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Abstract

Compressed sensing (CS) may be useful for accelerating data acquisitions in high-resolution

fMRI. However, due to the inherent slow temporal dynamics of the hemodynamic signals and

concerns of potential statistical power loss, the CS approach for fMRI (CS-fMRI) has not been

extensively investigated. To evaluate the utility of CS in fMRI application, we systematically

investigated the properties of CS-fMRI using computer simulations and in vivo experiments of rat

forepaw sensory and odor stimulations with gradient-recalled echo (GRE) and echo planar

imaging (EPI) sequences. Various undersampling patterns along the phase-encoding direction

were studied and k-t FOCUSS was used as the CS reconstruction algorithm, which exploits the

temporal redundancy of images. Functional sensitivity, specificity, and time courses were

compared between fully-sampled and CS-fMRI with reduction factors of 2 and 4. CS-fMRI with

GRE, but not with EPI, improves the statistical sensitivity for activation detection over the fully

sampled data when the ratio of the fMRI signal change to noise is low. CS improves the temporal

resolution and temporal noise correlations. While CS reduces the functional response amplitudes,

the noise variance is also reduced to make the overall activation detection more sensitive.

Consequently, CS is a valuable fMRI acceleration approach, especially for GRE fMRI studies.
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1. Introduction

Compressed sensing (CS) theory (Candes et al., 2006; Donoho, 2006) has been gathering

interest in the MR community due to its potential for accelerated image acquisition without

compromising image quality. Specifically, CS theory informs us that an accurate

reconstruction from undersampled measurements below the Nyquist sampling limit is

possible using a nonlinear reconstruction algorithm if the image is sparse in some transform

domain and the sensing matrix is sufficiently incoherent. In many dynamic imaging

applications, such as cardiac cine MRI, various compressed sensing algorithms have been

successfully implemented by exploiting the temporal redundancies of images (Feng et al.,

2011; Hu et al., 2012; Jung et al., 2010; Jung et al., 2009; Jung and Ye, 2010; Jung et al.,

2007; Lingala et al., 2011; Lustig et al., 2006; Usman et al., 2011; Zhao et al., 2010). A

similar CS approach is potentially useful for high-resolution fMRI to improve the temporal

resolution since such temporal redundancies exist in fMRI data (Jung and Ye, 2009; Lu and

Vaswani, 2011; Nguyen and Glover, 2013).

In fMRI studies with a relatively low spatial resolution (e.g. ~3 × 3 × 3 mm3 in human brain

at 3T), whole brain images can be acquired by the single-shot echo planar imaging technique

within 2 s. Given the inherently slow hemodynamic responses, the CS approach may not be

necessary for routine low resolution human fMRI studies, but may be useful for studies

requiring long image repetition times. One example is to acquire high-resolution fMRI with

multi-shot EPI sequences, which increase the repetition time (TR) by a factor equal to the

additional number of shots. Another obvious case is conventional gradient-recalled echo

(GRE) fMRI studies (Frahm et al., 1993; Kida et al., 2002; Ogawa et al., 1992). The GRE

approach is often used for imaging highly field-inhomogeneous regions, especially in small

animals (Xu et al., 2000), where the EPI data acquisition induces image distortions and

intensity losses. In both cases, acceleration of data acquisition becomes necessary to ensure

sufficient temporal resolution for measuring the hemodynamic responses (Holland et al.,

2013; Jeromin et al., 2012; Jung and Ye, 2009).

There have been potential concerns about the usefulness of CS-fMRI. First, compared to

other dynamic imaging applications like cardiac imaging, the minute hemodynamic

responses measured by fMRI may not be effectively recovered from noises after CS

reconstruction. Another important concern for CS-fMRI comes from the potential loss of

statistical efficiency for detecting activation-induced responses because the accelerated

acquisition reduces the number of k-space samples and, thus, reduces the signal to noise

ratio (SNR). Moreover, nonlinear CS reconstruction that exploits the temporal redundancies

could introduce some artificial temporal correlations that may result in the loss of degrees of

freedom and, consequently, reduce the sensitivity of the activation detection. Therefore,

these issues should be systematically studied.
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Most of the existing CS-fMRI studies have been conducted with synthesized experiments

where fully sampled k-space data were retrospectively down-sampled, partially because of

the difficulty in implementing accelerated fMRI pulse sequences that are free of artifacts

(Jeromin et al., 2012). However, it is very difficult to determine pulse sequence-dependent

artifacts as well as potential advantages of improved temporal resolutions using

retrospective analyses. More importantly, the synthesized experiments do not fully reflect

the true physical phenomenon of accelerated fMRI acquisition. Therefore, to verify the

usefulness of CS for fMRI, systematic studies using real k-space undersampling sequences

must be conducted.

