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Abstract

A central challenge for neuroscience lies in relating inter-individual variability to the functional

properties of specific brain regions. Yet, considerable variability exists in the connectivity patterns

between different brain areas, potentially producing reliable group differences. Using sex

differences as a motivating example, we examined two separate resting-state datasets comprising a

total of 188 human participants. Both datasets were decomposed into resting-state networks

(RSNs) using a probabilistic spatial independent components analysis (ICA). We estimated

voxelwise functional connectivity with these networks using a dual-regression analysis, which

characterizes the participant-level spatiotemporal dynamics of each network while controlling for

(via multiple regression) the influence of other networks and sources of variability. We found that

males and females exhibit distinct patterns of connectivity with multiple RSNs, including both

visual and auditory networks and the right frontal-parietal network. These results replicated across

both datasets and were not explained by differences in head motion, data quality, brain volume,

cortisol levels, or testosterone levels. Importantly, we also demonstrate that dual-regression

functional connectivity is better at detecting inter-individual variability than traditional seed-based

functional connectivity approaches. Our findings characterize robust—yet frequently ignored—

neural differences between males and females, pointing to the necessity of controlling for sex in

neuroscience studies of individual differences. Moreover, our results highlight the importance of

employing network-based models to study variability in functional connectivity.
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1. Introduction

Individuals are remarkably diverse, exhibiting variation across a host of behaviors and

phenotypes. Psychologists have long recognized the importance of including individual

variability in cognitive models (Underwood, 1975), and neuroscientists have begun to

identify underlying structural and functional variability in specific brain regions (Hariri,

2009; Braver et al., 2010) and how that variability relates to individual differences in a range

of domains: motivation (Mobbs et al., 2009; Clithero et al., 2011; Strauman et al., 2013),

reward sensitivity (Beaver et al., 2006; Carter et al., 2009), trait anxiety (Etkin et al., 2004;

Bishop, 2009), and working memory capacity (Osaka et al., 2003; Todd and Marois, 2005).

Yet, many computations are distributed across networks of regions rather than being

restricted to a specific region (Friston, 2009). Accordingly, studies of functional

connectivity of the brain at rest have converged on the idea that the brain is organized into

multiple, overlapping resting-state networks (RSNs) (Beckmann et al., 2005; Smith et al.,

2009). Some of these networks, including the default-mode network (Raichle et al., 2001;

Buckner et al., 2008), are observed in multiple species (Vincent et al., 2007; Hayden et al.,

2009; Lu et al., 2012), which highlights the fundamental nature of their role in neural

organization. Although RSNs represent a primary target of recent work on individual

differences, even relatively straightforward questions regarding sex differences have led to

equivocal results (Biswal et al., 2010; Weissman-Fogel et al., 2010; Filippi et al., 2012;

Wang et al., 2012a). The lack of consensus across these studies could be due to a number of

factors, including small sample sizes (Yarkoni, 2009) and the inability of traditional analysis

approaches to accurately represent the distributed computations that occur across RSNs

(Cole et al., 2010).

Characterizing the neural bases of sex differences could provide a crucial first step toward

understanding the mechanisms of psychopathologies that are linked to sex (Rutter et al.,

2003). We therefore investigated whether sex differences are expressed in patterns of

functional connectivity during the resting state. We recruited a large sample of participants

(N = 188), which we partitioned into split samples for an internal replication. For each

dataset, we computed a spatial independent components analysis (ICA) that parceled the

functional data into a set of independent spatial maps (Figure 1), some reflecting artifactual

spatial structures and others reflecting well-characterized RSNs (Smith et al., 2009). We

then employed a dual-regression functional connectivity analysis, which quantifies

connectivity with an entire RSN—rather than a representative node of the RSN, a limitation

of traditional seed-based approaches (Cole et al., 2010)—while controlling for the influence

of other RSNs (Filippini et al., 2009; Leech et al., 2011; Leech et al., 2012). Our analyses

revealed two key results. First, functional connectivity patterns between distinct brain

regions and multiple RSNs reliably predicted sex differences. Second, functional
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connectivity estimates derived from dual-regression analysis were better at classifying males

and females than similar estimates obtained from a seed-based analysis, suggesting that

dual-regression analysis provides a superior representation of the distributed computations

that occur within RSNs.

2. Materials and Methods

2.1 Participants

A total of 209 participants completed a resting-state scan that was included as the last scan

of a larger study containing three decision-making tasks. Although the results from those

tasks are not described here, we note that we did not observe sex differences in response

times on any task (Table 1). Furthermore, all participants completed the same tasks, in the

same order, prior to the resting-state scan. These observations are important in light of

recent work highlighting the plastic nature of RSNs, where prior tasks can influence resting-

state results (Lewis et al., 2009; Wang et al., 2012b).

During the resting-state scan, participants were told that they should maintain visual fixation

on a central cross, with no other explicit instructions. All participants reported no prior

psychiatric or neurological illness, via pre-screening for the study. Twenty-one participants

were excluded prior to statistical analysis because their data failed to meet quality criteria

for inclusion (see Preprocessing), leaving a final sample of 188 participants. We split the

sample into two randomly-determined datasets so that we could explicitly test all findings

for replication, internally [Dataset 1: N1 = 94 (57 females), mean age = 21.8 years; Dataset

2: N2 = 94 (46 females), mean age = 21.9 years]. The relative proportion of males and

females in each sample was not significantly different from chance (binomial test for

Dataset 1: p = 0.15; binomial test for Dataset 2: p = 0.15), and we additionally account for

numerical imbalances between males and females with nonparametric permutation-based

testing (Nichols and Holmes, 2002). All participants gave written informed consent as part

of a protocol approved by the Institutional Review Board of Duke University Medical

Center.

2.2 Image Acquisition

Neuroimaging data were collected using a General Electric MR750 3.0 Tesla scanner

equipped with an 8-channel parallel imaging system. Images sensitive to blood-oxygenation-

level-dependent (BOLD) contrast were acquired using a T2*-weighted spiral-in sensitivity

encoding sequence (acceleration factor = 2), with slices parallel to the axial plane

connecting the anterior and posterior commissures [repetition time (TR): 1580 ms; echo

time (TE): 30 ms; matrix: 64 × 64; field of view (FOV): 243 mm; voxel size: 3.8 × 3.8 × 3.8

mm; 37 axial slices; flip angle: 70 degrees]. We chose this sequence to ameliorate

susceptibility artifacts (Pruessmann et al., 2001; Truong and Song, 2008), particularly in

ventral frontal regions that characterize a hub of the default mode network (Raichle et al.,

2001; Fox et al., 2005; Fox and Raichle, 2007). Prior to preprocessing these functional data,

we discarded the first eight volumes of each run to allow for magnetic stabilization. To

facilitate coregistration and normalization of these functional data, we also acquired whole-

brain high-resolution anatomical scans (T1-weighted FSPGR sequence; TR: 7.58 ms; TE:
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2.93 ms; matrix: 256 × 256; FOV: 256 mm; voxel size: 1 × 1× 1 mm; 206 axial slices; flip

angle: 12 degrees).

