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Abstract

Recent work on both task-induced and resting-state functional magnetic resonance imaging 

(fMRI) data suggests that functional connectivity may fluctuate, rather than being stationary 

during an entire scan. Most dynamic studies are based on second-order statistics between fMRI 

time series or time courses derived from blind source separation, e.g., independent component 

analysis (ICA), to investigate changes of temporal interactions among brain regions. However, 

fluctuations related to spatial components over time are of interest as well. In this paper, we 

examine higher-order statistical dependence between pairs of spatial components, which we define 

as spatial functional network connectivity (sFNC), and changes of sFNC across a resting-state 

scan. We extract time-varying components from healthy controls and patients with schizophrenia 

to represent brain networks using independent vector analysis (IVA), which is an extension of ICA 

to multiple data sets and enables one to capture spatial variations. Based on mutual information 

among IVA components, we perform statistical analysis and Markov modeling to quantify the 

changes in spatial connectivity. Our experimental results suggest significantly more fluctuations in 

patient group and show that patients with schizophrenia have more variable patterns of spatial 

concordance primarily between frontoparietal, cerebellum and temporal lobe regions. This study 

extends upon earlier studies showing temporal connectivity differences in similar areas on average 

by providing evidence that the dynamic spatial interplay between these regions is also impacted by 

schizophrenia.
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1. Introduction

A very active research topic in functional magnetic resonance imaging (fMRI) studies has 

been study of functional connectivity—statistical interactions among brain regions during 

cognitive or sensorimotor tasks, or merely from spontaneous activity during rest. 

Dysconnectivity or abnormal connectivity has typically been considered a hallmark of 

various mental disorders, especially schizophrenia (Bullmore et al., 1997; Stephan et al., 

2009). Schizophrenia is still one of the most complex and heterogeneous mental disorders 

that impairs multiple cognitive domains including memory, attention, language, and 

execution function (Danielyan and Nasrallah, 2009; van Os and Kapur, 2009). Previous 

neuroimaging studies have found both structural and functional abnormalities in temporal 

lobe, parietal cortex, and cerebellum regions for schizophrenia (Iritani, 2007). Also, 

evidence of dysconnectivity among a number of brain networks in schizophrenia has been 

reported (Meyer-Lindenberg et al., 2001; Jafri et al., 2008; Yu et al., 2011; Jones et al., 

2012). Most connectivity studies use independent component analysis (ICA), a popular data-

driven method, to reveal robust markers for schizophrenia biomarkers. ICA separates single-

subject fMRI data into a set of maximally independent components and associated time 

courses (McKeown et al., 1998; Calhoun et al., 2001a). Spatial components represent 

temporally coherent brain networks, and functional connectivity among these networks—

called functional network connectivity—is typically defined as the correlation or coherence 

between associated time courses (Jafri et al., 2008; Allen et al., 2011a). An advantage of 

using ICA-based methods for functional connectivity analysis is that no explicit prior 

knowledge about brain activity is required and the estimates are not biased due to selection 

of a seed region of interest. For multi-subject fMRI data, group ICA with temporal 

concatenation of data sets can be used to estimate spatial components for individual 

participants and thus enables group inferences (Calhoun et al., 2001b; Allen et al., 2011b; 

Calhoun and Adalı, 2012).

In most fMRI studies, functional connectivity is typically assumed to be stable during the 

entire scan. There is an increasing interest to develop approaches to examine dynamic 

changes in functional connectivity during the course of an experiment (Hutchison et al., 

2013). For example, Sakoğlu et al. performed an ICA-based dynamic analysis on fMRI data 

acquired during both a resting state and an auditory oddball (AOD) task (Sakoğlu et al., 

2010). A key motivation for such analysis is that connectivity dynamics can capture 

uncontrolled but reoccurring patterns of interactions among brain networks, which are not 

detectable through static connectivity analysis. It is especially important when the focus is 

intrinsic networks that are not necessarily task related, such as during resting state where 

diverse levels of attention and mind wandering are expected. Currently, only a few studies 

have focused on the dynamic changes in resting-state functional connectivity. For example, 

Chang et al. performed a time-frequency coherence analysis based on wavelet 

transformation and found resting-state connectivity fluctuations between posterior cingulate 

cortex (PCC) and the networks having negative correlation with PCC (Chang and Glover, 

2010); Kang et al. introduced a variable parameter regression combined with the Kalman 

filtering approach for resting-state dynamic patterns among eight brain networks (Kang et 

al., 2011); sliding-window correlation analysis was also employed on resting state data using 
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either seed- or ICA-based methods (Hutchison et al., 2012; Starck et al., 2012; Allen et al., 

2012).

