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Abstract

Studies employing functional connectivity-type analyses have established that spontaneous

fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-

scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra

– a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and

scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate

extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation

for robust parameter estimation. We applied this framework to fMRI data acquired from healthy

young adults at rest and performing a visual detection task. First, we found that scale-invariance

existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics.

Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-

regional connectivity, with a systematically stronger contribution of the lowest frequencies, both

at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional

correlations, task performance modified cross-temporal dynamics, inducing a larger contribution

of the highest frequencies within the scale-free range to global correlation. Lastly, we found that

across individuals, a weaker task modulation of the frequency contribution to inter-regional

connectivity was associated with better task performance manifesting as shorter and less variable

reaction times. These findings bring together two related fields that have hitherto been studied

separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of

human brain activity manifest in cross-regional interactions as well.
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1. Introduction

In recent years, functional-connectivity analysis applied to resting-state blood oxygen level-

dependent (BOLD) fMRI has revealed a rich intrinsic functional architecture of brain

activity, manifesting as large-scale, coherent brain networks that recapitulate the spatial

patterns of task activations [1, 2, 3, 4, 5, 6, 7, 8]. The functional significance of fMRI

resting-state networks (RSNs) has been demonstrated in various neurological and

psychiatric diseases by showing that the degree of disruption of resting-state networks

(RSNs) correlated with the severity of the disorder [9, 10, 11]. Moreover, repetitive training

over period of days sculpts spontaneous activity of the resting human brain, suggesting

dynamic reconfiguration of RSNs [12].

Most studies assessing functional connectivity so far have used either a seed-based region-

of-interest (ROI) approach, in which the time series associated with a chosen ROI is used as

a regressor to identify regions of similar temporal behavior across the brain [1, 5, 13], or an

independent component analysis (ICA) – an exploratory approach for identifying spatial

regions with temporally coordinated activity [14, 15, 16]. Each approach relies on either

anatomically or statistically driven a priori assumptions (see [17]) for a general review of the

pros and cons of both approaches). The seed-based method relies largely on the computation

of linear Pearson correlation coefficients between the temporal fluctuations of BOLD signal

in different brain regions. The ICA approach identifies spatial components that are

maximally independent, each component grouping voxels with similar temporal dynamics

[14, 17].

In nature, Pearson’s correlation is linear, static and global. Whether linear coupling is

sufficient in describing interactions between brain regions or networks has been studied with

care, using the functional integration index and mutual information [18, 19]. Definitive

answers are still lacking, which depends on whether fMRI data are well modeled as

Gaussian processes, and whether their dependence structure can be described by the sole

correlation coefficient. It has been observed that depending on the spatial scale at which the

correlation measure is assessed, departure from Gaussianity may be relatively minor

(within-network) [18] or significant (between-network) [19].

Pearson’s correlation can also be considered a static measure of dependency since it does

not provide practitioners with any information regarding the contributions of the different

frequencies to correlation. To bridge that gap, the coherence function can be used to

measure the relative contributions of the different frequencies to correlation [20, 21, 22].

The global nature of Pearson’s correlation prevents assessment of dependencies that vary

over time. To overcome that limitation, local correlation coefficients can be computed via

sliding windows [21, 22, 23] to access dynamic functional connectivity in humans or

animals [23, 24]. It is however natural and efficient to combine local (time-varying) and

frequency-dependent correlation measure into time-frequency or wavelet-based measures of

correlation such as the wavelet transform coherence [21]. Indeed, temporal reconfigurations

of fMRI RSNs have been recently observed over typical scan durations (several minutes)

using time-resolved acquisitions and a cascade of spatial and temporal ICA [25], or sliding-
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window ICA or principal component analysis (PCA) [26, 27]. More recently, it has been

demonstrated that the spatial signature of RSNs can be reconstructed from a few

spontaneous coactivation patterns occurring at critical time points using a point process

methodology [28] or a clustering algorithm [29].

In a separate vein, the temporal dynamics of brain activity has also been extensively studied.

In both BOLD fMRI and electrophysiological recordings from the brain, a major component

of brain activity is arrhythmic and demonstrates scale-invariance in temporal dynamics (i.e.,

“scale-free dynamics”), suggesting that no single time scale plays a predominant role [30,

31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. Scale-free dynamics is associated with

long-range dependence (also called “long memory”) and self-similarity in time [45] and a

power-law distribution of the power spectrum (Γ(f) ∝ 1/fα with α > 0) in the frequency

domain. Scale-free dynamics in fMRI signals have been shown to localize to grey matter

(30–31), vary across behavioral conditions and brain networks [42, 43], alter with age [46],

arousal state [47], and disease processes [48]. Moreover, long memory in fMRI signals, as

quantified by Hurst exponent, decreases during task in both activated and deactivated brain

regions [42]. In parallel, it has been shown that arrhythmic low-frequency fluctuations of

brain electrical field potentials (< 4 Hz) are organized in the same intrinsic large-scale brain

networks revealed by resting-state fMRI [35] and too demonstrate decreased long memory

during task state [39]. Thus, analyzing scale-invariance in temporal dynamics may provide

novel insights into brain mechanisms underlying cognition and behavior [31, 33, 34, 35, 39,

42, 43, 46, 48].

The present study aims at analyzing functional connectivity within and amongst RSNs

beyond the use of the Pearson correlation coefficient ρXY by investigating scale-free cross-

temporal dynamics. To this end, the fractal connectivity framework is used, which extends

the classical univariate models of fractional Brownian motion (fBm)/fractional Gaussian

noise (fGn) [49] into a multivariate setting and thereby allowing the investigation of scaling

behaviors of cross-spectra [50]. More precisely, while the Hurst exponent H is classically

used to quantify univariate scale-free temporal dynamics, scale-free cross-temporal

dynamics between two regions X and Y are quantified by a scaling exponent αXY, related to

the power-law decay of the cross spectrum. Exponent γXY = αXY − (HX + HY) + 1 is further

defined to evaluate the extent to which cross-temporal dynamics contribute to functional

connectivity: When γXY = 0, the cross spectrum contains no extra information beyond that

carried by the auto spectra; in this case, functional connectivity between regions X and Y is

said to follow fractal connectivity. Conversely, γXY ≠ 0 indicates that γXY conveys dynamical

information not already contained in the static ρXY : It acts as a scale-free parameter to gauge

the balance between different frequencies in their contributions to functional connectivity.

Specifically, the recent formulation of fractal connectivity into a wavelet framework,

referred to as wavelet fractal connectivity [51] is adopted here, as it allows the analysis of

scale-free cross-temporal dynamics in a theoretically well-grounded and practically efficient

manner. Hence, in the present work, functional connectivity in fMRI data is analyzed

beyond the static correlation ρXY, under the additional light of the frequency balance

parameter γXY.
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2. Methods

Functional magnetic resonance imaging (fMRI) data were acquired from seventeen normal

healthy young adults (9 females, age 18–27 years) at rest and performing a visual detection

task. All subjects provided written informed consent. This data set has been previously

published in separate studies [42, 52, 53]. Detailed methods can be found in SI Methods.