2.3 FMRI Preprocessing

Our preprocessing routines employed tools from the FMRIB Software Library (FSL Version

4.1.8; http://www.fmrib.ox.ac.uk/fsl/) package (Smith et al., 2004; Woolrich et al., 2009).

We first corrected for head motion by realigning the time series to the middle volume

(Jenkinson et al., 2002). We then removed non-brain material using the brain extraction tool

(Smith, 2002). Next, intravolume slice-timing differences were corrected using Fourier-

space phase shifting, aligning to the middle slice (Sladky et al., 2011). Images were then

spatially smoothed with a 6-mm full-width-half-maximum isotropic Gaussian kernel. We

adopted a liberal high-pass temporal filter with a 150-second cutoff (Gaussianweighted

least-squares straight line fitting, with sigma = 75 s). We note that other studies of resting-

state functional connectivity (e.g., Power et al., 2012) commonly employ band-pass

temporal filters, but using these filters has the potential to mischaracterize the broadband

spectral characteristics observed in resting-state fluctuations (Niazy et al., 2011). Finally,

each 4-dimensional dataset was grand-mean intensity normalized using a single

multiplicative factor. Prior to group analyses, functional data were spatially normalized to

the Montreal Neurological Template (MNI) avg152 T1-weighted template (3 mm isotropic

resolution) using a 12-parameter affine transformation implemented in FLIRT (Jenkinson

and Smith, 2001).

As part of our preprocessing steps, we examined three partially correlated metrics of data

quality and excluded subjects with extreme values on these metrics. First, we estimated the

average signal-to-fluctuation-noise ratio (SFNR) for each subject, defined as the mean of the

signal across time divided by the standard deviation of the signal across time (Friedman and

Glover, 2006). Second, we computed the mean volume-to-volume head motion (i.e.,

displacements relative to the preceding time point in units of mm) for each subject. Third,

using an FSL tool called fsl_motion_outliers, we identified outlier volumes (“spikes”) in our

functional data by evaluating the root-mean-square error (RMSE) of each volume relative to

the reference volume (the middle time point). We considered a volume an outlier if its

RMSE amplitude exceeded the 75th percentile plus the value of 150% of the interquartile

range of RMSE for all volumes in a run (i.e., a standard boxplot threshold); this threshold is

thus dynamic to account for scaling differences between subjects. We excluded subjects

where any measure was extreme relative to other subjects (i.e., beyond the upper or lower

5th percentile in the distribution of values for that specific measure). This procedure created

the following exclusion thresholds for both datasets: SFNR < 49.86; proportion of outlier

volumes > 0.11; mean volume-to-volume head motion > 0.096 mm. Exclusion of

participants who have poor data quality minimizes the influence of artifacts unassociated

with brain function (e.g., motion) on reported results (Jansen et al., 2012; Power et al., 2012;

Satterthwaite et al., 2012).

To address data quality in the subjects included in our sample, we also regressed out

variance tied to 6 parameters describing motion (rotations and translations along the three

principal axes) and volumes identified as outliers. Removing outlier volumes via linear
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regression accomplishes the same goal of accounting for nonlinear effects of motion (e.g.,

signal spikes, spin history effects, etc.) that cannot be described by motion parameters alone

(Lemieux et al., 2007; Satterthwaite et al., 2013). As a final check, we directly compared

males and females on each quality assurance measure—SFNR, proportion of outlier

volumes, and mean volume-to-volume head motion—and found no differences in either

dataset (Table 1). As an additional control, individual differences in these data quality

metrics were included as covariates in our group-level model (see Dual-Regression Analysis

section). Finally, in a post-hoc analysis, we examined whether males and females differed as

a function of maximum volume-to-volume head movements. This analysis suggested that

males and females were indistinguishable in terms of maximum volume-to-volume head

movements [Dataset 1: Mfemales = .30 mm (range = 0.04:1.58 mm), Mmales = .27 mm (range

= 0.05:0.99 mm), (t(92) = −0.42, p = 0.67); Dataset 2: Mfemales = .22 mm (range = 0.04:1.39

mm), Mmales = .22 mm (range = 0.04:0.88 mm), (t(92) = −0.02, p = 0.98)]. Taken together,

we believe our quality assurance controls mitigate concerns that artifacts or differences in

data quality could be driving differences between males and females in our analyses.

2.4 Independent Components Analyses

Independent components analysis (ICA) identifies coherent spatial patterns in fMRI data,

including both resting-state networks and spatially structured artifacts (Beckmann et al.,

2005; Smith et al., 2009; Beckmann, 2012), while avoiding analytical pitfalls (e.g., seed

selection, global mean regression (Murphy et al., 2009)) that are common in traditional

seed-based methods for examining functional connectivity (Cole et al., 2010). Thus, we

utilized a probabilistic group ICA (Beckmann and Smith, 2004), as implemented in

MELODIC (Multivariate Exploratory Linear Decomposition into Independent Components)

Version 3.10 within FSL.

We conducted separate group ICAs on datasets derived from two independent samples. Prior

to estimating the group ICAs, we submitted each participant’s functional data to voxel-wise

de-meaning and normalization of the voxel-wise variance. The resulting datasets were then

whitened and projected into a 45-dimensional subspace (Dataset 1) and a 51-dimensional

subspace (Dataset 2) using probabilistic principal component analysis, for which the number

of dimensions was estimated using the Laplace approximation to the Bayesian evidence of

the model order (Beckmann and Smith, 2004). The whitened observations were decomposed

into sets of vectors that describe signal variation across the temporal domain (time-courses),

the subject domain, and across the spatial domain (maps) by optimizing for non-Gaussian

spatial source distributions using a fixed-point iteration technique (Hyvarinen, 1999). We

thresholded the estimated component maps by dividing the maps by standard deviation of

the residual noise and then fitting a Gaussian-Gamma mixture model to the histogram of

normalized intensity values (Beckmann and Smith, 2004).

2.5 Dual-Regression Analyses

To evaluate individual differences in connectivity with spatial maps identified by the ICA,

we employed a dual-regression analytical approach (Filippini et al., 2009; Leech et al., 2011;

Leech et al., 2012). Dual-regression analysis proceeds in two independent stages (Figure 1).

