics also con-
tain both contain as a feature the “Number of ICs”. This is consistent
with the finding that ICA can frequently identify and nominate motion
artifacts, and has been used as a method of motion artifact correction
(De Martino et al., 2007). Finally, the high presence of motion artifacts
in two topics echoes the earlier findings of (Eloyan et al., 2012) who
found that motion parameters were quite powerful for classification of
ADHD in their winning algorithm.

Machine learning validation

Using latent features as variables for classification proved to be a
validmeans of dimension-reduction prior to classification. The observed
cross-validation accuracywithin this (training) dataset is comparable to
the testing accuracy in the ADHD-200competition using individual neu-
roimaging features, but is still less than the accuracy of classifiers that
used only the demographic information. Our objective in identifying
topics was to map multimodal features to each other; their ability to
map observational data to a diagnosis is a fringe benefit, and indicates
the flexibility of generative models.

The tree splitfirst on Topic 15,whichwas also the Topicwith themost
different p-values between ADHD and TD (p b 4e − 16). This Topic
contained the variable Site 7, which contained only TD patients. It also
contained several IQ measures. The second split, Topic 1, contained only
IQ-related phenotypic features, and was significant between patients
and controls (p b 2.5e − 07). The third topic, Topic 10, contained many
motion parameters and was statistically different between patients and
controls.

Conclusion

We see several factors which may have contributed to the dismal
classification accuracy of this ADHD-200 dataset relative to other studies.
For this dataset, the demographics within each subpopulation were dif-
ferent, with OHSU females having substantially higher IQs than the rest
of the population. Because many prior studies were on small samples
with a median of 39 participants obtained from a single site, the samples
were likely homogenous and thus easier to discriminate amongst. The
classification accuracy was maximized when training each model within

image of Fig.�7
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site, and that even pooling the data and adjusting for Site did not outper-
form training within each Site alone.

Pittsburg/Site 7, andWashington University/Site 8, contributed only
normal controls. Site 8 loaded on Topics 3 and 18; for neither of these
topics did the model distinguish between ADHD and control subjects.
Interestingly, Site 4 (NeuroImage) is implicated in these same topics
and Site 5 (NYU) in Topic 3 and Site 6 (OHSU) in Topic 18. Site 4
(NeuroImage) subjects were substantially older than the subjects in
other sites as the mean age was almost 17 years. Sites 5 and 6 had the
highest proportion of Inattentive subtype patients. As people with
ADHD age, hyperactive symptoms become more internalized and inat-
tention becomes the more dominant expression of the disorder. Note
that of all topics where the Inattentive subtype was included, Topics 5,
7, 12, and 17, Site 6 was also included. As Topic 12 distinguished be-
tween ADHD and control subjects and included loadings for the Inatten-
tion scale and Site 5 and Site 6, this topic might be of special interest in
characterizing subjects with primarily inattentive subtype of ADHD.
According to Cortese (Cortese et al., 2012), patterns of fMRI activation
differ between adults and children. Therefore, it may be advantageous
to repeat the analysis in future work with this dataset only among
younger participants who are not of inattentive subtype.

This frequent nomination of Site within NMF-derived topics raises
important questions about diagnostic homogeneity and the possibility
that either ADHD is not a distinct diagnosis. Theremay be different diag-
nostic practices within each site. For example, in the Beijing site, females
with low IQs were exclusively diagnosedwith ADHD. This may indicate a
subjectivity in the diagnosis, where two identically matched peoplemay
receive a different diagnosis depending on where they are evaluated.

There are certain limitations to this work; we set the number of
topics based on previous imaging work (Smith et al., 2009), but did
not investigate this parameter. We selected our NMF algorithm
based upon our hypothesis that sparsity in the basis set would im-
prove classification accuracy. Although we demonstrated that spar-
sity did coincide with the ability to separate patients and controls
in a t-test, a set of thoroughmachine learningmodels was never con-
structed to validate this hypothesis. Although we had information on
who was being medicated for most Sites, there was no information
on dosages, specific medications, and compliance. This necessarily
implies that topics on an unmedicated group, or on a homogeneously
medicated group, could be quite different, as it is impossible to
Table 6
Summary statistics by site for typically developing children.

Site N

Kennedy Krieger Institute 61
NeuroImage Sample 23
New York University Child Study Center 98
Oregon Health & Science University 42
Beijing University 116
University of Pittsburgh 89
Washington University in St. Louis 50

Table 7
IQ information within site for typically developing children.

Instrument Verbal (SD)

Kennedy Krieger Institute WISC-IV 114.02 (13.
NeuroImage Sample – –

New York University Child Study Center WASI 111.61 (13.
Oregon Health & Science University WASI –

Beijing University WISCC-R 119.74 (13.
University of Pittsburgh WASI 108.68 (10.
Washington University in St. Louis WASI-2 subtest –
disentangle the disease from the medication status. Finally, our hy-
pothesis of sparsity producing better topics was never fully tested,
but could be in future work by seeing how the sparsity of topics af-
fected the classification accuracy of ADHD. Future research is needed
in more homogeneous samples with respect to medication status,
disease, behavioral measures as well as with more extensive behav-
ioral and demographic measures to explore the utility of this model
in classifying subjects.