The studies described above mainly focus on evaluating dynamic changes in temporal 

patterns. On the other hand, fluctuations related to spatial components over time are of 

interest as well, though there has been little work on this topic. One recent study focused on 

spatial changes within a single network (default mode network) using a group ICA 

framework (Kiviniemi et al., 2011). Analogous to functional network connectivity, we 

previously proposed approaches to evaluate residual component dependencies, i.e., the 

statistical dependencies between spatial (as opposed to temporal) component pairs that 

remain after blind source separation (Ma et al., 2011a,b). Such approaches are promising, as 

it is well known that changes in temporal connectivity patterns imply changes in spatial 

patterns, as shown in group ICA studies (Calhoun et al., 2008). However, the group ICA 

approaches involve a group-level principal component analysis (PCA), which attempts to 

find a common signal space for all subjects and thus introduce an averaging effect over 

group (Esposito et al., 2005; Allen et al., 2011b). Therefore, changes in the patterns of the 

spatial components may not be optimally detected using the group ICA approach. In 

addition, such an approach does not capitalize on the entire data set at once, and in essence, 

breaks the connection between the blind source separation model and the results. Thus, it is 

important to work with a well adapted method to capture such changes.

Independent vector analysis (IVA) is a recent extension of ICA to multiple data sets. IVA 

concurrently extracts independent components by fully exploiting the statistical dependence 

among the data sets (Lee et al., 2008; Anderson et al., 2012). In IVA, the components from a 

single data set are assumed to be maximally independent of each other, as in group ICA 

method. In contrast to group ICA, IVA also maximizes the dependence between associated 

components from different data sets. These associated components are conceptually 

regrouped into so-called source component vectors (SCVs), which cannot be achieved by 

separate ICA of each data set during blind source separation. IVA has shown, in most cases, 

superior performance in capturing variability in spatial components across individuals and 

groups (Dea et al., 2011; Ma et al., 2013; Michael et al., 2013). We also noted that as group 

variability increases, the estimation of the IVA component shows less interference from 

other components than that estimated by the group ICA method (Ma et al., 2013).

In this paper, we define spatial functional network connectivity (sFNC) as high-order 

statistical dependence among the IVA components and examine changes of sFNC over time. 

We employ sliding-window approach to segment resting state fMRI data into overlapping 

time windows. Because IVA performs a joint separation of all time windows and subject 

data sets, our hypothesis is that the spatial variability will be fully captured. This is 

motivated by the absence of a reduction of the data to a common subspace—as needed in 

group ICA approaches—and is backed up with simulation results in (Dea et al., 2011; Ma et 

al., 2013). Hence, IVA is expected to perform much better with small records of data as it is 

fully taking the multivariate nature of all the available data and dependence across data sets 

when performing the decomposition. Based on the residual mutual information between 

spatial components derived from IVA decomposition, we perform statistical analysis and 

Markov modeling to quantify connectivity dynamics in spatial patterns.
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2. Material and methods

2.1. Participants

Participants consisted of 10 healthy controls (HC, average age: 40 ± 11; range: 26–62; three 

females) and 10 patients with schizophrenia (SZ, average age: 44 ± 9; range: 25–54; two 

females). Patients all had chronic schizophrenia and symptoms were also assessed by 

positive and negative syndrome scale (PANSS). All participants were scanned during rest 

and they were instructed to relax with their eyes open and avoid falling into sleep. We 

perform two-sample t-tests on the age and IQ measure of subjects in the HC and SZ groups 

and note no significant group difference.

2.2. Image acquisition and preprocessing

A five-minute resting state scan was acquired on a Siemens 3T Allegra dedicated head 

scanner using single echo planar imaging with the following parameters: repetition time 

(TR) 1.5 s, echo time 27 ms, field of view 24 cm, 64 × 64 acquisition matrix, flip angle 70°, 

3.75 × 3.75 × 4 mm3 voxel size, 4 mm slice thickness, 1 mm gap, 29 slices, and ascending 

acquisition.