In a first spatial-regression step, spatial maps are regressed onto each participant’s
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functional data, resulting in a T (time points) × C (components) set of beta coefficients that

characterize, in each subject, the temporal dynamics for each spatial network. Then, in the

second temporal-regression step, the resulting temporal dynamics that describe each

network, in each subject, are regressed onto each subject’s functional data. This produces a

set of spatial maps that quantify, within each subject, each voxel’s connectivity with each

network identified with the group ICA. Thus, individual differences in connectivity with a

given network may manifest in any brain region – irrespective of whether that brain region

falls within the set of regions typically associated with that network. Importantly, the

temporal-regression step estimates each voxel’s connectivity with each spatial network

while controlling for the influence of other networks—some of which may reflect artifacts,

such as head motion and physiological noise.

Our core analyses were conducted on 10 well-characterized RSNs postulated to reflect

cognitive and sensory functions (Smith et al., 2009). To identify RSNs from our ICA that

correspond to the 10 RSNs reported in Smith et al. (2009), we conducted a spatial

correlation analysis. Within both datasets, we selected the 10 components that best matched

the 10 RSNs in Smith et al. (2009) (Dataset 1: mean r = 0.577, range = 0.395:0.725; Dataset

2: mean r = 0.556, range = 0.37:0.724). Using subject- and network-specific connectivity

maps corresponding to these 10 RSNs, we constructed a group-level general linear model to

estimate whether sex differences modulate connectivity with resting-state networks. To

ensure that estimated sex differences were not due to differences in data quality, we included

our three metrics for data quality (and subject exclusion) as covariates in our group-level

analysis. Specifically, as an additional control for motion confounds, we included two

covariates that summarized individual differences in motion (mean volume-to-volume

motion and the proportion of outlier volumes identified). In addition, we also included a

covariate that accounted for individual variation in SFNR, which could be impacted by a

combination of head motion and data acquisition problems. Accounting for differences in

SFNR is especially important in group-based resting-state studies, given that differences in

noise levels (e.g., between groups) can lead to differences in functional connectivity

between regions. This counterintuitive explanation is due to the fact that the observed

measurements comprise a mixture of signal (i.e., variance related to the network of interest)

and noise (i.e., variance unrelated to network of interest), and thus changes in either signal

or noise can affect the estimated effect size of the functional connectivity between two

regions (Friston, 2011). Finally, we included a covariate to account for a change in scanning

parameters that occurred about midway through data collection (i.e., the utilization of a fat

saturation pulse). Although this change in scanning parameters was distributed across males

and females in both samples [Dataset 1: 29 with fat saturation pulse (15 male); Dataset 2: 43

with fat saturation pulse (23 male)], we note that inclusion of the covariate accounts for

variance that could be attributed to this subtle change.

Statistical significance was assessed in a nonparametric fashion, using Monte Carlo

permutation-based statistical testing with 10,000 permutations with alpha = 0.05 corrected

for multiple voxel-wise comparisons across the whole brain (Nichols and Holmes, 2002). To

estimate clusters of activation, we used threshold-free cluster enhancement (Smith and

Nichols, 2009), thus retaining a fundamentally voxel-wise inference. Brain activations are
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displayed using MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/). Probabilistic

anatomical labels for local maxima were obtained using the Harvard-Oxford Cortical and

Subcortical atlases (Zilles and Amunts, 2010); all coordinates are reported in MNI space.

Although our analyses did not additionally correct for the additional comparisons incurred

by examining all 10 networks, we emphasize that all key results reported in the manuscript

are subjected to replication in independent data, which ameliorates concerns about Type 1

errors. To assess whether imaging results replicate in independent data, we created 5mm

spheres around the peak of each cluster maximum identified from our primary sample (e.g.,

Dataset 2). These spheres were then used as ROIs to test for equivalent effects (using a t-

test) in our replication sample (e.g., Dataset 1). We believe our split-sample replication

approach—while conservative and potentially biased toward Type 2 errors—provides an

optimal balance between Type 1 and Type 2 errors (Lieberman and Cunningham, 2009).

(We note that, for the results presented in Figure 2 and Table 2, our initial whole-brain

correction did not reveal clusters of activation in Dataset 2; however, we did find whole-

brain corrected results in Dataset 1, and these clusters replicated in Dataset 2.)

2.6 Seed-Based General Linear Model

For comparison against ICA and dual-regression, we also conducted a seed-based functional

connectivity analysis (Biswal et al., 1995) using a general linear model (GLM) with local

autocorrelation correction (Woolrich et al., 2001) applied separately to each participant.

Crucially, each GLM utilized the same input data as the ICA, thus facilitating comparisons

across both analyses, as both techniques use data that has motion-related variance (both

outlier volumes and the conventional motion parameters for rotations and translations)

regressed out prior to analyses. Each GLM consisted of three regressors corresponding to

the average time series within each of three regions of interest (5mm radius) intended to

represent each network of interest derived from the dual regression analysis (see Table 7 for

further details). These three networks were chosen because they exhibited sex differences in

functional connectivity. Like many seed-based approaches (Cole et al., 2010), selection of

representative seeds within a given network was guided by the hypothesized topography of

the network; thus, in our analysis, seed placement was chosen based on the peaks within the

networks identified by ICA (see Table 7 for coordinates). In addition, we note that these

seed regions did not overlap with the target regions identified in the dual regression analysis.

Critically, each GLM in the seed-based analysis (SBA) included the same subject-specific

nuisance regressors (derived from the ICA) that were included in the dual-regression

analysis (DRA). This consideration is crucial, as DRA benefits from the inclusion of

additional regressors that represent spatial artifacts related to head motion, physiological

signal fluctuations (e.g., respiration and cardiac pulsation), and machine-driven signal

fluctuations (e.g., gradient instabilities and radiofrequency spikes). Thus, the linear models

for DRA and SBA only differed in the choice of three regressors representing the key

networks of interests. After controlling for all known sources variability and equalizing

comparisons between SBA and DRA, our key tests evaluated whether connectivity between

seed and target differed as a function of sex.
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3. Results

3.1 Connectivity with RSNs Predict Sex Differences

Our analyses examined ten spatial networks matching the RSNs identified in previous work

(Smith et al., 2009). Three of these networks demonstrated replicable sex differences in

functional connectivity.

First, connectivity with the visual RSN (Figure 2A) was significantly higher in males

relative to females in intracalcarine cortex, cuneus, supracalcarine, and lingual gyrus (Figure

2B; Table 2). Of these regions, only the intracalcarine cortex replicated in an independent

sample (Figure 2C; t(92) = 2.49, p = 0.014). No brain regions showed higher connectivity

with the visual RSN in females relative to males with at our statistical threshold (p < 0.05,

whole-brain corrected). In a post hoc analysis, we reduced our statistical threshold (p < 0.01,

cluster extent = 27 voxels) and found regions within temporal cortex whose connectivity

with the visual RSN increased in females relative to males (Figure 2D; Table 2). Only

anterior superior temporal gyrus (aSTG) exhibited an effect that replicated in independent

data (Figure 2E; Table 2).