Therefore, in this paper, we provide comprehensive studies of CS-fMRI using computer

simulation, in vivo experiments, and rigorous statistical analysis. For simulation, BOLD and

cerebral blood volume (CBV) fMRI data were synthesized by adding noise and modulating

signal changes in certain regions of the brain with realistic response functions, then the k-

space data was under-sampled. For in vivo experiments, fully sampled fMRI and CS-fMRI

with reduction factors of 2 or 4 were acquired using 2-D GRE and EPI sequences during

forepaw and odor stimulations in anesthetized rats at 9.4 T. To reconstruct CS data, we used

the k-t FOCUSS algorithm to take advantage of the temporal image redundancies (Feng et

al., 2011; Jung et al., 2010; Jung and Ye, 2010; Jung et al., 2007; Lustig et al., 2006). For

rigorous statistical analysis that is compatible with human fMRI analysis, a general linear

model (GLM) framework with restricted maximum likelihood (ReML) covariance

estimation (Friston et al., 2011; Graser et al., 1987; Harville, 1977; Kenward and Roger,

1997; Searle, 1979) was used to take into account the potential temporal correlation

confounds introduced by CS reconstruction. The functional image quality and sensitivity for

activation detection were investigated and compared to the fully sampled data. We found

that CS-fMRI rather reduces the temporal correlation in residual noise, and improves the

sensitivity for activation detection when the ratio of fMRI signal change to noise is low.

From these analyses, the potential for improving the fMRI activation detection using CS is

demonstrated.

2. Theory

2.1. Dynamic CS using k-t FOCUSS

To enable compressed sensing reconstruction, three conditions must be satisfied. First, the

unknown signal should be sparse or compressible in some domain. When the fMRI

hemodynamic response is periodic, such as in periodic block-designed studies in which

several trials are presented within a single scan, FT is expected to be an effective sparsifying

transform. However, in rapid event-related (ER) or single-trial block-designed scans, no

periodicity is present in the time course and a data-driven transform such as the Karhunen-

Loeve transform (KLT) is effective at sparsifying the signal (Jain, 1989). In this case, the

optimal transform is iteratively learned from the data using a fast FT as the initial transform.

Thus, both FT and KLT approaches were used and compared in this paper.

Second, CS requires an incoherent sampling pattern. A proper choice of the probability

distribution for k-space sampling is critical in achieving optimal reconstruction. Thus,

various sampling patterns that can minimize the coherent aliasing patterns were examined.
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Third, CS requires nonlinear algorithms to recover sparse signal components. We used one

of the successful dynamic CS algorithms called k-t FOCUSS, whose details can be found in

(Jung et al., 2009).

2.2. Statistical Analysis

To determine activation voxels, the GLM is commonly used with a statistic test such as the

t- or F- statistics. Here, the serial correlation across the temporal frames should be taken into

consideration, since it directly affects the statistical efficiency. More specifically, in the

GLM, the estimation error term for the time series is assumed to have a normal distribution:

(1)

where σ2 is a voxel-dependent variance component and V̂ is the serial correlation matrix that

is common across all voxels. In SPM, V̂ is estimated in a parametric form (Friston et al.,

2011) as:

(2)

where Qi is the known basis for covariance structure and λi is the estimated weighting

parameters using the ReML estimation framework, which are obtained by assuming an

autoregressive (AR) model that is effective at capturing the temporal dynamics of the fMRI

signal (Friston et al., 2011). The estimation of V̂ was done by pooling all voxels, but σ2 was

determined using ReML on a voxel-by-voxel basis. Note that the effective degrees of

freedom (EDF) becomes larger when less serial correlations are present, and a larger EDF

lowers the threshold values to make the statistical testing more sensitive. Therefore, it is

important to investigate the temporal correlation structure represented in V̂ and its change

due to CS reconstruction in fMRI.

3. Methods

3.1. Overview

The usefulness of CS fMRI may depend on the activation spatial extent relative to the

imaged area, hemodynamic response function, paradigm design, sparse sampling scheme,

and reconstruction algorithm. Thus, we chose two stimulation conditions (a focal activation

site in the primary somatosensory cortex (S1) during forepaw stimulation and large, broader

activation regions in the olfactory bulb (OB) during strong odor stimulation), two different

pulse sequences (GRE and EPI), multiple sampling patterns with the reduction factors (R) of

2 and 4, two paradigms (single-trial and periodic block designs), and two sparsifying

transforms (FT and KLT) in k-t FOCUSS reconstruction.

3.2. k-space Undersampling Patterns along the Phase-Encoding Direction

It is likely that the optimal sampling pattern depends on the spatial extent of the activated

region. For example, denser sampling of central k-space lines might work better in studies

with a larger activation area since the spatial Fourier transform of the activated area would

have larger low frequency components. Preferential sampling of the central k-space lines
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might also be beneficial since most image intensities reside in the low k-space region. In 2D

imaging, randomness was only present along the phase encoding (PE) direction. A full

sampling pattern and two undersampling patterns are displayed in Fig. 1. Three

undersampling patterns are used:

Gaussian + ky = 0 line (Gaussian): The undersampling pattern in Fig. 1B always

samples the ky = 0 line and randomly samples the remaining lines according to a

Gaussian probability distribution, , with standard deviation σ=0.25Ny,

where Ny is the number of PE steps and ny is the k-space line index ranging from

−Ny/2+1 to Ny. The scaling factor A was adjusted so that the desired reduction factor

was achieved. This pattern is denoted as Gaussian.

Random + 6 low k-space lines (Rand+C6): The undersampling pattern in Fig. 1C

always samples six central k-space lines corresponding to 5 – 10% of the 128 and 64

lines in full k-space, and randomly selects the remaining lines. This pattern is denoted

as Rand+C6.

Random (Rand): A third undersampling pattern, not shown in Fig. 1, is to randomly

sample ny with a constant probability over the whole ny range. This pattern is denoted

as Rand.

These undersampling patterns were re-generated for each image in repeated acquisitions.