SPM software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm5/) was used for 

fMRI data preprocessing, including realignment with INRIalign (Freire et al., 2002), spatial 

normalization into the standard Montreal Neurological Institute (MNI) space, resampling to 

3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels, and smoothing with a 10 mm full width at 

half-maximum Gaussian kernel. In addition, to evaluate differences in motion artifacts 

between two groups, we performed χ2 tests on the six estimated realignment parameters at 

each time point and on the absolute sum of the first three parameters and three rotational 

parameters. We find that for all tests, two groups have no significant differences with respect 

to motion artifacts (p > 0.23). Therefore, we believe that motion artifacts appear to have little 

impact on our study.

A sliding-window approach is used to segment resting state data. We first divide the original 

200 time points for each subject into L = 7 time windows such that each contains T = 50 

time points (window size = 75 s) and 50% of time points are overlapping between two 

sequential windows, as shown in Figure 1. Then the images within each time window are 

reshaped into a matrix (time points by voxel numbers), denoted by a vector x[m,l],m = 1, …, 

M, l = 1, …, L if we consider voxels are samples for each time point, where M = 20 is the 

total number of subjects. Therefore, we perform joint blind source separation on these ML 
data sets, each of size T × V (where V is the number of voxels).

2.3. Independent vector analysis

We apply IVA to achieve joint blind source separation and extract spatial components from 

multiple subjects and different time windows concurrently. We now formulate the IVA 

problem for the multi-subject, multi-window fMRI analysis. Suppose each data set from the 

mth subject at the lth window is formed by the linear mixtures of N independent sources,
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where  is the component vector whose element  is 

the nth underlying component and A is a T-by-N mixing matrix with the nth column 

representing the time course associated with the nth component. To represent associated 

components across all subjects, the nth SCV is constructed by taking each nth component 

from all subjects and windows, i.e., , n = 1, 

…, N. The goal of IVA is then to find M × L demixing matrices W[m, l] and the 

corresponding component vector estimates, y[m, l] = W[m, l]x[m, l],m = 1, …, M, l = 1, …, L, 

such that the estimated SCVs, , n = 1, …, N, are maximally 

independent from each other, where  and  is the nth row of 

W[m, l]. IVA decomposition can be achieved by minimizing the mutual information among 

SCVs

where ℋ (·) is entropy,  is the mutual information within the 

nth SCV, and C is a constant term that depends only on x[m, l],m = 1, …, M, l = 1, …, L. The 

term log |detW[m, l]| is due to the change of variables from x[m, l] to y[m, l]. By minimizing 

this IVA cost function, the dependence among components within each SCV, ℐ(yn), n = 1, 

…, N, is maximized concurrently.

In this work, we use an IVA implementation, namely IVA-GL, which has been incorporated 

in group ICA toolbox (GIFT, http://mialab.mrn.org/software). IVA-GL combines two IVA 

algorithms: IVA-G (Anderson et al., 2012), which exploits only second-order statistical 

information by multivariate Gaussian assumption and IVA-L (Lee et al., 2008), which 

utilizes a multivariate Laplace prior for SCV distribution. Thus, the components within each 

SCV are assumed to be second-order uncorrelated and only higher-order statistics are 

exploited in IVA-L. To take advantages of both algorithms, we initialize IVA-L with a 

solution from IVA-G to achieve IVA-GL decomposition. IVA-GL can yield more robust joint 

blind source separation than using either IVA-L or IVA-G alone (Anderson et al., 2012).

2.4. Functional connectivity measure

After estimating IVA components for the mth subject at the lth window, we quantify sFNC 

between these components by mutual information (MI). A normalized measure of MI is 

calculated as (Dionisio et al., 2004)
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where  and  are two estimated spatial components derived from IVA 

decomposition for the mth subject at the lth window, and ℐ(·,·) is the pairwise MI between 

them, which we estimate by nonparametric kernel-based method (Peng et al., 2005). λ is in 

the range of [0, 1) and a value of zero means completely independent. Then the connectivity 

matrix for the mth subject at the lth time window is constructed using all , 1 ≤ i, ≠ j ≤ 

N.

2.5. Statistical analysis for connectivity dynamics

To examine connectivity dynamics, we calculate several statistical metrics. At each time 

window, two-sample t-test is performed to examine significant differences between the HC 

and SZ groups in the connectivity value between each possible pair of spatial components.