Second, sex differences were also observed in the connectivity patterns with the auditory

RSN (Figure 3A). Specifically, our analysis revealed several regions, including bilateral

Heschl's gyri, the planum temporal, insula, and temporal pole (Figure 3B; Table 3), whose

connectivity with the auditory RSN was significantly higher in males relative to females.

We evaluated the robustness of these sex differences using independent data and found

similar results in the insula (t(92) = 5.68, p < 0.001) as well as left (t(92) = 4.66, p < 0.001)

and right Heschl's gyrus (t(92) = 4.65, p < 0.001; Figure 3C). No brain regions showed higher

connectivity with the auditory RSN in females relative to males with our statistical

threshold. In a post hoc analysis, we reduced our statistical threshold (p < 0.01, cluster

extent = 27 voxels) and found increased connectivity with paracingulate cortex in females

relative to males (Figure 3D; Table 3), an effect that replicated in independent data (t(92) =

2.58, p < 0.05).

Finally, we evaluated sex differences in functional connectivity with the right frontal-

parietal RSN. This analysis revealed several regions, including middle frontal gyrus (MFG),

inferior frontal gyrus, and superior frontal gyrus, whose connectivity with the frontal-

parietal RSN was significantly higher in males relative to females (Figure 4; Table 4).

Among these regions, only MFG exhibited an effect that replicated in an independent

sample (t(92) = 3.32, p < 0.001). No brain regions reliably showed higher connectivity with

the right frontal-parietal RSN in females relative to males, even at a reduced statistical

threshold.

3.2 Sex Differences are Robust to Potential Confounds

To rule out several potential confounding explanations that could differentiate males and

females, we evaluated whether functional connectivity estimates from the regions identified

in our primary analyses were correlated with measurements of brain volume, gray matter

density within each network, gray matter density within each target region, age, or hormone
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levels (including cortisol and testosterone). None of these measures were correlated with our

effects (see Table 5).

In another set of control analyses, we evaluated whether our results were dependent on the

number of spatial maps estimated during the ICA. We restricted the ICA to 25 components

and performed the dual regression on the resulting set of spatial maps. We identified, in each

dataset, the spatial maps corresponding to the networks identified in our previous analysis;

this was done by correlating the spatial maps with the canonical RSNs (Smith et al., 2009)

and selecting those that best matched the frontal-parietal network, the auditory network, and

the visual network. Using the regions identified in our previous analyses, we confirmed that

networks showing greater connectivity in males compared to females held when employing

an ICA with lower dimensionality (see Table 6). We did not observe similar robustness for

our results suggesting greater connectivity in females relative to males.

It is also possible that the precise decomposition of the ICA could potentially bias our

results. For example, if the ICA output were driven, in part, by differences between males

and females, then we might expect to find sex differences in regions with highest loading on

each component—an observation that appears to be true for our key results. To eschew this

type of bias, we conducted dual-regression analyses, in each dataset, using the 10 well-

characterized RSN identified in a previous study (Smith et al., 2009). Importantly, all of our

results suggesting greater connectivity in males compared to females held when using dual

regressions estimated on spatial maps derived from a separate sample (see Table 6).

However, we note that we again failed to observe similar robustness for our results

suggesting greater connectivity in females relative to males.

Finally, we assessed whether spatially non-specific sex differences, such as differential

engagement of the RSNs, contributed to our results. For each of the results reported in

Figures 2–4, we first evaluated the magnitude of the global absolute functional connectivity

estimates for each RSN. We found that the global absolute functional connectivity was, on

average, approximately 25% higher in males, an effect that was significant in all RSNs (all

ps < .01), indicating that the RSNs were engaged more in males relative to females. Next,

we examined the spatial correlation between the ICA component maps and the sex

difference contrast maps (male > female); for the latter, we used the raw t-statistic maps

(i.e., not following permutation testing). We found modest correlations between the ICA

component maps and their corresponding contrast maps (mean r = 0.31), indicating that

about 10% of the variance in sex differences in functional connectivity might be explained

by some spatially non-specific effect of sex (e.g., increased network modulation in males).

3.3 Dual-Regression Analysis Outperforms Seed-Based Analysis

We also tested whether dual-regression functional connectivity analysis outperformed

traditional seed-based functional connectivity analysis. To do this, we extracted a

representative seed region from each of the three networks exhibiting sex differences in their

functional connectivity patterns (see Table 7 for MNI coordinates). Strikingly, functional

connectivity with each of these seeds did not differ across sexes, even when examining the

target regions that exhibited replicable sex differences in the dual regression analysis (Table

7). For each target region, we also examined the receiver operating characteristic (ROC)
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curves, comparing the area under the curve (AUC) for dual regression against seed based

measures. Across several target regions, connectivity estimates derived from dual-regression

analysis were significantly better at discriminating males and females (Figure 5).

4. Discussion

Neuroscience has made progress in linking levels of brain activation with individual

differences in behavior (Braver et al., 2010). Yet, the level of activation in a specific region

tells an incomplete story, because many processes are distributed across networks of regions

(Friston, 2009), for which individual nodes are unlikely to represent the computations

performed by a distributed network (Cole et al., 2010). Here, we overcome this challenge by

using ICA and dual-regression analysis (Filippini et al., 2009; Leech et al., 2011). Using this

approach coupled with a large sample and split-sample validation, our study extends

previous resting-state studies that have produced equivocal results on the neural bases of sex

differences (Biswal et al., 2010; Weissman-Fogel et al., 2010; Filippi et al., 2012; Wang et

al., 2012a). We show that individual differences in functional connectivity with RSNs

reliably distinguish males and females and, importantly, that these network measures

outperform traditional seed-based functional connectivity approaches.

Consistent with prior work, we show that sex differences are observed in restingstate

functional connectivity (Biswal et al., 2010; Filippi et al., 2012). Specifically, we found

reliable sex differences in connectivity with the right frontal-parietal RSN, the visual RSN,

and the auditory RSN—all of which passed split-sample validation. We emphasize that our

split-sample validation procedure is intrinsically conservative, in that it will miss other sex

differences that did not pass stringent standards in both samples. We adopted this approach,

even though it may have limited our findings, because of prior inconsistent results, with

evidence for (Biswal et al., 2010; Filippi et al., 2012) and against (Weissman-Fogel et al.,

2010) sex differences in resting-state functional connectivity. Inconsistencies in prior work

could be due to several factors, including small sample sizes that are prone to Type 1 errors

and spurious results (Button et al., 2013) and inability to accurately represent the distributed

computations that occur across many regions within an RSN (Cole et al., 2010). In contrast,

our study utilizes split-sample validation (for maximal statistical power) and novel methods

that characterize the distributed computations within an RSN. These advances allowed us to

characterize robust and consistent functional connectivity differences between males and

females, findings that emphasize the importance for controlling for sex in neuroscience

studies (McCarthy et al., 2012).

