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Relating measures of electroencephalography (EEG) back to the underlying sources is a long-standing inverse
problem. Here we propose a new method to estimate the EEG sources of identified electrophysiological states
that represent spontaneous activity, or are evoked by a stimulus, or caused by disease or disorder. Our method
has theunique advantage of seamlessly integrating a statistical significance of the source estimatewhile efficient-
ly eliminating artifacts (e.g., due to eye blinks, eye movements, bad electrodes).
After determining the electrophysiological states in terms of stable topographies using established methods
(e.g.: ICA, PCA, k-means, epoch average), we propose to estimate these states' time courses through spatial re-
gression of a General LinearModel (GLM). These time courses are then used to find EEG sources that have a sim-
ilar time-course (using temporal regression of a second GLM).
We validate our method using both simulated and experimental data. Simulated data allows us to assess the dif-
ference between source maps obtained by the proposed method and those obtained by applying conventional
source imaging of the state topographies. Moreover, we use data from 7 epileptic patients (9 distinct epileptic
foci localized by intracranial EEG) and 2 healthy subjects performing an eyes-open/eyes-closed task to elicit ac-
tivity in the alpha frequency range.
Our results indicate that the proposed EEG source imagingmethod accurately localizes the sources for each of the
electrical brain states. Furthermore, our method is particularly suited for estimating the sources of EEG resting
states or otherwise weak spontaneous activity states, a problem not adequately solved before.

© 2014 Elsevier Inc. All rights reserved.
Introduction

The study of brain function has benefited enormously from modern
neuroimaging techniques to reveal localization and dynamics of neuro-
nal activity during evoked and spontaneous states. One of the most
widely used methodologies to analyze data from functional magnetic
resonance imaging (fMRI), is the General Linear Model (GLM) where
pre-defined hemodynamic responses are used in a linear regression
model and contrasts of interest are evaluated by statistical hypothesis
testing (Bandettini et al., 1992; Friston et al., 1995; Kwong et al., 1992;
Ogawa et al., 1992). As the fMRI signal is related to neuronal activity
via neurovascular coupling, it only provides a (slow) proxy for neuronal
activity. Electroencephalography (EEG), on the other hand, directly re-
cords the fast changes of current potential related to neuronal activity.
Recent advances in high-density recording and 3D source analysis
have increased EEG accuracy as a brain imagingmethodwith the inher-
ent advantage of high temporal resolution (Michel and Murray, 2012)

It is fairly natural to conceive the application of conventional GLM
analysis as used for fMRI to the Electrical Source Images of the EEG
(or ESI: with this general term we indicate any method mapping scalp
measurements into source space), as some previous papers (Brookes
et al., 2004; Kiebel and Friston, 2004; Trujillo-Barreto et al., 2008) and
toolboxes propose (such as SPM, www.fil.ion.ucl.ac.uk/spm). These
methods follow steps analogous to those performed in fMRI data analy-
sis (i.e., GLM regression, contrast definition, statistical inference) with
the difference that the fMRI volumes are substituted with the 3D EEG
source images. The GLM regressors used in thesemethods can originate
fromknown experimental or pathological events forming simple design
matrices, like the stimulus onsets, active and passive time windows, or
the occurrences of epileptic discharges. The regressors can also be
formed from more complex time series like estimated or modeled
evoked response waveforms or band-limited frequency power wave-
forms (Brookes et al., 2004; Trujillo-Barreto et al., 2008). Through
these regressors, the interesting portion of the signal is isolated from
the rest of the brain activity and the generators contributing to this
part of the signal are identified.

Our proposed method starts off with a spatial GLM that uses a set of
topographies as regressors, i.e., a set of scalp potential maps. A scalp po-
tential map represents the global momentary state of the brain defined
by the sum of all momentary active sources. Many previous multichan-
nel EEG studies have demonstrated that the spatial configuration of the
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potential map very sensitively reflects particular brain states (Lehmann
et al., 2009). For example, different event-related potential (ERP) com-
ponents are characterized by specific map topographies and subtle
differences in these topographies can be correlated with differences
in stimulus characteristics or processing capacities (Brandeis and
Lehmann, 1986; Makeig et al., 1997; Michel and Murray, 2012; Michel
et al., 2001). Processing-specific map topographies can even be found
in single-sweep ERPs without visible patterns in the waveforms (De
Lucia et al., 2007). Similarly, topographic differences in spontaneous
band-limited frequency power can be directly related to local variations
in attention or to mental diseases or pathologies (Kikuchi et al., 2007;
Rihs et al., 2009; Zelmann et al., 2013). Spontaneous activity can also
be described by a limited number of distinct potential maps repeating
in time (EEGmicrostates, Lehmann et al., 1998). Finally, pathological ac-
tivities, such as epileptic discharges are characterized by focus-specific
typical topographies (Michel et al., 1999; Scherg et al., 2012).