Computer simulations were first carried out to examine the performance of the three

possible undersampling patterns in fMRI of S1 and OB, and in vivo experiments were

performed with Gaussian and Rand+C6 patterns. When necessary, the reduction factor was

reported by a number within parentheses following the pattern name.

3.3. Stimulation Paradigms

For simplicity, the number of images and the TR reported in this section refer to those in the

fully sampled case. To compare CS and fully sampled data, both scans have the same scan

time and stimulation pattern while the numbers of images are different. For example, for CS

fMRI with R of 4, the number of images and the TR are 4 times and one fourth of the fully

sampled case, respectively. For the periodic block-designed paradigm, each scan consists of

5 electrical stimulation trials, in which each trial consisted of 4 control, 6 stimulation, and 20

control fully-sampled images with a TR of 1.92 s. For the single-trial block-designed

paradigm, each scan consists of a single trial of 15 control, 8 stimulation, and 15 control

fully-sampled images with a TR of 8 s. During the stimulation periods, an odor of amyl-

acetate was delivered to the animals. The block-designed paradigms are illustrated in Fig.

1S.

3.4. Computer Simulations

We first carried out computer simulations with the above stimulation paradigms to evaluate

the dependence of the k-t FOCUSS performance on the k-space sampling pattern, spatial

activation extent and temporal response shape. To evaluate the variability of the simulation

results, the simulation was repeated 6 times with identical noise distributions. In each

simulation, a k-space dataset was generated in the following four steps.
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First, image series was generated by replicating a complex-valued, single-slice seed image.

The seed images were taken from the S1 and OB fMRI studies (see later) with matrix size =

64×64, and were assumed to have a TR = 0.48 s and 2 s in S1 and OB studies, respectively,

which are equal to the experimental TR values with R = 4.

Second, the magnitudes of voxels within an activation region of interest (ROI) were

modulated according to the hemodynamic response functions. The activation ROIs in S1 and

OB (see contours in Figs. 2(A) and (B)) were defined based on the activation maps obtained

in real experiments. The response functions were obtained by convoluting the stimulation

patterns (on = 1 and off = 0) with canonical impulse response functions; gamma function in

S1 and a single exponential function in OB. The resulting peak responses were assumed to

be 1.5% and −8% in S1 and OB, respectively, as shown in Fig. 1S.

Third, white noise was added to all voxels. The real and imaginary parts of the noise

followed an identical Gaussian distribution for all voxels. Five noise levels were chosen

with a different width for the noise distributions, resulting in the mean peak fMRI signal

change to noise ratios (CNR) of 2.0, 1.5, 1.0, 0.5, and 0.3 in the activated S1 and OB ROIs.

Fourth, the fully sampled data were simulated by retaining one of every four images in the

series. For undersampled data, the image series were Fourier transformed to the k-space,

randomly undersampled along PE with R = 4 according to the Gaussian, Rand+C6, and

Rand patterns, and then reconstructed with k-t FOCUSS. The PE direction is assumed to be

along the dorsal–ventral direction.

3.5. In vivo fMRI Experiments

BOLD and CBV-weighted fMRI were carried out for S1 and OB activation studies,

respectively, to evaluate the performance of in vivo CS-fMRI applications.

Animal Preparation and Stimulation—Eight male Sprague-Dawley rats weighing 240

– 450 g (Charles River Laboratories, Wilmington, MA, USA) were studied with approval by

the University of Pittsburgh Animal Care and Use Committee; three for somatosensory

cortex BOLD fMRI studies and five for olfactory bulb CBV-weighted fMRI. Animals were

anesthetized with α-chloralose and urethane during the two studies, respectively. The

detailed animal preparation procedure can be found in (Poplawsky and Kim, 2013; Zong et

al., 2012). For somatosensory cortex fMRI, the stimulation consists of electric current with

amplitude = 1.4 mA, pulse duration=333 μs, and repetition rate=3 Hz delivered to the left

forepaw. For olfactory bulb fMRI, odors of 5% amyl acetate in mineral oil and 100%

mineral oil served as the stimulation and baseline control, respectively.

Data Acquisition—All MRI experiments were performed on a 9.4T/31 cm magnet

equipped with an actively shielded 12-cm gradient set interfaced to a DirectDrive 2 console

(Agilent Santa Clara, CA, USA). Single-loop surface coils with inner diameters of 2 cm and

1 cm were used in forepaw and odor stimulation studies, respectively. For the electrical

stimulation study, the coil was placed above the skull near S1; while, for the odor

stimulation study, the coil was dorsal to OB.
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The fMRI acquisition parameters are summarized in Table 1. Specifically, BOLD fMRI

responses to forepaw stimulation were measured with GRE, and gradient-echo EPI

sequences (#1 – #2), while CBV fMRI responses to odor stimulation were measured with

GRE (#3) only, since EPI in OB results in severe image distortion and signal dropout due to

the presence of large B0 inhomogeneities. Specific acquisition and experimental parameters

are described as follows:

1. The GRE sequence for S1 BOLD-fMRI had TE = 20 ms, and the time for acquiring

one k-space line = 30 ms. Fully sampled data and CS data with R=2 and R=4 were

acquired.