Our analysis framework—ICA combined with dual-regression analysis—allowed us to

quantify connectivity with entire networks rather than with a representative node from a

network (cf. seed-based analyses). This distinction is crucial for two reasons. First, distinct

networks may partially overlap (Leech et al., 2012), confounding seed-based analyses.

Second, a single node within a network cannot accurately represent the computations

performed by that network (Friston, 2009). Although these factors likely contributed to our

observation of improved performance of dual-regression analysis compared to seed-based

analysis, we emphasize that seed-based analyses will likely remain important for studies that

focus on connectivity with specific brain regions.
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As a caveat, we note that the unconstrained nature of resting-state fMRI necessarily limits

our interpretations (Morcom and Fletcher, 2007; Friston, 2011; O'Reilly et al., 2012). For

example, although we controlled for differences in head motion, SFNR, brain structure, age,

and hormone levels, other between-subject differences could exist. We note, for example,

that males exhibited greater absolute functional connectivity across the brain, which could

lead to non-specific sex effects across entire functional networks. That possibility is

consistent with the presence of sex differences in regions that exhibit the greatest loading on

some components and the relative paucity of regions exhibiting increased functional

connectivity for females compared to males. Concerns about nonspecific sex differences are

partially ameliorated, however, by our use of permutation testing throughout the analyses,

the control analyses using ICA maps generated from an independent dataset, and the

relatively weak correlations between the group ICA maps and the sex-difference contrasts.

Thus, we conclude that spatially non-specific sex differences in functional connectivity

partially, but not completely, contribute to our observed results.

Overall differences in connectivity could be related to multiple factors. For example,

although ICA would account for physiological signals that have consistent spatial effects on

the fMRI data (e.g., increased ventricular signal due to respiration), we note that other

physiological signals, such as increased heart rate variability in males (Stein et al., 1997;

Saleem et al., 2012), may partially contribute to our results. Such generalized physiological

effects are unlikely to fully explain our results, however, as only three out of ten networks

exhibited consistent sex differences. Alternatively, overall differences in connectivity could

be driven by the way in which males and females treated the resting-state scan. Indeed,

unconstrained cognition in resting-state fMRI may lead to activation differences of a given

network, which would manifest as connectivity differences (Friston, 2011; O'Reilly et al.,

2012). Thus, given the observation that males exhibited increased global modulation of each

network, we speculate that our results could be partially explained by increased attention to

visual stimuli (i.e., fixation cross) and auditory stimuli (i.e., background scanner noise)

during the resting state. Although this caveat is endemic in resting-state fMRI studies, future

work could attempt to measure varying levels of sympathetic arousal using galvanic skin

conductance responses (Schiller and Delgado, 2010), as these metrics may reflect changes in

attentional processing (Frith and Allen, 1983). In addition, unobserved cognitive differences

during the resting-state scan could arise due to tasks completed prior to the resting-state scan

(Lewis et al., 2009; Wang et al., 2012b). Notably, however, we did not observe sex

differences in behavior on the tasks that preceded the resting-state scan, thus mitigating

concerns that our results are due to the tasks completed before the resting-state scan.

Although we did not observe behavioral differences in the tasks completed prior to the

resting-state scan, it is possible that these tasks elicited sex differences in activation and

connectivity, which could be echoed into the resting-state scan (Lewis et al., 2009; Wang et

al., 2012b). Notably, however, these caveats should not affect our core comparisons between

SBA and DRA, which demonstrated that DRA is significantly better at characterizing the

distributed computations within large-scale networks.

Our results may indirectly hint at the circuitry underlying sex differences, which have been

found in a range of cognitive abilities: visuospatial navigation (Sandstrom et al., 1998),

verbal production (Lewin et al., 2001), autobiographical memory (Seidlitz and Diener, 1998;
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Canli et al., 2002), and many others. These behavioral observations can be far more

dramatic, as sex differences are often key predictors in psychiatric disorders— including

autism (Yeargin-Allsopp et al., 2003), psychopathy (for review, see Cale and Lilienfeld,

2002), and depression (Weissman and Klerman, 1977; Nolen-Hoeksema and Girgus, 1994).

Indeed, some researchers have argued that the underlying mechanisms of psychiatric

disorders may be revealed through investigations into the neural basis of sex differences

(Rutter et al., 2003). Although our work provides important progress toward identifying

robust sex differences in resting-state connectivity, it remains challenging to interpret the

implications of our results, as neural sex differences may manifest in the absence of

behavioral sex differences, potentially reflecting compensatory mechanisms (for review,

Cahill, 2006). Distinguishing between these disparate possibilities will require additional

research examining how connectivity with the RSNs identified in our study— auditory,

visual, and right frontal-parietal—and others are modulated by different tasks (Leech et al.,

2011).

5. Conclusions

In summary, our study demonstrates two key findings: first, sex differences are reliably

expressed in the functional connectivity patterns with large-scale networks; second, dual-

regression approaches are better than seed-based approaches at characterizing the distributed

computations that occur within large-scale networks. Improved quantifications of these

distributed computations could have important applications. For example, recent work has

suggested that analysis of brain structure that assume functions are represented in distributed

networks can advance our understanding of clinical syndromes (Smith et al., 2013).

Although resting-state seed-based methods are advancing our understanding of

psychopathology (e.g., Fox and Greicius, 2010; Whitfield-Gabrieli and Ford, 2012), our

results suggest that approaches that rely on network-level inferences will provide deeper

insight into the distributed neural computations that contribute to a range of individual

differences, from normal to pathological.

Acknowledgments

This study was funded by a grant from the National Institutes of Health (NIMH RC1-88680), an Incubator Award
from the Duke Institute for Brain Sciences (SAH), and by a NIMH National Research Service Award F31-086248
(DVS). We thank Steve Stanton for hormone analyses and Edward McLaurin for assistance with data collection.
We also thank Timothy Strauman and Jacob Young for feedback on previous drafts of the manuscript. DVS is now
at Rutgers University.