2.1. fMRI data acquisition

Blood-oxygen-level dependent (BOLD) fMRI data (4×4×4 mm3 voxels, TE 25 ms, TR 2.16

s) were acquired in 17 normal right-handed young adults (9 females, age 18–27 years) using

a 3T Siemens Allegra MR scanner. All subjects gave informed consent in accordance with

guidelines set by the Human Studies Committee of Washington University in St. Louis.

Each subject completed 8 fMRI runs, each 194 frames (~ 7 min) in duration. They consisted

of two alternating run types. The first run type was a resting-state study in which a white

crosshair was presented in the center of a black screen. Subjects were instructed to look at

the crosshair, remain still, and to not fall asleep. The second run type was a task study in

which the identical crosshair was presented, but now it occasionally changed from white to

dark gray for a period of 250 ms, at times unpredictable to the subjects. The subjects were

instructed to press a button with their right index finger as quickly as possible when they

saw the crosshair dim. Each of these button-press runs contained 20 crosshair dims time-

locked to the scanner TR, with an inter-trial interval of 17.3–30.2 s. Subjects practiced this

button-press task once in the scanner, prior to the onset of the functional scans. Anatomical

MRI included a high-resolution (1×1×1.25 mm3) sagittal, T1-weighted MP-RAGE (TR 2.1

s, TE 3.93 ms, flip angle = 7°) and a T2-weighted fast spin-echo scan. This data set has been

previously published in separate studies [42, 52, 53]. All analyses were carried out using

custom-written codes in C++ and Matlab.

2.2. fMRI data preprocessing

fMRI preprocessing steps included, i.) compensation of systematic, slice-dependent time

shifts, ii.) removal of systematic odd-even slice intensity difference due to interleaved

acquisition (slice-timing correction); iii.) rigid body correction for inter-frame head motion

within and across runs, and iv.) intensity scaling to yield a whole-brain mode value of 1000

(with a single scaling factor for all voxels). Atlas registration was achieved by computing

affine transforms connecting the fMRI run first frame (averaged over all runs after cross-run

realignment) with the T2- and T1- weighted structural images [54]. Our atlas representative

template included MP-RAGE data from 12 normal individuals and was made to conform to

the 1988 Talairach atlas [55]. Data were resampled to 3×3×3 mm3 voxels after atlas

registration. The first four frames of each fMRI run were discarded in all further analyses.

The fMRI time courses from each run were made zero-mean and the linear trend was

removed. Lastly, the effect of head motion and its temporal derivative were removed by

linear regression.

It is known that sudden head movements (like “spikes”) may have a strong influence in the

estimated scaling exponents. To cope with this issue, a recent approach has been proposed in

[56]. It consists of erasing segments of time series which are corrupted by very large head
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movements. This methodology turned out to be robust for Hurst exponent analysis at least

using detrended fluctuation analysis (DFA) [57]. In this study, given the short length of time

series, we first investigated the presence of large head movements. As detailed in Appendix

A, we found that there were very few movement spikes, such that the removal of temporal

segments containing them was unnecessary. Moreover, as detailed later, we rely on a

wavelet framework for scaling exponent estimation, which further brings extra robustness

against non-stationarities, compared to DFA cf. e.g., [58].

2.3. Definition of regions of interest (ROIs)

31 ROIs were obtained from a previous task-related functional neuroimaging studies or

generated using coordinates from published fMRI studies, which included 10 pairs of

homologous brain regions. These ROIs were the same as used in our previous study [42].

Their locations in the brain are shown in Fig. 1A (mapping to brain surface was done in

CARET1). The regions were grouped into five cortical networks based on their known

anatomical/functional properties (including attention, default-mode, motor, saliency and

visual networks) and a separate group outside the neocortex including hippocampus,

thalamus and cerebellum.

The anatomical locations, Talairach coordinates, references and associated networks of these

ROIs are listed in Table 1. Specifically, the attention, motor, visual, thalamus and

cerebellum regions were obtained from functional studies conducted in [59]. The default

network regions were obtained from task-deactivation patterns from a meta-analysis of nine

PET studies, which originally unveiled the default network [60]. To generate these ROIs,

following methods described in [59], the activation or deactivation Z-score maps were

subjected to an automatic peak search, peaks closer than 10 mm were consolidated by

averaging their coordinates, and ROIs were defined around peaks by thresholding the map to

yield regions of approximately 905 mm3, similar size as the coordinates-derived ROIs

described below.

The dosolateral prefrontal cortex (DLPFC), part of the frontoparietal attention network, and

the saliency (also called “core task-control”) network regions were obtained from published

coordinates in three studies [61, 62, 63]. The coordinates for Broca’s area and the

hippocampal formation (HF) were obtained from [64] and [65], respectively. In cases where

coordinates from multiple studies were obtained for one ROI, such as the R DLPFC and R

TPJ (Table 1), the center-of-mass of these coordinates were used. A 6-mm-radius sphere

ROI centered at these coordinates was created for each region. All regions used in the

present study have been investigated in seed-based functional connectivity analyses applied

to resting-state fMRI data by the author and, for ROIs in the attention and saliency networks

as well as the HF, also in previous published studies [59, 62, 63, 65, 66] and have yielded

networks consistent with those reported in the literature [1, 3, 7, 67].

1http://brainvis.wustl.edu/wiki/index.php/Caret:About
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2.4. Scale-free temporal dynamics modeling

Scale-free temporal dynamics is now a commonly observed property in brain activity [42].

To account for scale-free temporal dynamics in brain dynamics, these references propose

quasi-exclusively, either implicitly or explicitly, to use fractional Gaussian noise (fGn), the

celebrated model put forward by Mandelbrot [49] and massively used in many other

scientific fields (see [68] for a review). In essence, fGn assumes that data have Gaussian

marginal distributions and a power-law type spectral behavior, across a large range of

frequencies:

(1)

where α is related to the Hurst parameter H as α = 2H − 1. This model is relevant when

analyzing brain activity measured from univariate time series, each associated with a given

region of interest. However, to assess functional connectivity, it is needed that a collection

of time series each associated with a different region of interest, are studied jointly (or

simultaneously), to measure for instance how they correlate one to another. It is thus natural

to make use of a model inspired from the multivariate extension of fGn (mfGn), proposed

e.g., in [69, 70]. In essence, this model assumes joint Gaussianity for the time series and

power-law behaviors both for the auto- and cross-spectra, across a large range of

frequencies.