For each subject, we compute the standard deviation (STD) for each connectivity value 

across all time windows. For the ijth connectivity of the mth subject, the sample STD is

where  is the sample mean across time windows. We also calculate the 

median of STD for all subjects within one population group, as shown in Figure 2(a). These 

metrics indicate the level of overall dynamics in spatial connectivity between a pair of brain 

networks. Between different populations, we identify the pairs of brain networks that present 

significant group differences in sFNC changes by using the Mann-Whitney U-test, a non-

parametric hypothesis test for assessing the equality of the population medians of two 

independent samples (Mann and Whitney, 1947). Therefore, we test the null hypothesis that 

the HC and SZ groups have equal medians of connectivity STD over time, against the 

alternative that they do not.

In addition, we construct a vector containing the connectivity values from all possible pairs 

of components for each subject and each window. For the mth subject at the lth window, this 

vector is  with total of N(N − 1)/2 entries. For the mth 

subject, we calculate the Kullback-Leibler divergence (KLD) between this connectivity 

vectors from different time windows, DKL (q[m, i]||q[m, j])+DKL (q[m, j]||q[m, i]), 1 ≤ i ≠ j ≤ L, 

in order to quantify the fluctuations in connectivity distribution as a function of time. 

Similarly, we calculate sample correlation coefficient between connectivity vectors q[m, i] 

and q[m, j], 1 ≤ i ≠ j ≤ L from different time windows.

Besides sFNC dynamics, we also study changes in individual components for each group by 

performing one-sample t-tests across all windows and two-sample t-tests between two 

sequential windows. A statistical significance level of P < 0.05 is used for both tests and is 

corrected for false discovery rate (FDR) (Genovese et al., 2002). For each component within 

one group, MI between subsequent windows, , 1 ≤ i ≤ L − 1, n = 1, …, 

Ma et al. Page 6

Neuroimage. Author manuscript; available in PMC 2016 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



N, is also calculated to show the temporal variability of activated voxels in the spatial 

component. Then across time, we compute the STD of , 1 ≤ i ≤ L−1 for 

the nth component from the mth subject and compare between the HC and SZ groups.

2.6. Markov modeling

We also estimate a first-order Markov chain to examine connectivity dynamics. A clustering 

approach is adopted to learn the finite states in Markov chain of spatial connectivity. For 

each component, we have M × L observations, each with N − 1 connectivity values derived 

between this given component and all other components. We use these connectivity values 

as features and apply k-means clustering to group these observations into k clusters. Each 

cluster then represents a state in the Markov chain.

The number of clusters, k, can be determined by cluster validity indices, e.g., the elbow 
criterion, which is computed as the ratio between within-cluster dissimilarity to between-

cluster dissimilarity. However, it yields a relative large cluster number when applied to the 

data set used in our study. However, we observed that some clusters contain a very small 

number of observations when using the cluster number determined by the elbow criterion. 

To avoid such a clustering solution, we use another index, i.e., silhouette (Rousseeuw and 

Kaufman, 1990), defined as

where for a clustering solution, dW(i) is the average dissimilarity of the ith observation with 

all other observations within the same cluster, and dB(i) is the lowest average dissimilarity 

between the ith observation and the observations in other clusters. We use correlation 

coefficient as the measure of similarity between different observations (thus, dissimilarity is 

1−similarity). If c(i) is close to one, this observation is appropriately clustered; if c(i) is close 

to negative one, this observation might be assigned to a wrong cluster. We explore clustering 

solutions with different cluster numbers over a range (2 to 15 in our study) to find the 

number yielding the highest average silhouette.

After obtaining state labels for individual subjects at each time window, we estimate the 

transition matrix (TM) for each group by counting the state changes between two sequential 

time windows and using all subjects in each group. The procedure is shown in Figure 2(b).

2.7. Validation of results

For each pair of spatial components, we use a resampling technique (Jafri et al., 2008) to 

determine whether the average connectivity in the HC group is significantly different from 

that in the SZ group. We randomly relabel 4 of 10 patients with schizophrenia and 4 of 10 

healthy controls. We re-compute the average MI difference between the two shuffled groups 

in order to build a null distribution. We then calculate a two-sample t-test to determine 

whether the result is significantly different from the average connectivity difference between 

the two actual groups.
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In addition, we validate the results for sFNC dynamics by repeating the experiment on 

subsets of subjects to determine whether the same type of dynamic connectivity is presented. 