References

Beaver JD, Lawrence AD, van Ditzhuijzen J, Davis MH, Woods A, Calder AJ. Individual differences
in reward drive predict neural responses to images of food. J Neurosci. 2006; 26:5160–5166.
[PubMed: 16687507]

Beckmann CF. Modelling with independent components. Neuroimage. 2012; 62:891–901. [PubMed:
22369997]

Beckmann CF, Smith SM. Probabilistic independent component analysis for functional magnetic
resonance imaging. IEEE Trans Med Imaging. 2004; 23:137–152. [PubMed: 14964560]

Smith et al. Page 12

Neuroimage. Author manuscript; available in PMC 2015 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using
independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005; 360:1001–1013.
[PubMed: 16087444]

Bishop SJ. Trait anxiety and impoverished prefrontal control of attention. Nat Neurosci. 2009; 12:92–
98. [PubMed: 19079249]

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting
human brain using echo-planar MRI. Magn Reson Med. 1995; 34:537–541. [PubMed: 8524021]

Biswal BB, et al. Toward discovery science of human brain function. Proceedings of the National
Academy of Sciences. 2010; 107:4734–4739.

Braver TS, Cole MW, Yarkoni T. Vive les differences! Individual variation in neural mechanisms of
executive control. Curr Opin Neurobiol. 2010; 20:242–250. [PubMed: 20381337]

Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and
relevance to disease. Ann N Y Acad Sci. 2008; 1124:1–38. [PubMed: 18400922]

Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafo MR. Power failure:
why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;
14:365–376. [PubMed: 23571845]

Cahill L. Why sex matters for neuroscience. Nat Rev Neurosci. 2006; 7:477–484. [PubMed:
16688123]

Cale EM, Lilienfeld SO. Sex differences in psychopathy and antisocial personality disorder. A review
and integration. Clin Psychol Rev. 2002; 22:1179–1207. [PubMed: 12436810]

Canli T, Desmond JE, Zhao Z, Gabrieli JD. Sex differences in the neural basis of emotional memories.
Proc Natl Acad Sci U S A. 2002; 99:10789–10794. [PubMed: 12145327]

Carter RM, Macinnes JJ, Huettel SA, Adcock RA. Activation in the VTA and nucleus accumbens
increases in anticipation of both gains and losses. Front Behav Neurosci. 2009; 3:21. [PubMed:
19753142]

Clithero JA, Reeck C, Carter RM, Smith DV, Huettel SA. Nucleus accumbens mediates relative
motivation for rewards in the absence of choice. Front Hum Neurosci. 2011; 5

Cole DM, Smith SM, Beckmann CF. Advances and pitfalls in the analysis and interpretation of
resting-state FMRI data. Front Syst Neurosci. 2010; 4:8. [PubMed: 20407579]

Etkin A, Klemenhagen KC, Dudman JT, Rogan MT, Hen R, Kandel ER, Hirsch J. Individual
differences in trait anxiety predict the response of the basolateral amygdala to unconsciously
processed fearful faces. Neuron. 2004; 44:1043–1055. [PubMed: 15603746]

Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA. The organization of intrinsic brain
activity differs between genders: A resting-state fMRI study in a large cohort of young healthy
subjects. Hum Brain Mapp. 2012

Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, Smith SM, Matthews PM,
Beckmann CF, Mackay CE. Distinct patterns of brain activity in young carriers of the APOE-
epsilon4 allele. Proc Natl Acad Sci U S A. 2009; 106:7209–7214. [PubMed: 19357304]

Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic
resonance imaging. Nat Rev Neurosci. 2007; 8:700–711. [PubMed: 17704812]

Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst
Neurosci. 2010; 4:19. [PubMed: 20592951]

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is
intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the
National Academy of Sciences. 2005; 102:9673.

Friedman L, Glover GH. Reducing interscanner variability of activation in a multicenter fMRI study:
controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage. 2006; 33:471–
481. [PubMed: 16952468]

Friston KJ. Modalities, modes, and models in functional neuroimaging. Science. 2009; 326:399–403.
[PubMed: 19833961]

Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011; 1:13–36. [PubMed:
22432952]

Smith et al. Page 13

Neuroimage. Author manuscript; available in PMC 2015 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Frith CD, Allen HA. The skin conductance orienting response as an index of attention. Biol Psychol.
1983; 17:27–39. [PubMed: 6626635]

Hariri AR. The Neurobiology of Individual Differences in Complex Behavioral Traits. Annu Rev
Neurosci. 2009; 32

Hayden BY, Smith DV, Platt ML. Electrophysiological correlates of default-mode processing in
macaque posterior cingulate cortex. Proceedings of the National Academy of Sciences. 2009;
106:5948–5953.

Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans
Neural Netw. 1999; 10:626–634. [PubMed: 18252563]

Jansen M, White TP, Mullinger KJ, Liddle EB, Gowland PA, Francis ST, Bowtell R, Liddle PF.
Motion-related artefacts in EEG predict neuronally plausible patterns of activation in fMRI data.
Neuroimage. 2012; 59:261–270. [PubMed: 21763774]

Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images.
Med Image Anal. 2001; 5:143–156. [PubMed: 11516708]

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear
registration and motion correction of brain images. Neuroimage. 2002; 17:825–841. [PubMed:
12377157]

Leech R, Braga R, Sharp DJ. Echoes of the brain within the posterior cingulate cortex. J Neurosci.
2012; 32:215–222. [PubMed: 22219283]

Leech R, Kamourieh S, Beckmann CF, Sharp DJ. Fractionating the default mode network: distinct
contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J Neurosci.
2011; 31:3217–3224. [PubMed: 21368033]

Lemieux L, Salek-Haddadi A, Lund TE, Laufs H, Carmichael D. Modelling large motion events in
fMRI studies of patients with epilepsy. Magn Reson Imaging. 2007; 25:894–901. [PubMed:
17490845]

Lewin C, Wolgers G, Herlitz A. Sex differences favoring women in verbal but not in visuospatial
episodic memory. Neuropsychology. 2001; 15:165–173. [PubMed: 11324860]

Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M. Learning sculpts the spontaneous
activity of the resting human brain. Proc Natl Acad Sci U S A. 2009; 106:17558–17563. [PubMed:
19805061]

Lieberman MD, Cunningham WA. Type I and Type II error concerns in fMRI research: re-balancing
the scale. Soc Cogn Affect Neurosci. 2009; 4:423–428. [PubMed: 20035017]

Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network.
Proceedings of the National Academy of Sciences. 2012; 109:3979–3984.

McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. Sex differences in the brain: the not
so inconvenient truth. J Neurosci. 2012; 32:2241–2247. [PubMed: 22396398]

Mobbs D, Hassabis D, Seymour B, Marchant JL, Weiskopf N, Dolan RJ, Frith CD. Choking on the
Money: Reward-Based Performance Decrements Are Associated With Midbrain Activity. Psychol
Sci. 2009; 20:955–962. [PubMed: 19594859]

Morcom AM, Fletcher PC. Does the brain have a baseline? Why we should be resisting a rest.
Neuroimage. 2007; 37:1073–1082.

Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA. The impact of global signal
regression on resting state correlations: are anti-correlated networks introduced? Neuroimage.
2009; 44:893–905. [PubMed: 18976716]

Niazy RK, Xie J, Miller K, Beckmann CF, Smith SM. Spectral characteristics of resting state
networks. Prog Brain Res. 2011; 193:259–276. [PubMed: 21854968]

Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with
examples. Hum Brain Mapp. 2002; 15:1–25. [PubMed: 11747097]

Nolen-Hoeksema S, Girgus JS. The emergence of gender differences in depression during
adolescence. Psychol Bull. 1994; 115:424–443. [PubMed: 8016286]

O'Reilly JX, Woolrich MW, Behrens TE, Smith SM, Johansen-Berg H. Tools of the trade:
psychophysiological interactions and functional connectivity. Soc Cogn Affect Neurosci. 2012;
7:604–609. [PubMed: 22569188]

Smith et al. Page 14

Neuroimage. Author manuscript; available in PMC 2015 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Osaka M, Osaka N, Kondo H, Morishita M, Fukuyama H, Aso T, Shibasaki H. The neural basis of
individual differences in working memory capacity: an fMRI study. Neuroimage. 2003; 18:789–
797. [PubMed: 12667855]

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in
functional connectivity MRI networks arise from subject motion. Neuroimage. 2012; 59:2142–
2154. [PubMed: 22019881]

Pruessmann KP, Weiger M, Bornert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-
space trajectories. Magn Reson Med. 2001; 46:638–651. [PubMed: 11590639]

Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of
brain function. Proc Natl Acad Sci U S A. 2001; 98:676–682. [PubMed: 11209064]

Rutter M, Caspi A, Moffitt TE. Using sex differences in psychopathology to study causal mechanisms:
unifying issues and research strategies. J Child Psychol Psychiatry. 2003; 44:1092–1115.
[PubMed: 14626453]

Saleem S, Hussain MM, Majeed SM, Khan MA. Gender differences of heart rate variability in healthy
volunteers. J Pak Med Assoc. 2012; 62:422–425. [PubMed: 22755301]

Sandstrom NJ, Kaufman J A, Huettel S. Males and females use different distal cues in a virtual
environment navigation task. Cognitive Brain Research. 1998; 6:351–360. [PubMed: 9593991]

Satterthwaite TD, Wolf DH, Loughead J, Ruparel K, Elliott MA, Hakonarson H, Gur RC, Gur RE.
Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for
studies of neurodevelopment in youth. Neuroimage. 2012; 60:623–632. [PubMed: 22233733]

Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, Eickhoff SB,
Hakonarson H, Gur RC, Gur RE, Wolf DH. An improved framework for confound regression and
filtering for control of motion artifact in the preprocessing of resting-state functional connectivity
data. Neuroimage. 2013; 64:240–256. [PubMed: 22926292]

Schiller D, Delgado MR. Overlapping neural systems mediating extinction, reversal and regulation of
fear. Trends in cognitive sciences. 2010; 14:268–276. [PubMed: 20493762]

Seidlitz L, Diener E. Sex differences in the recall of affective experiences. J Pers Soc Psychol. 1998;
74:262–271. [PubMed: 9457787]

Sladky R, Friston KJ, Tröstl J, Cunnington R, Moser E, Windischberger C. Slice-timing effects and
their correction in functional MRI. Neuroimage. 2011; 58:588–594. [PubMed: 21757015]

Smith DV, Clithero JA, Rorden C, Karnath HO. Decoding the anatomical network of spatial attention.
Proc Natl Acad Sci U S A. 2013; 110:1518–1523. [PubMed: 23300283]

Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002; 17:143–155. [PubMed:
12391568]

Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing,
threshold dependence and localisation in cluster inference. Neuroimage. 2009; 44:83–98.
[PubMed: 18501637]

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R,
Laird AR, Beckmann CF. Correspondence of the brain's functional architecture during activation
and rest. Proceedings of the National Academy of Sciences. 2009; 106:13040–13045.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR,
De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N,
Brady JM, Matthews PM. Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage. 2004; 23(Suppl 1):S208–S219. [PubMed: 15501092]

Stein PK, Kleiger RE, Rottman JN. Differing effects of age on heart rate variability in men and
women. Am J Cardiol. 1997; 80:302–305. [PubMed: 9264423]

Strauman TJ, Detloff AM, Sestokas R, Smith DV, Goetz EL, Rivera C, Kwapil L. What shall I be,
what must I be: neural correlates of personal goal activation. Front Integr Neurosci. 2013; 6:123.
[PubMed: 23316145]

Todd JJ, Marois R. Posterior parietal cortex activity predicts individual differences in visual short-term
memory capacity. Cogn Affect Behav Neurosci. 2005; 5:144–155. [PubMed: 16180621]

Truong TK, Song AW. Single-shot dual-z-shimmed sensitivity-encoded spiral-in/out imaging for
functional MRI with reduced susceptibility artifacts. Magn Reson Med. 2008; 59:221–227.
[PubMed: 18050341]

Smith et al. Page 15

Neuroimage. Author manuscript; available in PMC 2015 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Underwood BJ. Individual differences as a crucible in theory construction. Am Psychol. 1975; 30:128–
134.

Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, Zempel JM, Snyder LH,
Corbetta M, Raichle ME. Intrinsic functional architecture in the anaesthetized monkey brain.
Nature. 2007; 447:83–86. [PubMed: 17476267]

Wang L, Shen H, Tang F, Zang Y, Hu D. Combined structural and resting-state functional MRI
analysis of sexual dimorphism in the young adult human brain: An MVPA approach. Neuroimage.
2012a; 61:931–940. [PubMed: 22498657]

Wang Z, Liu J, Zhong N, Qin Y, Zhou H, Li K. Changes in the brain intrinsic organization in both on-
task state and post-task resting state. Neuroimage. 2012b; 62:394–407. [PubMed: 22569542]

Weissman MM, Klerman GL. Sex differences and the epidemiology of depression. Arch Gen
Psychiatry. 1977; 34:98–111. [PubMed: 319772]

Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD. Cognitive and defaultmode resting
state networks: do male and female brains "rest" differently? Hum Brain Mapp. 2010; 31:1713–
1726. [PubMed: 20725910]

Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology.
Annu Rev Clin Psychol. 2012; 8:49–76. [PubMed: 22224834]

Woolrich MW, Ripley BD, Brady M, Smith SM. Temporal autocorrelation in univariate linear
modeling of FMRI data. Neuroimage. 2001; 14:1370–1386. [PubMed: 11707093]

Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M,
Smith SM. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009; 45:S173–S186.
[PubMed: 19059349]

Yarkoni T. Big Correlations in Little Studies: Inflated fMRI Correlations Reflect Low Statistical
Power--Commentary on Vul et al. (2009). Perspect Psychol Sci. 2009; 4:294–298.