For the sake of simplicity, the model is stated here in the bivariate case only, with a

straightforward multivariate extension. Let X and Y denote two time series associated with

two brain regions. Their auto- and cross-spectra are defined as, for fm ≤ |f| ≤ fM, fM/fm ≫ 1:

(2)

with parameters αX = 2HX − 1 and αY = 2HY − 1 confined to the range [0, 1]. Two important

notes are now in order. First, mfGn theoretically further imposes that αXY = (αX + αY)/2 =

HX + HY − 1. In the present work, we allow αXY to depart from (HX + HY) − 1 this is why the

model used here is not strictly mfGn but rather inspired from. Second, the theoretical

definitions of both fGn and mfGn, actually imply that their spectra exhibit power-law

behavior in the limit of low frequencies: |f| → 0. Practically, however, power law behaviors

are often assumed to hold across a large but finite range of frequencies: fm ≤ |f| ≤ fM (with

possibly fm > 0). We will stick to that standard practice, while, with a slight abuse of

language, continuing to refer to these processes as fGn and mfGn. While in the univariate

case, this has little impact on the actual use of fGn as a model for real data, this is of much

larger importance in the multivariate setting as this allows theoretically both positive and

negative departures of γXY = αXY − (HX + HY − 1) from 0, thus providing us with a

significant gain in versatility for analyzing spontaneous brain activity.

2.5. Coherence function

In the classical assessment of linear dependencies, the correlation coefficient ρXY is used. It

consists of a static quantity that conveys no information related to the way the different

frequencies contribute to the global correlation of X and Y. To overcome that limitation, the
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coherence function can naturally be used. It consists of a (sort of) frequency-dependent

correlation coefficient [71]:

(3)

By definition, it takes values between −1 ≤ CXY (f) ≤ 1 and  is proportional to

ρXY. When |CXY (f)| = |ρXY|, ∀ f, all frequencies are equally or equivalently contributing to

global correlation. Conversely, frequencies such that |CXY (f)| > |ρXY| contributes more to

global correlation compared to frequencies where |CXY (f)| < |ρXY|.

2.6. Fractal connectivity

When X and Y follow the bivariate correlated scale-free model defined in Eq. (2), the

coherence function becomes, for fm ≤ |f| ≤ fM:

(4)

Fractal connectivity is theoretically defined as the case where CXY (f) reduces to a (non-zero)

constant over the range fm ≤ |f| ≤ fM, i.e.,

(5)

The intuition underlying fractal connectivity is that, for scale-free data, all frequencies are

contributing to the correlation (and hence to functional connectivity) in an equivalent

manner, or in a mfGn-type compatible manner. In that case, the coherence function does not

bring any extra information compared to the sole static correlation coefficient. Conversely,

assuming ρXY ≠ 0, γXY > 0 (resp., γXY < 0) indicates that low frequencies contribute more

(resp., less) to correlation of X and Y than do high frequencies. Therefore estimating γXY and

hence the coherence function brings complementary information related to the way temporal

dynamics contribute to functional connectivity, compared to the sole static correlation

coefficient ρXY .

Note that, in that context, low and high frequencies are defined in a relative manner: First,

the range of frequencies, fm ≤ |f| ≤ fM, where scale-free properties are observed is estimated.

Second, low and high refer respectively to the lower and upper sub-ranges of that scale-free

range of frequencies.

Two interesting limit behaviors are worth being described:

1. When |ρXY| → 1 then necessarily γXY → 0 because 0 ≤ |CXY (f)| ≤ 1, ∀ f;

2. When |ρXY| → 0 then γXY is ill-defined as the cross-spectrum is identically zeros,

and γXY is thus observed to be estimated with large variance [72].
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2.7. The Wavelet estimation framework

It is now well-documented that the analysis of real-world data with scale-free properties can

be conducted in a theoretically well grounded and and practically robust and efficient

manner using wavelet coefficients, cf. e.g., [72, 73, 74, 75, 58] in general contexts and [36,

43, 76, 77] for brain activity analysis. Therefore, the fractal connectivity model proposed

here is recast into a wavelet framework. This is detailed in Appendix B, which also

discusses scaling parameter estimation.

2.8. Correction for multiple comparisons

Unless otherwise mentioned, all reported p-values for the statistical tests of correlation, self-

similarity or fractal connectivity model where Bonferroni corrected for multiple

comparisons. To this end, we divided the type-I error rate α = 0.05 by the number of

simultaneous comparisons due to the 21 ×20/2 = 210 distinct region pairs. To control the

family-wise error rate at level α (equivalent to 1.3 in a −log10 pval scale as shown in Fig.

6A–B for instance), we computed the corrected p-values by applying the following rule to

uncorrected p-values pval-corr = min(1, 210 × pval-uncorr).

3. Results

3.1. Correlation-based functional connectivity analysis

The fMRI dataset comprised of seventeen right-handed subjects who were scanned at rest

and during a visual detection task [42, 52, 53]. FMRI data was preprocessed before

extracting signals from 31 ROIs obtained from previous task-related functional

neuroimaging studies or generated using coordinates from published fMRI studies, which

covered five brain networks [Attention, Default-mode (DMN), Motor, Saliency and Visual]

as well as several non-neocortical ROIs (thalamus, cerebellum and hippocampus) (see SI).

Projection of regions onto the cortical surface is shown in Fig. 1A. In following analyses, 10

pairs of homologous regions were each averaged together. This step was performed because

we observed in preliminary analyses (see also [42]) that the time series of these homologous

regions are highly correlated with each other and that their statistical properties are very

similar. Thus, we averaged across homologous reigons in the same RSN in order to enhance

statistical independence between investigated brain regions.

Correlation coefficients ρXY were estimated from the rest and task dataset separately for all

pairs of regions, and were Fisher z-transformed (ZXY) for statistical testing. Group-level

means of correlation coefficients were computed at rest ( ) and during task ( ) and

mapped onto the significant one-sample t-tests  and , respectively.

Comparing Fig. 1B vs Fig. 1C, it can be seen that correlation remains high during task

between regions belonging to a same network, whereas lower correlations are observed for

between-network region pairs – specifically, between DMN and other networks, a result

likely attributable to their respective task-deactivation and activation [3]. Fig. 1D shows

region pairs with a significant change in correlation between rest and task (paired t-test

across subjects; ). Significant (p < 0.01) differences between rest and task

were observed mainly for pairs of regions consisting of one region located in DMN and the
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other in the decoupled networks (Attention, Visual, Motor, Saliency and the thalamus).

Moreover, in all these region pairs, correlation was higher under rest than task

( ).

3.2. Scale-free univariate analysis

We first applied the wavelet spectrum estimation framework to investigate univariate

temporal dynamics of fMRI signals. As an example, Figs. [2– 3]A–B shows the

superimposition of the power spectrum estimated by the standard Welch-Periodogram and

by wavelet method (log2 SX(2j) vs. log2 2j) for two regions [posterior intra-parietal sulcus

(pIPS) and middle temporal area (MT)] located in the dorsal attention network (DAN) at rest

(Fig. 2A–B) and during task (Fig. 3A–B), respectively. The match between the classical

power spectrum and wavelet spectrum confirms that wavelet coefficients can serve as an

efficient estimator for the spectrum. Both the classical and wavelet spectra exhibited power-

law scaling behavior over the range of 0.01 < f < 0.1 Hz (corresponding to 3.3 < j < 6.6 with

f = 2−j). Indeed, applying the goodness-of-fit assessment procedure described in Appendix C

shows that, out of the 357 analysed time series (17 subjects ×21 regions), rejection of the

null hypothesis that the wavelet auto-spectrum is well described by a power law in that

range of scales, occurs for only 16% and 14% of cases, at rest and during task respectively.