2. High-resolution S1 BOLD-fMRI with the EPI sequence was performed with

spectral width = 278 kHz. Two-shot fully sampled data (R=1) and single-shot CS

data with R=2 were alternatively acquired. The echo time was 20 ms for full

sampling, while for undersampling, due to the random skipping of some k-space

lines, the echo time (time of ky=0) had a mean of 20 ms, but varied with a standard

deviation of 1–1.2 ms between images. For all EPI scans, a reference scan was

acquired at the beginning of each scan with the same sequence but with the PE

gradient turned off to partially correct for the phase inconsistency between the odd

and even echoes. The correction was performed on a point-by-point basis after

Fourier transform along the readout direction (Bruder et al., 1992).

3. High-resolution CBV-weighted OB GRE fMRI data were obtained after the

intravenous injection of 15 mg Fe / kg Feraheme (AMAG Pharmaceuticals, Inc.,

MA) with TE = 8 ms and time for acquiring one k-space line for all slices = 125

ms. Fully sampled scans and CS scans with R=4 were acquired.

3.6. Data Analysis

All CS data were reconstructed with k-t FOCUSS. Then, the t- and F- statistics were

calculated within the GLM framework using SPM8 (Wellcome Trust Centre for

Neuroimaging, London, UK) software. A significance level of p ≤ 0.01 was used to define

activated voxels.

CS data process with k-t FOCUSS—To reconstruct the under-sampled simulated and

experimental fMRI data, k-t FOCUSS with temporal FT and KLT was used. Parameter

definitions can be found in (Jung et al., 2009). Parameters for k-t FOCUSS with FT and

KLT were: FOCUSS iteration number = 2, iteration number of conjugate gradient = 60,

weighting matrix update power γ = 0.5, and regularization factor λ = 0.01. For k-t FOCUSS

with KLT, the initial KLT matrix was calculated from images reconstructed by k-t FOCUSS

with FT. After the reconstruction finished, the KLT matrix was updated. The reconstruction

and matrix updates were repeated three times. The iteration numbers were chosen

empirically to ensure convergence and to achieve close-to-optimal activation maps. Before

the CS reconstruction, the average of acquired k-space data across all of the image frames

was subtracted from the raw data. After the reconstruction, the averaged images were added

back to the reconstructed images at each time point (Jung et al., 2009).
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GLM analysis—The GLM analysis of simulated data was carried out with the same

reference response functions used for generating the simulated data. For the periodic block-

designed scans in S1, the GLM analysis was performed for each scan. For the single-trial

block-designed OB scans, the GLM analysis was performed on three concatenated scans.

The covariance structure in the noise was estimated by the “spm_ar_reml.m” function in

SPM8 which provides an estimate of the AR coefficient for the residual temporal

correlation. The six simulated data sets were analyzed individually and the results averaged.

For the GLM analysis of the experimental data, we used reference response functions by

convoluting canonical IRFs with the stimulation patterns. For S1, the IRF was generated

with the “spm_hrf.m” in SPM with an onset delay of 1.3 seconds (Hillman et al., 2007). For

OB, the IRF was given by f(t)= exp(−t /τ), with τ = 22s. In S1 fMRI, each scan was

analyzed separately. In OB fMRI studies, three consecutive scans with the same sampling

pattern were concatenated in each animal, and multiple GLM analyses (each with three

concatenated scans) were performed for each pattern. The design matrix consisted of a

column of reference responses and two columns modeling constant and linearly drifting

baselines. Separate baseline columns were used for different scans to account for possible

baseline image intensity changes across scans. The covariance structures of the noise in all

analyses were estimated by the function “spm_reml.m” in SPM8. In addition, for two

animals with 9 fully sampled scans, all scans were concatenated for GLM analysis in order

to obtain activation maps with higher sensitivity. Such full sampling maps can serve as a

better reference for evaluating the activation areas observed in the CS-fMRI maps.

ROC analysis of simulated data—Receiver operator curves (ROC) of true positive

fraction (TPF) versus false positive fraction (FPF) were calculated by varying the |t|-value

threshold in defining activated regions. The TPF was calculated as the fraction of voxels

above the threshold within the true activation ROI, while the FPF was calculated as the

fraction of voxels above the threshold within a non-activation ROI. In order to consider the

possible presence of increased false positive activations near the site of true activations due

to spatial smoothing that may be introduced during the reconstruction process, the non-

activation ROI was defined as the one-voxel-thick band immediately surrounding the true

activation ROI. Then, areas under the ROC (AUR) were calculated.

ROI-based analyses—In the simulation, the ROI was defined as the assumed true

activation area in both S1 and OB data. For S1 fMRI experiments, the ROI was defined as

the cluster of voxels with p ≤ 0.01 and positive t-values in the expected S1 area contralateral

to the stimulated forepaw in one fully sampled scan. For the OB experiments, the ROI was

defined as voxels within OB with p ≤ 0.01 and positive t-values on the CS fMRI maps

reconstructed with k-t FOCUSS with KLT, since the fully sampled maps have low

sensitivity. ROI-averaged time courses were calculated for the block-designed simulated and

experimental data to examine the effects of CS reconstruction on the temporal

characteristics of the response. Also, the average peak intensity, noise level and mean t-

value were computed from all voxels within each ROI. Voxel-wise noise levels were

calculated as temporal standard deviations in the baseline images (0 – 8 s and 40 – 60 s for
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S1 and 0 – 120 s and 256 – 304 s for OB in each trial). The mean noise was calculated by

averaging across scans and animals.