The analysis methods, including statistical analysis and Markov modeling analysis, are 

repeated 20 times. In each of the 20 trials, a number of patients and controls are randomly 

selected from the full set of subjects. In our experiment, 8 of 10 patients and 8 of 10 controls 

are chosen each time. For MI test and KLD in statistical analysis, the average value of 20 

trials is obtained. For Markov modeling analysis, the occurrence of significant state transfer 

probability (≥ 0.3) in 20 trials is calculated.

3. Experimental results

We apply our dynamic connectivity analysis method to the resting state fMRI data set and 

divide the 200 time points for each subject into 7 windows. Subject-level PCA is performed 

on individual subject data sets (total of 20 for two groups) to reduce data dimension from 50 

to 30. IVA is run on the ensemble of 140 data sets. Since in real applications, both finite data 

sample size and non-unique decomposition solutions derived from the local optimal points 

of cost function will induce uncertainty into IVA estimation. Therefore, we perform IVA-GL 

algorithm 5 times with different initializations and evaluate the stability of IVA 

decompositions using ICASSO (Himberg et al., 2004), in which the obtained components 

from all runs are grouped into clusters based on the spatial correlation between them and a 

quality index for each cluster is calculated based on average inner- and inter- cluster 

similarities. For the following analysis, we use the estimated components from the most 

stable run, which is determined using the stability index introduced in our previous work 

(Ma et al., 2011a). After obtaining 30 reliable component estimates, we visually inspect the 

spatial maps and remove those components related to artifacts. Finally, total of 12 

components of interest for each subject and each window are selected. One-sample t-maps, 

obtained using all subjects and all windows, of these 12 components are shown in Figure 3. 

We also note that the IVA-GL algorithm is computationally demanding, e.g., for our 

parameters and set-up, one run of IVA-GL algorithm requires more than 16 hours on an 

iMac with 3.5GHz Quad-core Intel Core i7 processor.

3.1. Changes in individual components

For each spatial component, we calculate MI values between two sequential windows and 

the STD of MI for each subject. The box plot of STD for two groups is shown in Figure 4. 

We find that some components exhibit greater temporal variability in spatial maps than 

others, e.g., IC5 in the HC group and IC7 for the SZ group. At each time window, we 

perform one-sample t-test for each component. Within a group, we also calculate two-

sample t-test for each component between different time windows. One example to 

demonstrate the significant differences in individual spatial components at different time 

windows is IC7. As shown in Figure 5, this temporal lobe component from the SZ group 

varies significantly over time, not only the number and location of activated voxels but also 

the voxel values; while in the HC group, the voxels within superior temporal regions activate 

more consistently across time windows, although with variability in voxel values. 

Consequently, such changes in individual ICs may result in dynamic changes in sFNC.
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3.2. Statistical analysis for dynamic connectivity

At each time window, we first perform two-sample t-test between two groups for each 

connectivity. We show the significant group differences in Figure 6(a) if the occurrence 

percentage of significance is greater than 0.7 in 20 trials of random subject selection. We 

also perform resampling for validation. All the group differences shown in Figure 6. (a) are 

significantly different from the shuffled data. Across all time windows, we find that the SZ 

group has a higher number of connections presenting significantly higher connectivity 

values than the HC group. The group difference is also indicated by the average KLD of 

connectivity vectors between two sequential time windows (Figure 6(b)). We find that the 

SZ group presents larger distance value than the HC group. We obtain similar trend for 

correlation coefficients between connectivity vectors, but differences between HC and SZ 

groups decreases.

For each subject, we also compute the STD for each connectivity over 7 time windows and 

the median of STD for all subjects within each group, as shown in Figure 7(a). Between 

different population groups, we perform the Mann-Whitney U-test to identify the pairs of 

components presenting significant group differences in connectivity STD values, as shown 

in Figure 7(b). As we observe in individual components, some pairs of components exhibit 

greater variability in connectivity than others and different pairs of components present 

significant connectivity dynamics for different groups. For example, the connectivity values 

between default mode network (DMN) and the orbitofrontal component (IC8 and IC12), and 

between two visual components (IC3 and IC5), change significantly across time in the HC 

group; while IC12 and IC9 (cerebellum), or IC7 (temporal lobe) and two cerebellum 

components (IC9 and IC10) in the SZ group show significant connectivity fluctuations when 

compared to those in the HC group.