This confirms earlier finding in [42, p. 13788]. Also, similar results were obtained across

ROIs and subjects, consistent with earlier reports [42, 43]. Henceforth, this range of

frequencies is referred to as the scaling range.

Hurst exponents were then estimated from the wavelet spectrum for each region and

individual, separately for the rest (HR) and task (HT) dataset. Then, group-level means H̄R

and H̄T were computed in each ROI to assess the overall effect. When averaged across ROIs

within a network (Fig. 4), DMN exhibited the strongest long memory (H̄R, H̄T) = (0.91,

0.86), followed by the saliency (H̄R, H̄T) = (0.9, 0.83), attention (H̄R, H̄T) = (0.9, 0.83) and

visual (H̄R, H̄T) = (0.86, 0.77) networks. The non-neocortical regions (H̄R, H̄T) = (0.78, 0.73)

and the motor network (H̄R, H̄T) = (0.77, 0.72) exhibited the weakest Hurst exponents. These

results are consistent with those previously obtained from the same data using detrended

fluctuation analysis (DFA) [42]. Furthermore, the same network-level ordering was

maintained during task while Hurst exponents in all ROIs systematically decreased from rest

to task (comparing Fig. 4A and Fig. 4B).

We further estimated Hurst exponents for each ROI and each subject, at rest and during task,

using six different estimators: three based on spectral estimation (Direct FFT, Welch-

Periodogram and Whittle), two relying on time domain representation (DFA and

increments), one constructed on wavelet coefficients. Because it relies on a maximum

likelihood principle, Whittle estimator theoretically yields the best estimates for Gaussian

data, whereas the wavelet-based estimator has been observed to show significant robustness

against additive non-stationary smooth and non-smooth trends. Fig. 5 shows that while the

six group-averaged estimates take slightly different values, they are observed to

systematically belong to the long memory range 0.5 < H̄ < 1. Moreover, Hurst exponents

during task are systematically smaller compared with those at rest, regardless the estimation

method: H̄T < H̄R. Using paired t-tests, we investigated the statistical significance of this
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effect and showed that the reduction of self-similarity from rest to task was found significant

in the visual network by 3 estimation methods (DFA, increments and wavelets, all results

were Bonferroni-corrected for multiple comparisons). The wavelet method additionally

uncovered a significant change in the saliency network. These observations confirm, in a

robust manner, earlier reports of long memory at rest and of a decrease in long memory

during task [42, 43]. A decrease in the Hurst exponent during task implies an increased

contribution of high frequencies to the temporal dynamics of fMRI signals.

3.3. Scale-free multivariate analysis

To assess cross-regional temporal dynamics, we applied wavelet-based multivariate

estimation to pairs of regions. For illustration, the Welch-Periodogram estimation of the

cross-spectrum between MT and pIPS at rest and during task are illustrated in Figs.[2– 3]C,

respectively, and superimposed with the wavelet estimation of the cross-spectrum (log2 SXY

(2j) vs. log2 2j). The cross-spectra exhibited power-law scaling behavior, within a range of

frequencies that matched the scaling range of univariate power spectra. Similar observations

were obtained for almost all other region pairs as illustrated in Fig. 6A–B at rest and during

task. Indeed, applying the Goodness-of-Fit assessment procedure described in Appendix C

shows that, out of the 3570 = 17×21×20/2 analysed pairs of regions, the hypothesis that the

wavelet cross-spectrum is well described by a power law was rejected only for 14% and

10% of cases, at rest and during task respectively.

These observations reveal that scale-free properties are not only characteristics of the

univariate fMRI temporal dynamics but also of the multivariate cross-temporal dynamics,

within the same scaling range: 0.01 < f < 0.1 Hz. Scale-invariance in univariate temporal

dynamics implies that no frequency (in the scaling range) plays a dominant role in the

temporal dynamics. Scale-invariance in the multivariate cross-temporal dynamics suggests

that synchronization between different brain regions does not rely on a specific frequency,

but instead on the intertwining of all frequencies within the scaling range. These findings

raise two questions: First, do all frequencies contribute in a balanced manner to inter-

regional correlation? Second, does task performance modify scale-free cross-temporal

dynamics?

To address these questions, we normalized the cross-spectrum by the auto-power spectra to

derive the coherence spectrum. The classical and wavelet-based coherence functions

between MT and pIPS for rest and task are shown in Figs. 2–3D, respectively. Because

coherence is estimated as the ratio of estimated quantities, it is necessarily noisier. For

robustness, we estimate the scaling exponent of the coherence function from the auto- and

cross- spectra (γXY = αXY − (HX + HY) + 1, where αXY is the power-law exponent of the

cross-spectrum, and HX and HY are the Hurst exponents of the individual time series), rather

than from the coherence function directly.

Using the wavelet-based framework, we estimated exponents αXY and γXY for all subjects

and all region pairs, both at rest and during task. We then computed group-level means ᾱXY

and γ̄
XY. Fig. 6 reports the Bonferroni corrected p-values for the statistical test associated

with the null hypothesis ᾱXY = 0, which was rejected for most region-pairs, both at rest (Fig.

6A) and during task (Fig. 6B). This result suggests that cross-temporal dynamics in most
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region-pairs exhibit a non-zero scaling exponent. Fig. 7A–B reports the Bonferroni corrected

p-values for the test against the null hypothesis γ̄
XY = 0 at rest and during task respectively.

Several conclusions can be reached. First, the null hypothesis γ̄
XY = 0 was rejected only for a

few region-pairs, 18 at rest and 19 during task, out of 210 pairs (where, due to multiple

comparisons, by chance 10 out of 210 may be rejected). Low rejection rate may stem from

two reasons: Bonferroni correction for multiple comparisons yields a conservative result;

and the statistical power for a test against γ̄
XY = 0 has been shown to decrease when |ρ̄

XY|

decreases [51].

However, for region-pairs where the null hypothesis (γ̄
XY = 0) was rejected, a couple of

interesting conclusions can be drawn. First, as shown in Fig. 7A–B, whenever departure

from 0 was significant, γ̄
XY was found to be positive; this was the case both at rest (Fig. 7A)

and during task (Fig. 7B). Hence, for these pairs of regions, scale-free properties observed in

the cross-spectra convey significant extra information beyond those carried by the auto-

spectra: The lowest frequencies within the scaling range contribute substantially more to

inter-regional correlation than the highest frequencies, consistent with earlier reports [21, 78,

79].