4. Results

4.1. Computer simulations

Activation maps—Figure 2 displays the t-value maps calculated from the GLM analysis

of the simulated fMRI data. All CS data were simulated with R = 4. At a CNR of 1 or above,

clear and strong activations are detected in almost all voxels within the true activation ROI,

regardless of the sampling pattern and sparsifying transform. At CNR of 0.3 and 0.5, the

maps with Gaussian and Rand+C6 sampling patterns contain more activated voxels than

those with Rand and full sampling. No obvious increase of false positive rates in the voxels

surrounding the true activation ROI was observed, suggesting that no spatial smoothing was

introduced during the reconstruction process. No noticeable difference is present between

the maps reconstructed with KLT and FT (Fig. 2S). Therefore, only KLT maps are displayed

in Fig. 2.

Time courses and noise characteristics—Figure 3 shows time courses from the true

activation ROI in the simulated data. Time courses appear very similar between CS data

reconstructed with FT (data not shown) and KLT. While the response shapes from the

undersampled data with R = 4 closely match those of the fully sampled ones, their peak

heights were reduced, depending on the sampling pattern and CNR. The reduction is largest

for random sampling and least for Rand+C6, consistent with higher sampling density of low

k-space lines in the latter. On the other hand, the noise level is reduced in the CS data as

shown in Fig. 4 (A) and (B). Note that the noise levels are different between the OB and S1

at the same CNR because of the different peak response amplitudes. The ReML analysis of

the temporal noise suggests that k-t FOCUSS did not introduce false temporal correlations

into the reconstructed images. The AR coefficients estimated for all GLM analyses were

very small (~ 0.02) for all sampling patterns, noise levels, and sparsifying transforms, and

did not differ between the fully sampled and undersampled cases. For the fully sampled

images, no temporal correlation is expected since white noise was added to the data.

ROC analysis—To assess the sensitivity of CS fMRI, AUR for the simulated S1 and OB

data are displayed in Fig. 4 (C) and (D). A higher AUR indicates higher sensitivity at the

same false positive rates. At the highest CNR, performances of the different sampling

patterns appear similar. However, as the CNR decreases, the Gaussian and Rand+C6

patterns provide higher sensitivities than the Rand and full sampling patterns. The AURs for

the Rand+C6 pattern are either similar to or greater than those for the Gaussian pattern in

most cases, suggesting that sampling of several low ky lines is more beneficial than

sampling a single line at ky=0. Since the Rand+C6 and Gaussian patterns provide better

sensitivity in both S1 and OB data than the Rand pattern, only these two undersampling

patterns were used in the actual experiments.
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4.2. In vivo block-designed experiments with the GRE sequence

Robust activation in S1 by forepaw stimulation is detected in both fully sampled and CS

scans as shown in Fig. 5 in two representative rats. In general, there is an increase in the t-

values when the reduction factor is increased, while the number of activated voxels remains

similar. Compared to the fully sampled fMRI maps, some CS functional maps show

increased numbers of false activations outside of S1, which appear to be reduced for the

KLT reconstruction.

Figure 6 displays representative thresholded t-value maps responding to strong odor

stimulation. The CS fMRI maps show a remarkable increase in the number of activated

voxels compared to the fully sampled fMRI maps, even when comparing to the fully

sampled maps with three times the number of concatenated trials. Nevertheless, the

activation centers with high t-values co-localize well between the 3-trial CS-fMRI maps and

the 9-trial fully sampled maps. Due to the increased sensitivity with undersampling, broad

activation surrounding the activation centers in the middle layers of the OB is observed,

consistent with earlier glucose uptake measurements (Johnson et al., 1998; Sharp et al.,

1977) and our previous fMRI studies with extensive signal averaging (Poplawsky and Kim,

2013). In some rats, false activation with opposite signal change was observed in the CS-

fMRI maps, as indicated by the white arrows in Fig. 6. To study the temporal characteristics

of the functional responses measured by CS-fMRI, the group-averaged response time

courses were obtained from the S1 and OB activation ROIs. Consistent with the simulation

results, the CS data had reduced response amplitudes and a greater reduction was observed

at R=4 compared to R=2 (data not shown).

The response amplitude, voxel-wise noise level, number of active voxels, and mean t-value

are compared for S1 and OB studies. The group-averaged values are given in Table 2. The

CNR in S1 and OB block-designed experiments was found to be 1.2 and 0.3, respectively, in

the fully sampled data. When R increases, both the response amplitude and noise level

decrease as seen in the simulation data (Fig. 3 and Figs. 4 A–B). While the numbers of

activated voxels are similar across reduction factors in S1, CS greatly increases the number

of activated voxels in OB compared to the fully sampled data. These differential sensitivities

in CS-fMRI can be partly explained by the CNR difference in S1 and OB data, which is

consistent with simulation data (Figs. 4 C–D). Furthermore, the average t-values within the

ROI increases at higher reduction factor in both S1 and OB, also consistent with simulation.

To confirm that k-t FOCUSS did not introduce temporal noise correlations, the

autocorrelation functions were estimated using the SPM procedure (V̂ in Eq. (2)) for the

block-designed S1 fMRI data (Fig. 7). Note that the TR is 1.92 s, 0.96 s, and 0.48 s for R =1,

2, and 4, respectively. The autocorrelation function for R=4 is concentrated mostly around

zero, suggesting that highly accelerated fMRI acquisition reduces temporal correlations.