3.3. Markov modeling of dynamic connectivity

In Markov modeling analysis, we perform k-means clustering for each component to obtain 

finite states and use the connectivity values between this component and other components 

as features. Based on average silhouette, we explore the clustering solutions with different 

numbers of clusters by changing the number from 2 to 15. In our study, the final cluster 

number is determined as 3 to yield a relative high silhouette and an appropriate histogram of 

sample number within each cluster. We label each subject at each window by one state (its 

associated cluster) and then estimate a transition matrix for each group. The Markov 

modeling results for DMN component are shown in Figure 8. During resting state, DMN 

component in the HC group has a higher chance to change states; while in the SZ group, 

DMN component consistently prefers to stay in one state in 20 trials of random subject 

selection. The average MI within each state and the transition matrix for another component 

of interest, IC7, are shown in Figure 9. Unlike the DMN component, this temporal lobe 

component in the SZ group demonstrates more state changes and these state changes are 

associated with dynamics in the connectivity related to this network. The Markov modeling 

results further confirm the observations from Figure 7 that different pairs of components in 

two groups present significant fluctuations in spatial connectivity.
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4. Discussion

In this paper, we examine dynamic connectivity changes among pairs of spatial components 

estimated from fMRI resting state data. Mutual information between components derived 

from IVA decomposition is used as the measure of spatial functional network connectivity in 

order to take higher-order statistics into account, instead of second-order correlation or 

coherence. Using sliding-window approach, statistical and Markov modeling analysis, we 

compare group variability in spatial connectivity between healthy controls and patients with 

schizophrenia. With real data, we note that the IVA estimates tend to be not as stable as 

group ICA results. This is due to the fact that the group ICA approaches involve a group-

level PCA, which attempts to find a common signal space for all subjects where to perform 

the single ICA step and thus introduce an averaging effect over group. However, we perform 

a subject-level PCA to help with the robustness of the estimation results, although this step 

is not necessary. In our study, we evaluate the stability of IVA decompositions using 

ICASSO (Himberg et al., 2004) and use the results from the most stable run.

Using t-tests for individual components over time, we find that during resting state, some 

components of interest show more spatial fluctuations than others. More importantly, some 

components in the HC and SZ groups vary differently, e.g., the component including 

superior and middle temporal regions, which has shown significant group differences in 

several resting state fMRI studies (Calhoun et al., 2007; Sui et al., 2009). The change in 

individual components is supporting evidence of connectivity dynamics among these 

components. Indeed, we observe that some pairs of brain networks yield higher variability in 

connectivity across time windows than other pairs, and different pairs of brain networks 

present different connectivity dynamics in different groups. In the HC group, DMN-

orbitofrontal, superior visual-inferior visual, parietal-visual, and cerebellum-orbitofrontal 

connections exhibit significant temporal fluctuations. The DMN-orbitofrontal dynamic 

connectivity in the HC group has also been found in an ICA-based study using temporal 

correlation and an AOD task fMRI data set (Sakoğlu et al., 2010). While for the SZ group, 

left frontal parietal (LFP)-median frontal, temporal-cerebellum, LFP-parietal, and 

cerebellum-LFP connections present significant fluctuations over time, which may imply 

weak connections among these regions and disease-related modulations in schizophrenia. In 

summary, the significant spatial changes in network connectivity in the SZ group mainly 

occur between frontoparietal, cerebellum and temporal regions. Dysconnectivity or 

abnormal connectivity has typically been hypothesized as the major pathophysiological 

mechanism of various mental disorders, especially schizophrenia (Bullmore et al., 1997; 

Stephan et al., 2009). A number of fMRI studies have studied the dysfunctional temporal, 

parietal and cerebellum regions and the associated functional connectivity, indicating that 

these brain networks may play vital roles in the pathophysiology of schizophrenia and other 

mental diseases (Meyer-Lindenberg et al., 2001; Jafri et al., 2008; Yu et al., 2011; Jones et 

al., 2012). For example, a resting state connectivity analysis found that most of the disrupted 

connections in the SZ group were related to the cerebellum and temporal lobe (Liang et al., 