In the first stage of our method we estimate the time courses of the
EEG topographies of interest, which describe the salient brain states
characterizing the EEG data acquired. This set of EEGmaps acts as a spa-
tial filter of the EEG by selecting only the sources time-correlated with
the chosen maps. In fMRI analysis a similar approach was applied to
combined EEG–fMRI data (Britz et al., 2010; Musso et al., 2010;
Grouiller et al., 2011): the time-courses of given EEG maps were con-
volvedwith the hemodynamic response function (HRF) generating cor-
related BOLD-responses representing the brain areas contributing to the
generation of the EEGmaps, i.e., belonging to the samebrain state. Char-
acteristic BOLD-networks closely resembling known resting-state net-
works have been found when using this method to convolve typical
EEG topographies at rest with the BOLD signal (Britz et al., 2010). Simi-
larly, in a recent combined EEG–fMRI study (Grouiller et al., 2011) the
time course of maps characterizing patient-specific epileptic discharges
was used as regressor to localize the corresponding BOLD response and
the approach proved successful despite the absence of interictal dis-
charges during the data acquisition. These studies confirm that EEG to-
pographies represent neurophysiological states even in the absence of
typical EEG or ERP waveform patterns (Britz et al., 2010; de Lucia
et al., 2007; Grouiller et al., 2011).

The key of ourmethod is to define the state designmatrix: the set of
states (i.e., scalp topographies) that explains relevant parts of the data.
The identification of the set of significant states leads to the estimation
of the corresponding temporal regressors via a GLM procedure.
The GLM outcome represents the time courses of the states of interest,
i.e., the states explaining the key portion of the scalp measurements.
Non-physiological and physiological artifacts, like bad electrodes, eye
movements, or cardiac rhythm (extracted, for example, using ICA),
can be included in themodel in the formof corresponding topographies,
thereby “regressing out” these artifacts from the relevant part of the sig-
nal, as we demonstrate in our second validation example (see the
Mapping the generators of alpha rhythm section).

These temporal regressors are then used by a second GLM that
computes their corresponding sources (much like previous methods,
e.g.: Ogawa et al., 1992; Friston et al., 1995). Fitting the EEG to estimate
the regressors allows us to exploit the temporal dynamics of relevant
neurophysiological states, instead of deriving the regressors frompreset
conditions, such as stimulus onset. On the other hand, the possibility of
defining the state design matrix from some decomposition of the scalp
measurements (like ICA in Jung et al. (2001); or k-means cluster analy-
sis in Pascual-Marqui et al. (1995)), as well as from prior information or
other additional data, leads to the creation of a more flexible fitting
model of the EEG data itself.

After describing the method in the following section, we validate
it using recordings of epileptic activity of seven patients and recordings
of spontaneous alpha rhythms in two healthy subjects. We chose these
two datasets as a proof-of-concept becausewehave complementary ev-
idence about the sources' location. Namely, for the alpha rhythmwe an-
alyzed simultaneous EEG–fMRI recordings and compare our EEG-based
sourcemapswith the BOLD-based results andwith the electrical source
image (ESI) of the alpha state map. In the epileptic patients, invasive
validation from intracranial EEG or post-operative follow-up was avail-
able, in addition to the non-invasive work-up (ESI). We also selected
cases with simultaneous EEG–fMRI recordings where focus localization
with fMRI is compared with our EEG-based localization method. Fur-
thermore, we simulated an EEG recording and compared the accuracy
of our method predictions with the more direct approach of projecting
the topographies of interest into source space.