4.3. In vivo block-designed experiments with 2D-EPI

Figure 8 shows activation maps obtained from fully sampled, two-shot data and

undersampled, one-shot data. Despite the sensitivity of EPI to field inhomogeneities and off-

resonance artifacts, the images reconstructed from undersampled EPI data have similar
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artifact levels as the fully sampled two-shot data (see background gray images). However,

the activation maps calculated from the CS data have a reduced number of activated voxels,

in contrast to those with the GRE sequence. The group-averaged mean response amplitude

of the activated voxels, noise levels, and number of active voxels are listed in Table 3 for

full and Rand+C6 (R=2) sampling patterns. There is a large increase in noise levels when

undersampling is applied in the EPI sequence, which might explain the sensitivity reduction

in the undersampled data.

5. Discussion

5.1. Dependence on the sampling pattern

Our simulation results showed that patterns of Gaussian and random sampling with full

sampling of some center k-space lines outperform the fully random sampling pattern. Note

that most of the high magnitude data points reside around the low k-space region, so the

SNR penalty is more significant when skipping k-space data here. However, a greater

acquisition of k-space center lines will bias the reconstruction toward the down-sampled low

frequency component and will result in a blurring of the activation foci. Therefore, a balance

between the center and edge k-space line acquisitions is necessary to optimize the

performance of CS-fMRI data reconstruction, which appears to be the case for both the

Gaussian and Rand+C6 patterns employed in our experiments. Also, the k-t FOCUSS

algorithm is a re-weighted norm algorithm, so the convergence speed depends on the initial

estimate. The Gaussian and Rand+C6 patterns can provide a reasonable, low resolution

reconstruction that accelerates the convergence of k-t FOCUSS.

5.2. CS Reconstruction Algorithm and Temporal Correlation

Although no periodicity is present in the hemodynamic responses of the single trial, k-t

FOCUSS with FT can still recover activation maps with improved sensitivity from

undersampled k-space data. A plausible explanation is that, due to the relatively slow

hemodynamic response compared to the image acquisition rate (1/TR), FT of the time

course has large coefficients concentrating mostly in the low frequency range and, thus, FT

can still serve as an effective sparsifying transform.

One could be concerned that better temporal resolution could potentially increase temporal

correlation. Our interest for statistical analysis is on the long range correlation which makes

the structure of the V̂ matrix less diagonal. The reason that the long range correlation is more

important than the frame-wise correlation is that it reduces the EDF (Friston et al., 2011). As

discussed in Section 2.2, it is well known that the reduced EDF increases the threshold of

the t-statistic for the same p-value, which makes the t-test less sensitive (Friston et al.,

2011).

We believe that the long range correlation does not increase in CS due to the following

reasons. First, as the acceleration factor increases, the temporal resolution is improved.

Some common sources of noise that can introduce serial correlations, like hardware-related

low-frequency drifts, oscillatory fluctuations from respiration and cardiac pulsation, and

residual movement artifacts not accounted for by image registration (Boynton et al., 1996;

Friston et al., 1994; Weisskoff et al., 1993; Woolrich et al., 2001), can be reduced by
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improving the temporal resolution. Second, the CS reconstruction algorithm itself exploits

the temporal redundancy to improve the reconstruction results. More specifically, the k-t

FOCUSS with KLT exploits the sparsity in the Karhenen-Lóeve transform (KLT) domain,

which is known as the best de-correlator (Jain, 1989). Hence, the reweighted norm

procedure suppresses the potential correlation in the background areas, which may result in

the reduction of serial correlation. Consequently, the reduction of the serial correlation

increases the EDF, which makes the statistical test more efficient. Reduction of the temporal

correlation is another reason to justify the usefulness of CS-fMRI.

Increased false negative changes (FPF) are sometimes observed in the experimental CS-

fMRI maps (Figs. 5 and 6), which might compromise the sensitivity gain offered by CS-

fMRI. Interestingly, the false activation appears less severe in KLT maps in Fig. 5. In

addition, such increased false activations are absent in simulated CS-fMRI maps in Fig. 2.

The origin of the increased FPF in experimental maps may be related to the presence of

baseline drifts in the experimental data that were also non-periodic and, thus, can be better

estimated with KLT. However, this phenomenon requires further investigation.

5.3. Discrepancy of Sensitivity Increase in S1 and OB

Undersampling leads to a large increase in the number of activated voxels in OB for a

single-trial block paradigm, while, in S1, no obvious sensitivity increase is observed with

undersampling. This difference may be explained by the CNR differences between the S1

and OB fMRI studies. According to Fig. 4 C–D, the sensitivity gain by CS is only noticeable

when CNR is ≤ 0.5. Experimental CNR is 1.2 in S1 and 0.3 for OB, which can explain the

differential functional sensitivity gains. We note that the CNR threshold for better

performance with CS depends on the number of trials and stimulation duration. Although no

sensitivity gain is observed with CS in our study for CNR ≥ 1 due to the already very high

sensitivity of the fully sampled data, t-values increase with CS-fMRI compared to full

sampling at all CNRs (Figs. 2 and 5). In addition, the sensitivity gain could increase when a

smaller number of trials or shorter stimulation durations are used, even at CNR ≥ 1. Under

such experimental conditions, CS-fMRI can still provide sensitivity enhancement.