2006). Hence, our experimental results provide further support for these previous findings, 

suggesting focus on the activities of these brain networks and connectivity within/among 

them.
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Through Markov modeling analysis, we confirm our observations from the statistical 

analysis. For example, the DMN component in the HC group presents a higher probability to 

transit among three states; while for the SZ group, the DMN component tends to be assigned 

to single states. For DMN connectivity, the third state seems to be a common state for both 

groups. While for the HC group, IC4 (anterior DMN) and DMN component present strong 

association in the first state. This association has been reported in several previous studies of 

resting-state functional connectivity in DMN (Greicius et al., 2003; Uddin et al., 2009). In 

the second state, the HC group shows high connectivity values between the frontal parietal 

components (IC1 and IC2) and DMN, indicating the relationship between the attention 

network and DMN. These trends are not strong in the SZ group. For temporal lobe 

connectivity, we find that the SZ group presents a higher probability to transit between 

states, consistent with the result of our statistical analysis that the temporal lobe component 

in the SZ group exhibits significantly varying connectivity when compared to the HC group. 

For the HC group, these three states of temporal lobe connectivity present a level of 

similarity, such as the relatively high connectivity values with IC3 and IC11. While for the 

SZ group, strong network coupling varies in different states. Similar trends also can be 

found in the Markov Modeling results of other networks’ connectivity, such as IC6 (parietal 

lobe) and IC10 (cerebellum regions).

In addition, we find that the SZ group presents more connectivity dynamics, indicated by the 

higher KLD value between connectivity vectors over time and more connections showing 

significantly high STD across time windows. This may provide complementary results to the 

previous findings that the diversity of static connectivity in the SZ group was increased on 

average over all brain regions (Bassett et al., 2011; Lynall et al., 2010). In addition, this 

result may provide support to our previous findings by using clustering and graph-theoretical 

analysis for spatial connectivity in the HC and SZ groups that patients with schizophrenia 

presented a tendency to involve more brain regions to perform a cognitive task, possibly as a 

means of functional compensation, to approach a disorganized, random structure (Ma et al., 

2011b).

Other methods such as Bayesian method (Bhattacharya et al., 2006), dynamic causal 

modeling (Friston et al., 2003), or structural equation modeling (Büchel and Friston, 1997) 

can be used for dynamic connectivity analysis. However, these methods are all model-based 

and therefore are limited by the model complexity. They require assumptions for the model 

parameters and need to estimate these parameters, e.g., certain interaction parameters 

describing the relation among voxels or networks. On the contrary, the dynamic connectivity 

method developed here is data-driven and does not require those assumptions or prior 

knowledge for the temporal domain.

Several limitations pertaining to the methodology used in this paper suggest future work. 

First, we use mutual information between spatial components as the measure of connectivity. 

In our previous study (Ma et al., 2011a), we also perform connectivity analysis using 

temporal correlation between time courses and find similar results but with a certain level of 

difference. For example, the connectivity between artifact-related components we found by 

using spatial dependence is not retained when using temporal correlation. Therefore, 

combining these two measures of connectivity is desirable and may provide a 
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comprehensive measurement of functional activity in the whole brain. One possible way is 

through back-reconstruction using components and time courses derived from IVA 

decomposition to obtain the time series for individual brain networks. Second, we examine 

spatial connectivity changes using a sliding-window approach with window size of 75 s. 

This window size is in the range of various window sizes used in several previous studies for 

dynamic connectivity analysis. For example, Sakoğlu et al. verified window size of 96 s (TR 

= 1.5 s) through a theoretical assessment and simulation study (Sakoğlu et al., 2010); 

Kiviniemi et al. used a window size of 60 time points (TR = 1.2 s, thus window size = 72 s) 

for an ICA-based dynamic connectivity study on individual subject level (Kiviniemi et al., 