Yeargin-Allsopp M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C. Prevalence of autism in
a US metropolitan area. JAMA. 2003; 289:49–55. [PubMed: 12503976]

Zilles K, Amunts K. Centenary of Brodmann's map--conception and fate. Nat Rev Neurosci. 2010;
11:139–145. [PubMed: 20046193]

Smith et al. Page 16

Neuroimage. Author manuscript; available in PMC 2015 July 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Highlights

• Sex differences are expressed in connectivity patterns with multiple networks

• Seed-based analysis (SBA) does not accurately represent connectivity with

networks

• Dual-regression analysis (DRA) accurately represents connectivity with

networks

• Individual differences in functional connectivity are characterized better with

DRA
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Figure 1. High-level Schematic of Analytical Approach
Our analyses proceeded in several steps. After splitting our sample into two independent

datasets (n1 = 94; n2 = 94), the data were preprocessed and motion-related variance was

removed from the time series via multiple regression. Group independent component

analyses were performed on each dataset, with resulting spatial maps being entered into

separate dual regression analyses. Importantly, the dual regression analysis allowed us to

quantify, within each subject, each voxel’s functional connectivity with each spatial map

while controlling for the influence of other, potentially confounding, maps. The resulting

functional connectivity measures were then subjected to permutation-based statistical testing

to test for sex differences. Finally, we supplemented all of our results by testing for

replication in the independent sample of data.
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Figure 2. Bidirectional Sex Differences in Connectivity with Primary Visual RSN
(A) We identified a resting-state network exhibiting considerable anatomical overlap with

areas involved in the processing of visual stimuli. Coordinates of axial slice numbers are

display in terms of MNI space. (B) We found several regions whose coactivation with the

visual network was significantly higher in males relative to females. These regions included

intracalcarine cortex, cuneus, supracalcarine, and lingual gyrus. Of these regions, only the

intralcarine cortex [blue; MNI(x,y,z) = 12, −69, 6] replicated in an independent sample. (C)

Parameter estimates quantifying subject-specific functional connectivity between
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intracalcarine cortex and the visual RSN. (D) The inverse contrast revealed that anterior

superior temporal gyrus (aSTG) connectivity with the visual RSN was higher in females

than males. (E) Parameter estimates quantifying subject-specific functional connectivity

between aSTG and the visual RSN. Error bars (in C and E) reflect standard error of the

mean across subjects.
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Figure 3. Bidirectional Sex Differences in Connectivity with Auditory RSN
(A) We identified a resting-state network exhibiting considerable anatomical overlap with

areas involved in the processing of auditory stimuli. Coordinates of axial slice numbers are

display in terms of MNI space. (B) We found several regions whose connectivity with the

auditory network was significantly higher in males relative to females. These regions

included Heschl's Gyrus, the planum temporal, insula, and temporal pole. Of these regions,

only the right Heschl's Gyrus [blue; MNI(x,y,z) = 39, 18, 9] replicated in an independent

sample. (C) Parameter estimates quantifying subject-specific functional connectivity
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between right Heschl's gyrus and the auditory RSN. (D) The inverse contrast revealed that

paracingulate gyrus connectivity with the auditory RSN was higher in females than males.

(E) Parameter estimates quantifying subject-specific functional connectivity between

paracingulate gyrus and the auditory RSN. Error bars (in C and E) reflect standard error of

the mean across subjects.
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Figure 4. Unidirectional Sex Differences in Connectivity with Right Frontal-Parietal RSN
(A) We identified a resting-state network primarily comprised of right lateralized frontal-

parietal regions. Coordinates of axial slice numbers are display in terms of MNI space. (B)

We found several regions whose coactivation with the frontal-parietal network was

significantly higher in males relative to females. These regions included middle frontal

gyrus (MFG), inferior frontal gyrus, and superior frontal gyrus. Of these regions, only the

MFG [blue; MNI(x,y,z) = 48, 27, 30] replicated in an independent sample. (C) Parameter

estimates quantifying subject-specific functional connectivity between MFG and the frontal-

parietal network. Error bars reflect standard error of the mean across subjects.
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Figure 5. Dual-Regression Analysis Outperforms Traditional Seed-Based Analysis
Receiver-operating characteristics were computed for each target region and its associated

network. Across multiple target regions, we found that connectivity estimates with an entire

network [as computed with dual-regression analysis (DRA)] were significantly better at

distinguishing males and females compared than connectivity estimates with a

representative node of a network [as computed with seed-based analysis (SBA)]. (A)

Heschl's Gyrus and the auditory network. (B) Paracingulate Cortex and the auditory

network. (C) Middle Frontal Gyrus (MFG) and the right frontal-parietal network. (D)

Anterior Superior Temporal Gyrus (aSTG) and the primary visual network. (E)

Intracalcarine cortex and the primary visual network. Statistics for primary sample are

shown in black text (corresponding to the solid curves in the figure); replication statistics are

shown in gray text (corresponding to the dashed curves in the figure).
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Table 5
Sex Differences in Resting-State Networks is Robust to Multiple Alternative Explanations

We examined whether sex differences in resting-state networks are explained by other confounding variables,

including total brain volume, gray matter (GM) density within the network, GM density within the specific

target region that was identified in the analyses, cortisol levels, testosterone levels, and age. Brain volume and

testosterone was gender normalized by computing the within-gender z-scores. For increased power, we

collapsed across our entire sample to produce dataset comprised of 188 individuals. Across all of these

measures, we failed to find significant correlations with our functional estimates (r values displayed in each

cell; all p-values > 0.09).

Intracalcarine
with Visual
Network (M>F)

aSTG with
Visual Network
(F>M)

Heschl with
Auditory
Network (M>F)

Paracingulate
with Auditory
Network(F>M)

MFG with R
Frontal-
Parietal
Network (M>F)

Brain Volume (normalized) 0.01 0.05 0.03 −0.07 −0.07

Network GM density 0.02 −0.07 0.04 −0.01 0.09

Target GM density −0.08 −0.03 0.01 0 0.02

Cortisol 0.04 −0.06 −0.02 −0.02 0.06

Testosterone (normalized) 0.02 −0.13 0.09 −0.12 0.12

Age −0.1 −0.002 −0.04 0.09 0
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