This analysis began initially with modeling the features using tradi-
tional topic modeling, or Latent Dirichlet Allocation. This model
produced null results, where neither Site nor ADHD Diagnosis were
identified within any of the topics. We believe this finding to be an arti-
fact of themodel used possibly relating to the priors; since LDA learned
the entire distribution uniformly even though the data originated from
different Sites, it was unable to perceive hierarchical structures where
the diagnosis of ADHD was contingent upon Site. Because of this, the
model failed to identify site-specific effects such as diagnosis. It is possi-
ble that extensions of LDA such as Author-Topic modeling would be
able to correct for the diagnostic and patient inhomogeneity.

We believe that generative models offer a strong alternative to
discriminative models in the analysis of multimodal data. Because gen-
erative models do not focus exclusively on a single feature or diagnosis,
they are able to propose a more complete picture of how themodalities
relate to each other. This framework allows an unconstrained mapping
across features. Althoughwe have investigated only twomodels for this
dataset (LDA and NMF), both methods proposed plausible latent
dimensionswith theDMN topics present in both. Because of this,we ex-
pect future work on generative models to prove a promising approach
for analysis of multimodal data.
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Appendix A
RH (%) Male (%) Age (SD)

0.9 0.56 10.25 (1.27)
0.91 0.48 17.33 (2.57)
0.98 0.47 12.22 (3.12)
1 0.4 8.9 (1.2)
0.99 0.61 11.71 (1.74)
0.96 0.52 15.11 (2.9)
1 0.54 11.33 (3.57)

Performance (SD) Full2 (SD) Full4 (SD)

21) 108.03 (12.64) – 110.55 (11.22)
– – –

61) 107.22 (15.01) – 110.62 (14.34)
– – 118.40 (12.55)

33) 112.40 (14.21) – 118.18 (13.34)
89) 112.47 (11.30) 111.83 (9.68) 109.81 (11.53)

– – 115.86 (14.30)



Table 9
Summary statistics by site for ADHD children.

Site N RH (%) Male (%) Age (SD)

Kennedy Krieger Institute 22 0.91 0.55 10.22 (1.56)
NeuroImage Sample 25 0.84 0.8 16.69 (2.91)
New York University Child Study Center 119 0.99 0.79 11.26 (2.67)
Oregon Health & Science University 37 1 0.7 8.77 (1.04)
Beijing University 78 0.97 0.94 12.38 (1.98)
University of Pittsburgh – – – –

Washington University in St. Louis – – – –

Table 10
IQ information within site for ADHD children.

Instrument Verbal (SD) Performance (SD) Full2 (SD) Full4 (SD)

Kennedy Krieger Institute WISC-IV 109.32 (17.48) 109.91 (10.16) – 108.09 (13.90)
NeuroImage Sample – – – – –

New York University Child Study Center WASI 107.12 (14.30) 103.99 (14.31) – 106.48 (14.18)
Oregon Health & Science University WASI – – – 108.49 (13.88)
Beijing University WISCC-R 110.56 (16.01) 98.21 (13.90) – 105.40 (13.17)
University of Pittsburgh – – – – –

Washington University in St. Louis – – – – –

Table 8
ADHD diagnostic information within site for typically developing children.

Instrument ADHD (SD) Inattentive (SD) Hyper Impulsive (SD)

Kennedy Krieger Institute CPRS-LV 45.19 (4.27) 45.67 (4.95) 46.62 (4.52)
NeuroImage Sample – – – –

New York University Child Study Center CPRS-LV 45.28 (6.04) 45.32 (5.87) 46.31 (5.53)
Oregon Health & Science University CRS-3E – 47.02 (6.24) 45.93 (6.64)
Beijing University ADHD-RS 28.15 (5.98) 15.08 (3.66) 13.07 (3.46)
University of Pittsburgh – – – –

Washington University in St. Louis – – – –

Table 11
ADHD diagnostic information within site for ADHD children.

Instrument ADHD (SD) Inattentive (SD) Hyper impulsive (SD)

Kennedy Krieger Institute CPRS-LV 73.55 (9.78) 73.41 (10.56) 72.68 (10.77)
NeuroImage Sample – – – –

New York University Child Study Center CPRS-LV 71.25 (8.69) 70.41 (9.17) 68.02 (11.89)
Oregon Health & Science University CRS-3E – 72.89 (7.86) 70.38 (12.99)
Beijing University ADHD-RS 51.04 (8.92) 28.27 (3.64) 22.77 (6.54)
University of Pittsburgh – – – –

Washington University in St. Louis – – – –
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Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2013.12.015.
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