Second, while a priori ρXY and γXY are two independent parameters, it is worth noting that

region pairs where γ̄
XY = 0 was rejected also tended to show large ρ̄

XY both at rest and during

task; compare Fig. 1B–C to Fig. 7A–B. In addition, region pairs exhibiting high correlations

(see Fig. 8A–B, arbitrary threshold of ) systematically showed . These

observations indicate that a strong correlation involves dominant contributions of low

frequencies to cross-temporal dynamics. Importantly, these observations are not a trivial

effect of dependencies, as theoretically the limit ρXY → 1 imposes γXY → 0 (i.e., total

correlation requires a balanced contribution from all frequencies): This effect can be seen in

Fig. 8C–D, where as  approaches 1,  approaches 0.

To further assess the evolution of γ̄
XY from rest to task, a paired t-test across all subjects was

applied to every region pair ( ). Four region pairs showed a significant (p <

0.05, Bonferroni corrected) difference between rest and task (Fig. 9A, R cerebellum – pIPS,

hippocampus – R dorsolateral prefrontal cortex, thalamus – L motor cortex and posterior

cingulate cortex – superior frontal gyrus). For all significant changes, we observed

 (Fig. 9B). In 3 out of the 4 regions pairs where the change of  was significant,

we observed  which means that although task significantly modulated γ̄
XY and made

the contribution of high frequencies to correlation more important, the global correlation

remains dominated by the contribution of low frequencies. In contrast, in the R cerebellum –

pIPS pair, the switch to  occurred during task, making the contribution of high

frequencies to correlation more significant than that of low frequencies. Altogether, the

more balanced frequency-range contribution to correlation during task suggests that cross-

dynamics under task involves a larger contribution of the high frequencies, and is driven

more by univariate temporal dynamics, since  is converging to zero.
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For a representative region pair (thalamus – L motor cortex), the task-related change of the

grand average (or group-level) wavelet coherence function is illustrated in Fig. 9C. As can

be seen from Fig 9C, cross-temporal dynamics has larger contribution by high frequencies

during task than at rest: the coherence function (red trace) is flatter during task. Comparing

the results in Fig. 1D with Fig. 9A (paired t-tests for  and for ,

respectively), we found only one region pair (hippocampus – R dorsolateral prefrontal

cortex) showing a significant change in both linear correlation Z̄
XY and coherence scaling

exponent γ̄
XY, with both quantities decreasing from rest to task.

3.4. Scale-free modulation and behavior performance

Lastly, we investigated the relationship between scale-free cross-temporal dynamics, as

measured by cross-coherence scaling exponent γXY and behavioral performance as measured

by reaction time (RT). Specifically, we assessed whether across subjects,  predicts an

individual’s response speed (mean of RT across trials) and response reliability (s.d. of RT

across trials). Table 2A shows that, in 4 region pairs,  is significantly correlated with the

standard deviation of the recorded RT (p < 0.05, FDR-corrected). In all region pairs, the

correlation coefficient was negative, suggesting that the larger the , the more reliable the

subject’s response was across trials. Table 2B further indicates that  is

significantly and positively correlated to the mean RT for three region pairs. Thus, the

smaller the difference , the shorter the mean RT. By contrast, no significant

correlation was found between  and the mean or s.d. of RT, after correcting for multiple

comparisons.

Recalling that a positive  indicates that low-frequency range contributes more to

correlations than high-frequency range, these observations suggest that a larger contribution

of high frequencies to correlation corresponds to poorer behavioral performance.

Conversely, the less a subject needs to mobilize high frequencies to accomplish the task, the

better his/her performance. Comparing Table 2A and 2B, one can notice the specific role

played by the pIPS – medial prefrontal cortex (MPF) pair, a link between the attention and

DMN networks, which correlates with both the mean and the standard deviation of the

reaction time. In addition, the significant positive correlation between mean RT and the

 measure in the frontal eye field (FEF) – ventral primary visual cortex (vRetino)

pathway indicates that the stability of the scale-free cross-temporal dynamics in this region

pair predicts the speed of task execution.

Altogether, these observations indicate that the extent to which task modulates inter-regional

correlation and the balance between different frequencies’ contribution to global correlation

is negatively correlated with behavioral performance. Thus, across subjects, the less the

temporal dynamics of cross-correlation are altered during task, the better the performance.
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4. Discussion

Using multivariate analyses of fMRI signals within the framework of scale-free dynamics,

the present work sheds light on several characteristics of brain temporal dynamics.

First, scale-invariance is an important aspect of brain dynamics, being observed not only in

univariate analysis of each region independently, but also in the cross-regional temporal

dynamics. This observation links functional connectivity and scale-free dynamics in fMRI

signals – two hitherto separately studied topics. In terms of neurophysiological

interpretation, our findings have shown that the communication between distant brain

regions, which is captured by the cross-spectrum, is brought by information/energy

exchange over a range of frequencies in a scale invariant manner, without any dominant

frequency between 0.01 and 0.1 Hz.

Second, the scale-free cross-temporal dynamics do not follow the fractal connectivity model

in many region-pairs (Fig. 7), suggesting that: i) fMRI signals are not well described by the

simple and direct multivariate extension of the classical fGn-type univariate models; ii)

estimation of the cross-spectrum brings extra information beyond that contained in the auto-

spectra; iii) low frequencies (close to 0.01 Hz) contribute more to functional connectivity,

and thus to communication between regions, than high frequencies (close to 0.1 Hz). Several

previous studies have also reported a stronger contribution of low frequencies to inter-

regional correlation [21, 78, 79] by comparing the power in different frequency bands, yet

without investigating the frequency-range balance quantified by scaling parameters. Our

study thus significantly extends these previous reports by exposing the scale-invariance

thereof and demonstrating a link between functional connectivity and scale-free dynamics.

In particular, we observed that the scaling exponent measured from the cross-spectrum does

not simply consist of an average of those estimated on auto-spectra, since the coherence

scaling exponent (γXY) departs from zero. Also, we systematically observed that this

deviation occurs in the same direction: γXY > 0, hence cross-temporal dynamics are driven

by low frequencies. On a technical note, the lack of scale-invariance in prior reports was

likely due to a methodological difference from our study, as the methods used there were not

tailored to investigating long-range temporal behavior (e.g., Ref. [21] focused on the time-

evolution of inter-regional correlations and Ref. [79] employed an autoregressive model

which accounted only for short-range correlations).