2011); in (Allen et al., 2012), dynamic connectivity is compared between different window 

sizes and a shorter window size of 44 s is found to provide ability to resolve dynamics, in 

agreement with the finding that variability in connectivity is reduced when assessed with 

longer time windows (> 60 s). In our future work, we intend to study connectivity dynamics 

using a wide range of window sizes (and with continuous windows as opposed to the few 

snapshots). Another issue in this study is that we only utilize a relatively small number of 

time windows due to the demanding running time of IVA-GL algorithm. Therefore, future 

work also includes developing more efficient ways to obtain and analyze a large number of 

highly overlapping windows, which may allow dynamic connectivity analysis in the 

frequency domain. To this end, we can employ a more effective IVA implementation using 

the decoupling method (Li and Zhang, 2007; Li and Adalı, 2010). IVA with Kotz type 

distribution prior (Anderson et al., 2013) is another option to achieve efficient and effective 

joint blind source separation. Furthermore, we will investigate the relationship between 

connectivity dynamics during resting state and features of patients with schizophrenia, for 

example, age and PANSS scores; we will examine task-induced connectivity fluctuations 

and include more subjects in our future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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RESEARCH HIGHLIGHTS

• Dynamic changes of spatial connectivity among brain networks are 

examined

• Higher-order dependence between spatial component pairs is taken into 

account

• IVA is applied to extract time varying components and capture group 

variability

• Statistical and Markov modeling analyses are proposed to quantify 

dynamic changes

• Patients with schizophrenia show less stable patterns of spatial 

concordance
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Figure 1. 
Illustration of sliding-window approach to construct data and IVA decomposition to obtain 

spatial components for dynamic connectivity analysis. ICs: independent components; SCV: 

source component vector.
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Figure 2. 
Flowchart for (a) statistical analysis and (b) Markov modeling analysis for spatial 

connectivity dynamics.
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Figure 3. 
One-sample t-maps for 12 components of interest derived from IVA decomposition, 

thresholded at P < 0.05 (corrected for multiple comparisons using false discovery rate). Test 

is performed across all subjects and time windows. Eight slices from each component are 

shown in the figure.

Ma et al. Page 19

Neuroimage. Author manuscript; available in PMC 2016 October 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Box plot for standard deviation (over 6 time window differences) of mutual information 

between two sequential time windows for each component. For each box, central line is the 

median value, the edges represent the 25th and 75th percentiles, the whisker extends to the 

most extreme non-outlier value, and outliers are shown by “+”
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Figure 5. 
Changes in spatial maps of IC7 across time windows: (a) one-sample t-test for 10 healthy 

controls (upper) and 10 patients with schizophrenia (bottom) at each time window, to 

summarize group trend for each group (P < 0.05, corrected by FDR); (b) two-sample t-test 

between two sequential windows for healthy group (upper) and patient group (bottom) 

respectively (window i − window i+1, i = 1,. …, 6, and thresholded at P < 0.05, corrected).
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Figure 6. 
(a) Group comparison through a two-sample t-test on the connectivity values of the HC and 

SZ groups (P < 0.05; positive: HC > SZ; negative: HC < SZ). The significant t-values shown 

in the figure occur at least 14 out of 20 trials of random subject selection. (b) Average 

Kullback-Leibler divergence of connectivity vectors between sequential time windows 

across subjects within each group. Each vector at one time window for one subject contains 

66 connectivity values between all possible pairs of 12 components.
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Figure 7. 
Statistical metrics to quantify connectivity dynamics: (a) the median of STD for each 

connection over 7 time windows within each group; (b) Mann-Whitney U-test of each 

connectivity STD between the HC and SZ groups (P < 0.1). The thicker the line, the more 

significant is the median value of connectivity changes over time.
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Figure 8. 
One example for Markov modeling results: the connectivity between DMN component and 

all other 11 components, which shows more significant spatial changes over time in healthy 

control group: (a) average connectivity values within each state for two groups; (b) 

histogram for each state; (c) the transition matrix for each group, where color represents the 

transition probability value and the percentage value is the occurrence of significant 

transition probability in 20 trials of random subject selection. The number of states is 

determined by silhouette; for the connectivity between DMN and other components, 3 states 

give the best clustering solution.
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Figure 9. 
Another Example of Markov modeling results for connectivity between IC7 and other 11 

components, which shows more significant spatial changes over time in SZ group. The color 

in the transition matrix represents the transition probability value and the percentage value is 

the occurrence of significant transition probability in 20 trials of random subject selection. 

For the connectivity between temporal lobe component (IC7) and other components, 3 states 

give the best clustering solution by using silhouette. As shown in Figure 5, this temporal 

lobe component in the SZ group presents significant changes in spatial maps over time, 

resulting in connectivity dynamics.
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