Methods

Method description

Multichannel whole-scalp EEG recordings consist of time-series of
scalp potential maps,m(s, t), where s represents the electrode position
and t represents the time. We assume that the different brain states
are defined by different topographies in these series of maps and define
them asMi, with i = 1: N, where N is the number of states.

For each time frame to, we assume the following GLM:

m s; toð Þ ¼
X

i
Mi � Ti toð Þð Þ þ ϵ; ð1Þ

where ϵ is the residual noise, Mi is the topographic map indicating an
electrophysiological state, Ti is the coefficient to be estimated, and i
spans across the number of states we wish to include to sufficiently ex-
plain the data. Solving Eq. (1) by least-square regression leads to the es-
timate of the coefficients time courses, T̂ i tð Þ, which are then used as
regressors in the second phase of the process (Eq. (2)). T̂ i tð Þ expresses
the time course of the brain state i we are computing the sources of,
and t is the dummy variable expressing the time dimension. Our algo-
rithm, that we name TESS for Topographic Electrophysiological State
Source-imaging, automatically prompts awarning in case any pair of es-
timated T̂ i tð Þ is (close to) co-linear.

In the second stage of our method we transform the EEG data into
source space, also called inverse space. Each EEG time frame in sensor
space, m(s, to), is transformed into source space, minv(v, to), using an
ESI method (Michel et al., 2004).minv(v, t) represents the brain genera-
tors of the scalp measurements as a function of solution points v and
time t. For each position vo we assume:

minv vo; tð Þ ¼
X

i
T̂ i tð Þ � βi voð Þ

� �
þ η; ð2Þ

where η is the residual noise, the Tiwas estimated from Eq. (1) and βi is
the new coefficient to be estimated. Eq. (2) defines a temporal GLM and
its solution is β̂i vð Þ, the estimate of βi for each solution point vo. We per-
formed a non-parametric statistical test of β̂i vð Þby randomly permuting
the estimated T̂ i tð Þ over t and re-computing the betas. After repeating
this procedure several times we generated an empirical null-
distribution of the source-maps and computed the Bonferroni corrected
z-scores from its tail (see Appendix A for details). The significant esti-
mated betas give us the location and amplitude of the generators of
each state Mi we initially included in the state design matrix. In the
Discussion section we will address some issues related to the design
matrix specification (i.e., choosing the right set of states Mi).

In Fig. 1, we illustrate the different steps of the method using data
from an epileptic patient of validation 1 (see below). Two state maps
were selected corresponding to the average maps of this patient's
two types of epileptic spikes (M1 andM2, left anterior and left poste-
rior spikes, respectively). The first step of the method (Fig. 1, top
row) estimates the time courses, T̂1 and T̂2 , of these two maps.
In the second phase (Fig. 1, bottom row), we use these time courses
as regressors for the ongoing EEG transformed into source space and
estimate β̂1 and β̂2 for each voxel. We then select only the z-score
corresponding to the statistically significant portion of β̂. In Fig. 1



Fig. 1.Themethod computes the estimated source location andamplitude of each state topographyprovided as input (e.g.,M1)with respect to anEEG recording (e.g.,m(s, t)). The inputs of
the method are a set of topographies, an EEG, and a chosen ESI method (Electrical Source Imaging method, mapping a given instance of an EEG into source space). Our tool (called TESS,
topographical electrophysiological state source) outputs the estimated location of the sources of each given topography (e.g., β̂2 vð Þ) and provides also their estimated amplitude through a
non-parametric test of statistical significance. Themethodworkflow is as follows: (1) first GLM (fit in electrode space): the set of state topographies (M1 andM2) arefit to the EEG (m(s, t))
in order to estimate their time course (T̂1 and T̂2). For example the EEG instancehighlighted by the green box (m(s, to)) is the result of a linear combination of the low contribution ofM1 and
thehigh contribution ofM2, as visible in the corresponding green dotted line across the estimated topography time courses. Then the chosenESImethod is applied to the EEG generating its
inverse (minv(v, t)). (2) Second GLM (fit in time): the previously estimated time courses are fitted to the EEG inverse to compute the sources that correlate in time with each state topog-
raphy. The estimated sources (e.g., β̂2 vð Þ formapM2 is shown in the figure) are tested for significance via a permutation test (p b 0.005) and the final output is an accurate estimate of the
location and amplitude of the generators of each input topography.
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bottom right the significant z-score of β̂2 is overlaid with the patient
post-operative anatomical MRI. It shows correct localization of the
activity generating the epileptic map M2 in the afterwards resected
area.