Third, in addition to a decrease in linear correlation and Hurst exponent reported in previous

work [42, 43], task induces a decrease of the cross-coherence scaling exponent γXY. In other

words, cross-temporal dynamics are closer to fractal connectivity under task. From a

neurophysiological perspective, this means that the temporal dynamics of communication

between brain regions are altered under task performance in terms of frequency content. In

additoin, these results are consistent with a previous study showing that increased attention

induces a decrease of coherence between neuronal populations in macaques specifically in

the low frequencies [80, Fig. 4]. Note that a priori the variations of these three parameters

are independent; thus, the finding that they occur jointly in brain activity is nontrivial. These

findings indicate that the decrease in correlation is accompanied by a stronger mobilization

of high frequencies within the scaling range in both the univariate temporal dynamics and in
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the multivariate cross-temporal dynamics, the latter corresponding to a more balanced

contribution of all frequencies to correlation (i.e., functional connectivity).

The current task was a very simple visual detection task, which engaged the visual, motor,

saliency and attention systems as shown for instance in [42, Fig. 6, p. 13192]. This simple

task already impacted functional connectivity between task-positive (attention, motor,

saliency, visual) and task-negative (default mode) networks, as illustrated in Fig. 1D. The

use of Bonferroni correction made these results very specific and reliable. The recourse to an

alternative approach like FDR for addressing multiple comparisons would probably have

shown larger functional connectivity differences between rest and task. Nonetheless, more

demanding cognitive tasks, especially those with a learning component, may demonstrate a

larger change in functional connectivity [12]. In the same spirit but focusing on scaling

exponents instead of correlation measures, other contributions [81, 82] have shown that the

multifractal properties of MEG source reconstructed time series continuously evolve with

perceptual learning in the task-related networks associated with a visual discrimination task.

Fourth, we observed that across subjects, a larger increase of the high-frequency

contribution to cross-temporal dynamics under task was associated with worse behavioral

performance. Hence, a strong modulation of cross-temporal dynamics may indicate

difficulty in performing the task, consistent with the idea that ongoing fluctuations captured

by low-frequency functional connectivity are important for behavioral processes [83].

However, we also outlined that these findings may results from attention effects, as

originally observed in macaques [80]. To further investigate such issues and disentangle

attention from operative effects in the recourse to high frequencies, future work will be

devoted to the analysis of another existing MEG dataset [84] for which complementary eye

tracker recordings will permit to probe attention through measurements of ocular saccades in

cunjonction with behavioral performance.

On a methodological note, we made use of 28 minutes of resting-state fMRI acquisition

which is a relatively large amount of data compared to a typical resting-state fMRI

experiments. However, the dataset was split in 4 alternating blocks of resting-state and task-

related scans of 7 min each. Thus, we computed the scaling parameter estimates for each

block individually, and then averaged the results over the 4 blocks for each condition (rest or

task). This averaging increased the robustness of our analysis, compared with a single block

analysis.

The use of the wavelet framework in the present work allows significant robustness in

estimating univariate or multivariate scale-free dynamics in fMRI data, especially with

respect to short sample size or the presence of slow superimposed trends [51, 74, 58]. In the

present study, results were averaged across rest and task runs, respectively, which assumes

that they were stable across time. This might hide a source of variability as suggested by

recent studies on fMRI dynamic functional connectivity [21, 22, 23, 24, 25, 26, 27, 29] and a

previous MEG study showing that the amount of self-similarity might change over time

[82]. To address this issue, it would be informative for future studies to make use of high

temporal resolution fMRI [85, 86, 87, 88], and to explore scale-free cross-temporal

dynamics examined herein in a time-dependent manner.
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Recent studies have also shown that functional connectivity can change over time [21, 22,

23, 24, 25, 26, 27, 29] suggesting the presence of nonstationarity in fMRI correlation

structures. Future work should investigate whether the frequency-range balance of inter-

regional connectivity is changing concomitantly at critical time points where functional

connectivity is reconfigured (e.g., [29]) or whether these phenomena occur independently.

This issue of nonstationarity further points out the need for continuation of the present work

beyond a second-order stationary framework. First, potential time evolutions should be

investigated (following, e.g., approach in [21]), yet tailored to scale-free dynamics. Second,

extensions of this multivariate framework towards scale-free dynamics at higher statistical

orders (referred to as multifractal properties) in fMRI signals [see Refs [36, 43] for

univariate applications] should be investigated. This effort should help elucidating whether

dependencies beyond correlation and second-order statistics play an active role in the

dynamical reconfiguration of functional connectivity.

5. Conclusion

In conclusion, by showing that scale-free temporal dynamics manifest in the communication

between brain regions, our results provide a bridge between two related, but so-far separate,

fields - resting-state networks and scale-free dynamics, which have respectively studied

spontaneous brain activity in the spatial and temporal domain. In particular, we observed

that the lowest frequencies contributed more to inter-regional communication under both

rest and task, but interestingly, this effect was ameliorated under task performance, with

different frequencies contributing more equally to inter-regional correlation. Furthermore,

we found that the degree to which task performance modulated the scaling behavior of

cross-regional temporal dynamics was correlated, across subjects, with behavioral

performance, such that smaller task modulation was accompanied by faster and more

consistent reaction times. These results should inspire future studies of the interplay between

scale-free brain dynamics and large-scale brain networks.
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Appendix A. Spike detection procedure

We analyzed the movement parameter estimates by looking at translation and rotation

separately. As regards translation, for each TR, run and individual, we computed the vector

norm defined by the 3 translation parameters. Then, we computed the mean translation (μt)

by averaging over all TRs in a given run. We extracted similarly the corresponding standard

deviation (σt). Hereafter, we identified the number of TRs for which the translation

movement exceeds α1 = μt +/− 2σt and α2 = μt +/− 3σt. We repeated this procedure over all

rest and task-related runs for each individual so as to average the number of spikes per

individual over the complete fMRI session. The grand average number of translation spikes

was eventually computed by averaging over the 17 subjects who underwent the study. The

outcomes of our spike detection procedure with respect to (wrt) translation movement are

summarized in Table 3[Top]. They show that the presence of spikes is very negligible (less

than 1% wrt α2 threshold both in rest and task related runs).

As regards rotation, the problem is more complex. The difficulty lies in how to collapse the

3 rotation parameters in a single quantity describing a global 3D rotation. We decided to

compute the global rotation matrix RG as follows:

(A.1)

where the Rx, Ry and Rz matrices match the pitch, roll and yaw movements, respectively. Of

course, composing rotations is not a commutative operation so that any alternative

composition will deliver distinct results. For each TR in each rest and task run, we computed

the corresponding RG using Eq. (A.1). Hence, we extracted its spectral norm as follows:

(A.2)

where λmax(A) stands for the largest eigenvalue of matrix A. Since  is positive semi-

definite, all its eigenvalues are bounded below by zero. Clearly, Eq. (A.2) summarizes in a

single scalar the largest rotation direction. By computing this value for all TRs and then

extracting the meanμr and standard deviation (σr) over all volumes in a given run, we can

therefore define the associated thresholds α1 = μr +/− 2σr, α2 = μr +/− 3σr for detecting

rotation movement spikes. As done before for the translation movement, we repeated this
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procedure over all rest and task-related runs for each individual so as to average the number

of spikes per individual over the complete fMRI session. The grand average number of

rotation spikes was eventually computed by averaging over the 17 subjects who underwent

the study. The outcomes of our spike detection procedure wrt rotation movement are

summarized in Table 3[Bottom]. They show that the presence of spikes is even more

negligible compared to what we found for translation (1.4% wrt α1 threshold and less than

1% wrt α2 threshold both in rest and task related runs).