Furthermore, the increased sensitivity in OB CS-fMRI is unlikely an artifact of k-t FOCUSS

reconstruction. First, our simulation results demonstrated that no increased false positive

rates are introduced by undersampling for k-t FOCUSS reconstruction. Second, although the

true activated area is not known a priori for in vivo study, the CS-fMRI activation maps are

similar to those obtained from fully sampled data with a large number of trials (see Fig. 6

and (Poplawsky and Kim, 2013). Third, the CS-fMRI activation patterns are consistent with

earlier glucose uptake measurements using the same odor (Johnson et al., 1998; Sharp et al.,

1977).

5.4. GRE vs. EPI

We found a large increase in sensitivity when applying CS to the GRE sequence, consistent

with our simulation results. However, there appears to be no sensitivity gain when CS is

applied to the EPI sequence. This difference can be explained by the difference in CNRs and

by the additional noises introduced by the random sampling in the EPI sequence, which is
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absent in the GRE sequence. First, CNR is >2.0 for fully-sampled, two-shot EPI data (Table

3), but 0.3 to 1.2 for GRE data (Table 2). The sensitivity gain by CS is minimal when CNR

≥ 1 (see Fig. 4C–D). Hence, the advantages of CS-fMRI may not be as pronounced for EPI

sequences with large CNR. Second, the temporal noise for images reconstructed from the

undersampled EPI data is larger than for the fully sampled data (Table 3). However, the

noise levels for images reconstructed from the undersampled GRE and simulated data were

much lower than those reconstructed from the fully sampled data (Table 2 and Figs. 4A–B).

Thus, such additional increases in noise that are unique to EPI reduce the potential

sensitivity gain offered by CS.

There are several possible sources of the temporal noise increases in undersampled EPI data.

First, imperfections of PE blips can introduce errors in the ky values. Since the sampling

pattern varies from image to image, such errors are image-dependent and introduce

additional temporal fluctuations in the reconstructed images. In comparison, these

imperfections and resulting errors in ky values remain constant in the regular, fully-sampled

EPI and in both undersampled and regular GRE sequences. A second source of error in the

undersampled EPI sequence is the mismatch between the odd and even echoes, which may

not be completely corrected by the reference scans acquired at the beginning of each scan. In

regular EPI, such mismatches produce the well-known N/2 ghosting artifact and remains

constant across images. However, in the undersampled EPI, a k-space line at a certain ky

value is randomly encoded by either an odd or even echo, depending on the sampling pattern

at that time point. Therefore, additional temporal fluctuations are introduced. Third, off-

resonance, due to local field inhomogeneities, produces a constant image shift along the

phase-encoding direction with the regular EPI sequence as a result of off-resonance-induced

phase accumulation that linearly depends on ky. However, when random undersampling is

applied, the phase accumulation becomes an irregular function of ky, which may result in

blurring and a shift of the image intensities. Thus, the image to image variation of this effect

introduces additional temporal noise to the affected image regions. Fourth, because of a

random change in TE among the images, the image intensity would vary due to the T2
*

decay. Assuming a T2
* value of 27 ms, as is typically found in the in vivo rat brain at 9.4 T

(Kim and Kim, 2011), the TE variation of 1 ms in our sequence would introduce nearly a

4% signal fluctuation. This fluctuation can be reduced if sampling patterns with a constant

TE are used, such as measuring the same number of ky values before measuring ky=0 for all

images.

5.5. Relevance to human Sparsely Sampled fMRI studies

EPI is a common imaging sequence for human fMRI studies. Due to the availability of

conventional acceleration techniques, such as parallel imaging and multi-band excitation, on

human scanners, the combination of EPI with these techniques allows sufficient temporal

resolution for measuring hemodynamic responses. The large increase of noise in CS EPI

data would reduce or eliminate the potential sensitivity gain offered by further increased

temporal resolution with CS. However, as demonstrated in (Jung and Ye, 2009), if the

additional noises are controlled during accelerated acquisition, CS-fMRI may be a useful

tool for EPI-fMRI. Therefore, novel techniques to reduce the temporal noise from irregular

sampling need to be investigated further to validate the efficacy of CS-fMRI for human
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study. On the other hand, the GRE sequence may still be useful for fMRI of human brain

regions with large B0 field inhomogeneities, such as the medial temporal lobe, orbital frontal

cortex, and olfactory bulb (Ojemann et al., 1997; Olman et al., 2009), where CS can be

applied in combination with the other acceleration techniques for increased temporal

resolution and sensitivity, as demonstrated in a recent dynamic contrast enhanced MRI study

(Zhang et al., 2013). Therefore, GRE based CS-fMRI can be directly used for human brain

study as an extension of this work.

Several studies have demonstrated the feasibility of sparsely sampled fMRI with reduction

factors up to R = 5 (Holland et al., 2013; Jeromin et al., 2012; Jung and Ye, 2009; Lam et

al., 2013; Lu and Vaswani, 2011; Nguyen and Glover, 2013). Except in (Nguyen and

Glover, 2013), most of the studies exploited retrospectively undersampled data and/or had a

fixed TR at all reduction factors. Therefore, undersampling did not translate to an increased

number of images or an increased sensitivity for the same experimental durations in these

studies. In (Nguyen and Glover, 2013), a variable density spiral sequence was implemented

with R = 4, which resulted in an increased statistical power compared to the fully sampled

data, consistent with our results. k-t FOCUSS was also examined and was found to

introduce high-frequency ringing artifacts, which are not observed in our study. This

discrepancy may be explained by the absence of random variations of the k-space sampling

pattern across images in (Nguyen and Glover, 2013), which is an important prerequisite for

the application of k-t FOCUSS.