For the ICA performed in some of the EEG pre-processingwe use the
criterion proposed by Onton et al. (2006): for high resolution EEG, the
number of time frames for a good decomposition should be at least
k∙(number of channels)2 with k = 20. Thus, when we do not have
enough time frames (i.e., EEG duration b 22 min with 256 electrodes),
we whiten the signal (PCA) with a number of components N calculated
to respect the original criteria (N ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
numberof timeframesð Þ=k

p
and

k = 2), which usually leads to 20–80 independent components.
In the Appendix A we provide a detailed description of the method

in matrix notation.
Validation

Mapping the source of epileptic activity
We analyzed 7 patients with drug resistant focal epilepsy from

the pre-surgical epilepsy evaluation unit of the Neurology Department
of Geneva University Hospital (Switzerland). We acquired high-
density EEG recordings of all patients (Table 1a); in addition, two pa-
tients had simultaneous EEG–fMRI (Table 1b). In all cases, validation
was obtained from subsequent intracranial EEG in one patient (icEEG)
and from surgical resection leading to seizure freedom in the other
cases.
The local ethics committee approved the recording of EEG and EEG–
fMRI and all patients and the parents of pediatric patients gave their
written informed consent.

Data acquisition. In 5 patients, EEGwas recorded outside theMR scanner
(extra-MRI EEG) during 20 min of rest with eyes closed, using a high-
density cap (256 channels, Electrical Geodesics Inc., Eugene, OR).

For 2 patients (S6 and S7) the analysiswas performed on the EEG ac-
quired during fMRI recording (intra-MRI EEG). Twenty minutes of rest
with eyes closed was recorded using a 64-channel MR-compatible
EEG system (Brain Products GmbH, Gilching, Germany). This EEG–
fMRI dataset was particularly useful for direct comparison of our meth-
od with the fMRI result. The same regressors were used for the GLM
analysis with the ESI and with the BOLD response (but convolved with
the HRF and down-sampled to the fMRI's TR). The functional MRI
was acquired using T2*-weighted single-shot gradient-echo echo-
planar images with a 3-Tesla MR scanner (TR = 1500 ms, voxel size:
3.75 × 3.75 × 5.5 mm3, 25 slices).

Data pre-processing
Extra-MRI EEG (Table 1a). The EEG recorded outside the MR scanner

was corrected for pulse and eye-blink artifacts using Independent Com-
ponent Analysis (Bell and Sejnowski, 1995). Bad electrodes were inter-
polated using a 3D spline (Brunet et al., 2011).

Intra-MRI EEG (Table 1b). Gradient and pulse artifacts (i.e., all arti-
facts time-locked to cardiac activity) were removed from the EEG
using average artifact subtraction methods (Allen et al., 1998, 2000;



Table 1
The tables report the relevant information of 7 epileptic patients, including age and gender (first row), etiology, seizure onset zone identified by intracranial EEG, and the location of the
resected area with the outcome of the surgery, when applicable. (a) The table summarizes the findings for 5 epileptic patients (6 different epileptic foci) for which high-density EEG was
recorded (256 electrodes). Each patient underwent surgery with seizure-free outcome (Ia). TESS and ESI localization accuracies were measured as the Euclidean distance between the
source maximum and the target area. The target area was identified as the resected area (or the area involved in the seizure onset zone on icEEG for patient S5b, for whom only one of
the two epileptic foci was surgically removed). (b) Simultaneous EEG–fMRI was recorded for the two epileptic patients shown in this table (3 distinct epileptic foci, all treated surgically).
EEGwas acquiredusing a 64 electrodes cap. TESS, ESI, and BOLD response localization accuracies are computed as the Euclidean distance between the sourcemaximumand the target area,
here defined as the resected area. In all cases TESS localizes the epileptic focus fewmillimeters from the resected area and in two cases its estimated location is in agreementwith the BOLD
response localization (BOLD results is inconclusive in the third case).