Appendix B. The Wavelet estimation framework

Appendix B.1. Discrete wavelet transform

Let ψ0(t) denote a reference oscillating function with narrow supports in both time and

frequency domains, referred to as the mother wavelet. It is characterized by its number of

vanishing moment, a strictly positive integer Nψ defined as:

(B.1)

Also, ψ0(t) is chosen such that the {ψj,k(t) ≡ 2−j/2 ψ0(2−jt − k), j ∈ ℕ, k ∈ ℕ} form a basis of

L2(ℝ). The discrete wavelet transform (DWT) coefficients of X are defined as:

(B.2)

Scale 2j qualitatively corresponds to the inverse of the frequency, 2j ~ f0/f, where f0 is a

constant that depends on the choice of ψ0(t). For further details, readers are referred to e.g.,

[89].

Appendix B.2. Wavelet coherence function

Let X, Y denote a bivariate second order stationary processes. It has been shown that [73,

75]:

(B.3)

(B.4)

(B.5)

where Ψ0 stands for the Fourier transform of ψ0 and  for the mathematical expectation. The

quantities dX(j, k)2, dY (j, k)2 and dX(j, k)dY (j, k) can thus be read as the auto- and

cross-wavelet spectra, measuring the frequency contents of data around frequency f = f02−j.

Following [90], a wavelet-based coherence function can now be introduced as:
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(B.6)

When X, Y follow the bivariate model defined in Eq. (2), it yields:

and

Appendix B.3. Estimation procedure

Following [73, 75, 90], relevant estimators for the auto- and cross-wavelet spectra can be

defined as time averages of the (squared) wavelet coefficients at scale 2j:

(B.7)

(B.8)

(B.9)

Therefore, the wavelet-based coherence function can be estimated as:

(B.10)

When X, Y follow the bivariate model defined in Eq. (2), one obtains:

and
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Fig. 10, for synthetic data, and Figs. 2– 3, for the real data analyzed here, display log SX, log

SY, log SXY and  as functions of log2 2j = j and thus illustrate the corresponding

power law behaviors for the auto and cross (wavelet) spectra and (wavelet) cross coherence.

Following [74] or [72], estimation of the scaling parameters α̂
X (hence Ĥx), α̂

Y (hence Ĥy)

and α̂
XY stems from linear regressions performed in these log-coordinate plots, across the

scaling range (j1 = log2 f0/fM; j2 = log2 f0/fm, tuned to match the frequency range fm ≤ |f| ≤ fM.

Further, the estimate of γXY is obtained as γ̂
XY = αX̂Y − (Ĥx + Ĥy) + 1, and not as a linear

regression of  against log2 2j = j, cf. [51] for details.

Varying Nψ, this wavelet framework provides practitioners with an efficient and robust tool

to estimate γXY and γ0 (and thus ρXY) on real-world data and is systematically used in the

present work to produce the results.

Appendix B.4. Illustration on bivariate fractional Gaussian noise

The wavelet estimation framework is illustrated by application to synthetic bivariate

fractional Gaussian noise, synthesized using the theoretical procedure and practical codes

devised in [91], [92]. Parameters for synthetic data are chosen to match as closely as can be

those estimated from the real data used to produce Fig. 2, and with same sample size. It

permits to observe that estimated scaling from real data, in Fig. 2, are visually as convincing

as those in Fig. 10 obtained from synthetic bivariate fractional Gaussian noise, with same

parameters, known theoretically to have true scaling behaviors. Scaling relevance is further

assessed by means of statistical tests as described in Appendix C below.

Appendix C. Goodness-of-Fit test for multivariate scaling

Following the methodologies outlined in [93, 42], we have implemented the following

Goodness-of-Fit assessment procedure for each subject and each pair of regions:

• estimation of the scaling and correlation parameters (HX, HY, αXY and ρ) is

performed;

• computation of the classical χ2 (sum of squared errors to the best fitted linear

model) goodness-of-fit quantities for both the auto- and cross wavelet spectra is

done;

• 1000 copies of synthetic bivariate fractional Gaussian noises, with same parameters

as data, were simulated (according to the procedure theoretically devised in [91,

92]) and then for each copy, we performed estimation of HX, HY, αXY, and

computed the classical χ2 goodness-of-fit quantity for both the auto-wavelet spectra

and the cross-wavelet spectra;

• the p-value, corresponding to the test aiming at rejecting the null hypothesis that

true data have same auto- and cross-wavelet spectra as bivariate fractional Gaussian

noise, with same parameters and same sample size, is computed as the percentage

of times the χ2 goodness-of-fit value computed from synthetic data exceeds that

computed from real data;
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• the null hypothesis is rejected at the 0.05 level.
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Highlights

• Scale-free dynamics and functional connectivity are intertwined in brain

networks.

• Scale-free dynamics in two different regions/networks can be related to each

other.

• Lower frequencies contribute more to inter-regional functional connectivity.

• Task modulates cross-temporal dynamics by moderating lowest frequencies.

• The smaller the magnitude of this modulation, the better the behavioral

performance.
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Figure 1. Networks definition and correlation structure
Top (A): ROIs mapped onto the cortical surface, with each color denoting a different

network. Middle (B): Group-averaged inter-regional correlation matrix at rest (p < 0.05,

Bonferroni corrected). Regions are grouped by network to ease visualization. Details of the

ROIs are provided in Table 1. Middle (C): Group-averaged inter-regional correlation matrix

during the visual detection task (p < 0.05, Bonferroni corrected). Bottom (D): Difference of

the correlation coefficients between rest and task (thresholded at p < 0.01, uncorrected, two-

sample t-test for rest vs. task). The ROIs are grouped by networks whose names are given in