6. Conclusions

This paper investigated the performances of CS-fMRI using block-design stimulation

experiments for rat models using 9.4-T MRI. Specifically, accelerated acquisition and CS-

reconstruction using k-t FOCUSS were studied extensively using GRE and EPI pulse

sequences with real k-space undersampling and rigorous statistical analysis. Despite the

potential concerns about CS-fMRI, our results showed that the improved temporal resolution

from CS-fMRI reduces the serial correlation in the fMRI image and improves the statistical

performance of activation detection. We also found that center-weighted random sampling

patterns were preferred over the purely random sampling patterns. Similarly, CS-fMRI

should also be useful for rapid event-related fMRI experiments. In summary, our results

confirm that CS-fMRI is a viable tool that has a great potential to improve the performance

of fMRI studies, although the potential presence of increased FPF should be carefully

evaluated.
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Highlights (for review)

1. Compressed-sensing fMRI with real-time random k-space undersampling were

studied.

2. Compressed-sensing (CS) can increase fMRI temporal resolution by a factor of

4.

3. CS with GRE, but not with EPI increases sensitivity of fMRI at low SNR.
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Figure 1.
Different sampling patterns for simulations and experiments. (A) Fully sampled (R=1), (B)

undersampled along the PE direction with a reduction factor (R) of 2. The sampling

probability follows a Gaussian distribution with sampling of ky = 0 (Gaussian) (top panel) or

is constant with the sampling of 6 central lines (Rand+C6) (bottom panel). (C) Same

undersampling patterns as in (B) but with R of 4.
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Figure 2.
Statistical t-value maps (p<0.01) of S1 and OB calculated from the simulated block-

designed fMRI data with different CNR levels. Different rows correspond to different

sampling patterns. Green contour: ROI containing the true activation. Color bar: t-value.
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Figure 3.
Mean fMRI responses in the truly activated ROI in the simulated fMRI data with CNR = 2.0

and 0.3. (A) S1 (first and second column) and (B) OB data (third and fourth column) were

averaged over 30 and 18 trials, respectively, for four k-space sampling patterns. Patterns in

rows 1–4: full, Gaussian, Rand+C6, and Rand. The CS data were reconstructed by k-t

FOCUSS with KLT.
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Figure 4.
Baseline noise levels (A–B) and areas under the receiver operator curves for activation

detection (C–D) in simulated block-designed data with different CNRs and four sampling

patterns (different colors). (A) and (C) for S1 and (B) and (D) for OB. The CS data were

reconstructed by k-t FOCUSS with KLT.
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Figure 5.
Experimental statistical t-value maps of two rats responding to forepaw stimulation using

block-designed GRE fMRI with different sampling patterns and acceleration factors. Color

functional maps were overlaid on baseline GRE images. Images were reconstructed by using

k-t FOCUSS with FT and KLT. Note that the number of spuriously activated voxels are

reduced with KLT.
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Figure 6.
Experimental statistical t-value maps of two rats responding to amyl acetate odor stimulation

using experimental block-designed GRE fMRI with full sampling and undersampling of R

of 4. Color functional maps were overlaid on T2–weighted images. The white arrows

indicate areas with false activation and opposite signal change. Undersampled images were

reconstructed with k-t FOCUSS with KLT.
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Figure 7.
Temporal autocorrelation functions of the reconstructed time series with various sampling

patterns and sampling rates for averaged, block-designed, GRE S1 fMRI data. Only results

for k-t FOCUSS with KLT are shown here, since k-t FOCUSS with FT produced similar

results.
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Figure 8.
EPI-based fMRI maps of two rats responding to forepaw stimulation obtained from block-

designed data with full and Rand+C6 (R=2) sampling patterns. Color maps were overlaid on

the corresponding baseline EPI images.
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Table 1

Summary of fMRI experimental parameters.

Forepaw Stimulation Odor Stimulation

#1. GRE #2. EPI #3. GRE

Matrix size 64×64×1 128×128×2 64×64×9

FOV 20×20×2 mm3 30×30×4 mm3 7×7×4.5 mm3

Image TR
1.92 s (R=1)
0.96 s (R=2)
0.48 s (R=4)

2 s (R=1; 2 shots); 1 s (R=2; 1 shot) 8 s (R=1)
2 s (R=4)

Sampling Patterna Full (3), Gaussian (3), Rand+C6 (3) Full (3), Gaussian (3), Rand+C6 (3) Full (5), Gaussian (2), Rand+C6 (5)

Paradigm Periodic block Periodic block Single-trial block

a
The numbers after pattern names are the number of animals scanned.
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Table 3

Percent signal change, noise level, and the number of activated voxels in high-resolution S1 fMRI obtained

with the EPI sequencea.

Percent change Noise level # of activated pixels

Full 3.9 ± 1.3% 1.1 ± 0.5% 96 ± 34

R=2 3.2 ± 0.7% 5.5 ± 1.0% 75 ± 24

a
Results were first obtained from each scan and then averaged across 9 scans (n = 9). The errors are standard deviations.
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