Table 1; these networks correspond to the diagonal triangles surrounded by white dashed

lines.
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Figure 2. Univariate (A–B) and multivariate (C–D) scale-free properties of fMRI signals at rest –
example from a single subject
A–B: Superimposition of the auto-power spectrum estimated by Welch-Periodogram (black)

and wavelet method (red) for pIPS and MT. C: Superimposition of the cross-power

spectrum between pIPS and MT estimated by Welch (black) and wavelet method (red) in

log-log coordinates. D: Superimposition of the coherence function between pIPS and MT

estimated by Welch (black) and wavelet (red) method. All exponents are estimated from

linear regression based on the wavelet estimate (dashed red lines) in the scaling range

defined by vertical dashed black lines (−6.6< log2 f < −3.3).
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Figure 3. Univariate (A–B) and multivariate (C–D) scale-free properties of fMRI signals during
task (same subject as in Fig. 2
A–B: Superimposition of the auto-power spectrum estimated by Welch-Periodogram (black)

and wavelet method (red) for pIPS and MT. C: Superimposition of the cross-power

spectrum between pIPS and MT estimated by Welch (black) and wavelet method (red) in

log-log coordinates. D: Superimposition of the coherence function between pIPS and MT

estimated by Welch (black) and wavelet (red) method. All exponents are estimated from

linear regression based on the wavelet estimate (dashed red lines) in the scaling range

defined by vertical dashed black lines (−6.6< log2 f < −3.3).
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Figure 4. Hurst exponents from scale-free univariate analysis
Group-averaged region-wise (bottom row) and network-average (top row) wavelet-based

estimates of Hurst exponent at rest (A) and during task (B). The color scale is the same for A
and B, to illustrate the decrease of Hurst exponents from rest to task.
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Figure 5. Group-level network-average Hurst exponent at rest (black) and during task (red)
using six different estimation methods
A: Standard periodogram (squared fast Fourier transform normalized by the number of

samples) and subsequent linear regression on the log-log power spectrum plot. B: Welch-

based (i.e., averaged across overlapping windows) periodogram followed by linear

regression on the log-log power spectrum plot. C: Whittle estimator, which consisted of a

maximum likelihood estimator of power spectrum under fractional Gaussian noise model.

D: Detrended Fluctuation Analysis (DFA). E: Time-domain increment-based Hurst

exponent estimate. F: Wavelet spectrum estimate, where the Hurst exponent was estimated

from a linear regression in the log-log plot where the log along the x-axis involves scales

instead of frequencies. X-axis labels indicate networks: A, Attention; D, Default-mode; M,
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Motor; N, Non-neocortical; S, Saliency; V, Visual. The shaded areas outline the significant

differences of Hurst exponents between rest and task. Significant differences are indicated

by *-marks (p-val<0.05, Bonferroni corrected).
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Figure 6. Cross-spectrum scaling exponents
Group-average values of the scaling exponent of the cross-spectrum at rest (A) and during

task (B), i.e.  and , respectively. Only region pairs where the scaling exponent

significantly departed from 0 (p < 0.05, Bonferroni corrected, one-sample t-test) are shown.

Thus, scaling is significant for all cross-spectra associated with “hot squares”.
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Figure 7. Cross-coherence scaling exponents
Group-average values of the scaling exponent of the cross-coherence function at rest (A) and

during task (B), i.e.  and , respectively. Only region pairs where the scaling

exponent significantly departed from 0 (p < 0.05, Bonferroni corrected, one-sample t-test)

are shown. So, scale invariance on the cross-temporal dynamics has a more complex

structure than just averaging those coming from the ROI-based univariate time series in all

“hot squares”.
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Figure 8. Relationship between the cross-coherence scaling exponent and the linear Pearson
correlation
A–B: For region pairs with a relatively large Pearson correlation (ρXY > 0.5), the scaling

exponent of the cross-coherence function is plotted as color, for rest (A) and task (B),

respectively. C–D: Cross-coherence scaling exponent plotted against the linear correlation

coefficient for all region-pairs at rest (C) and during task (D). Within- and between-network

region pairs are shown in red and blue, respectively.
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Figure 9. Comparison of cross-coherence scaling exponent between rest and task
A: Significant differences in cross-coherence scaling exponent between rest and task (p <

0.05, Bonferroni corrected). B: For the four significant region-pairs in A, cross-coherence

scaling exponent is shown for rest and task, respectively. Only one region-pair was within

the same network (PCC – SFG, within the DMN). C: Grand average (with +/− standard

deviations of the mean) of wavelet-based coherence functions between the Thalamus and

Lmotor regions at rest (black trace) and during task (red trace).
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Figure 10. Univariate (A–B) and multivariate (C–D) scale-free properties of a multivariate
fractional Gaussian noise (mfGn) process synthetised with the same scaling exponentγXY = as the
one estimated on real fMRI data at rest; see Fig. 2
A–B: Superimposition of the auto-power spectrum estimated by Welch-Periodogram (black)

and wavelet method (red) for two of its components X and Y. C: Superimposition of the

cross-power spectrum between X and Y estimated by Welch (black) and wavelet method

(red) in log-log coordinates. D: Superimposition of the coherence function between X and Y

estimated by Welch (black) and wavelet (red) method. All exponents are estimated from

linear regression based on the wavelet estimate (dashed red lines) in the scaling range

defined by vertical dashed black lines (−6.6 < log2f < −3.3)
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Table 1

Anatomical information and references for each ROI. Note that the ROI appearance order below defines the

order of ROI entries in the following functional connectivity matrices such as Fig. 1B.

Network ROI Anatomical location Talairach coordinates

Attention (AN)

vIPS[59] (L and R) ventral intraparietal sulcus −24, −69, 30
30, −80, 16

pIPS[59] (L and R) posterior intraparietal sulcus −25, −63, 47
23 −65 48

R TPJ R temporoparietal junction 49, −50, 28

MT[59] (L and R) middle temporal region −43, −70 −3
42 −68 −6

FEF[59] (L and R) frontal eye field −26, −9, 48
32, −9, 48

R DLPFC[61, 62, 63] R dorsolateral prefrontal cortex 43, 22, 34

Default Mode (DMN)

AG[60] (L and R) angular gyrus −51, −54, 30
45, −66, 27

SFG[60] (L and R) superior frontal cortex −15, 33, 48
18, 27, 48

PCC[60] posterior cingulate cortex −6, −45, 33

MPF[60] medial prefrontal cortex −6, 51, −9

FP[60] frontopolar cortex −3, 45, 36

Motor (MN)

L SII[59] L second somatosensory area −57, −27, 21

L motor[59] L primary motor cortex −39, −27, 48

Broca[64] Broca’s area −42, 13, 14

Non-Neocortical (NC)

ThalamusciteHe07b (L and R) thalamus −15, −21, 6
9, −18, 9

R Cerebellum[59] R Cerebellum 21, −54, −21

HF[65] (L and R) hippocampal formation −21, −25, −14
23, −23, −14

Saliency (SN)
R FI[62] R frontoinsular cortex 36, 21, −6

dACC[61] dorsal anterior cingulate cortex −1, 10, 46

Visual (VN)

vRetino [59] (L and R) ventral retinal region −15, −75, −9
15, −75, −9

dRetino [59] (L and R) dorsal retinal region −6, −75, 9
9, −75, 12
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Table 3

Results of our spike detection procedure with respect to translation and rotation movements. Grand average

results are reported separately for rest and task runs after averaging first over all runs at the subject-level and

then over all the individuals.

Rest Task

% spikes (α1) % spikes (α2) % spikes (α1) % spikes (α2)

Translation 3.6% 0.5% 3.4% 0.8%

Rotation 1.4% 0.7% 1.4% 0.6%
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