Extra-MRI EEG (a)

Patient S1 18 y M S2 17 y M S3 11 y M S4 l5 y M S5a 15 y F S5B 15 y F

Etiology Non-lesional Hippocampal sclerosis L Non-lesional Low grade tumor L medial
temporal

Tuberous sclerosis Tuberous sclerosis

icEEG seizure onset zone L basal and polar temporal NA R opercular NA L parietotemporal L anterio-temporal
Resection LATLR LATLR R opercular LATLR L parietotemporal tuber NA
Outcome la la la la la la
TESS max distance from target area 0 mm 0 mm 0 mm 0 mm 0 mm 0 mm
ESI max distance from target area 0 mm 0 mm 95 mm 0 mm 0 mm 0 mm

Intra-MRI EEG (b)

Patient S6a 13 y F S6b 13 y F S7 7 y M

Etiology Tuberous sclerosis Tuberous sclerosis L parieto-temporal gliosis post-bacterial abscess
icEEG seizure onset zone L prefrontal and opercular tubers L prefrontal and opercular tubers L parieto-temporal
Resection L prefrontal tuber L frontal tuber L parieto-temporal cortectomy
Outcome la la la
TESS max distance from resected area 3 mm 5 mm 5 mm
ESI max distance from resected area 0 mm 85 mm 0 mm
BOLD max distance from resected area 15/0 mma / 2 mm

M/F = male/female; R/L = right/left; la = seizure-free, no residual aura; ATLR = anterior temporal lobe resection; NA = not applicable; 0 mm = max within target area;
/ = inconclusive.

a Global/local maximum.
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Debener et al., 2008). If necessary, residual artifacts were removed with
temporal Independent Component Analysis of the EEG using the
Infomax approach (Bell and Sejnowski, 1995). Independent compo-
nents corresponding to pulse artifacts, eye-blink or residual scanner ar-
tifacts were identified by visual inspection of ICA components' time
courses and topographies and were removed.

Average spike maps. An expert epileptologist marked the spikes and
computed the average spike map for each patient's type of spike. The
number of spikes recorded varied between 11 and 304 (59.4 ± 92.9,
mean ± standard deviation). The average maps at half rise (i.e., at the
mid-point between the onset of epileptic activity and its apex) were se-
lected as representation of the epilepticmap of the patient, i.e., the brain
state reflecting the interictal epileptic activity (Lantz et al., 2003). These
maps were used for the GLM analysis in the EEG source-space aswell as
for the convolution with the BOLD response (as described in Grouiller
et al., 2011; see below).

Source-space projection. We transformed the average spike maps
into source space generating their ESI (see Table 1a–b). For all the pro-
jections into source space we used a distributed linear inverse solution
based on local autoregressive averages (Grave de Peralta et al., 2004).
A simplified realistic head model was used with the solution space re-
stricted to the gray matter of the individual MRI (Brunet et al., 2011).

fMRI. Standard fMRI pre-processing was performed with SPM8
(Wellcome Department of Imaging Neurosciences, University College
London, UK) and included: (i) realignment of functional images using
rigid-body transformation, (ii) co-registration of functional images
with pre- and/or post-operative T1-weighted structural MRI, and
(iii) spatial smoothing with an isotropic Gaussian kernel of 6 mm full
width at half-maximum.

fMRI time-series were analyzed with a General Linear Model in
which the regressors of interest were derived from the fitting of the ep-
ileptic map to the EEG recorded in the MR (Grouiller et al., 2011) Six
motion-related parameters derived from the fMRI realignmentwere in-
cluded as covariates. For each patient, BOLD signal increases or de-
creases associated with the epileptic regressor were detected using a
significance level of p b 0.05 corrected for multiple comparisons across
the whole brain using family wise error (FWE) correction. If no signifi-
cant activation was found, maps were created at a significance level of
p b 0.001 uncorrected for multiple comparisons.
Performance metrics. Localization accuracy was measured as the
Euclidean distance between the source distribution global maximum
and the target area (Brodbeck et al., 2011). The target area was identi-
fied as the resected area or the area involved in the seizure onset zone
on icEEG for patient S5b (the only case in which surgery was not
performed).

Our localizationmetric was chosen tomatch current clinical practice
(based on ESI) and in a sense it is quite strict. When a statistical thresh-
old is available (like for the BOLD signal and TESS) a metric accounting
for the extent of the cluster of maximal activity is also meaningful, but
it is not comparable to ESI results.
Mapping the generators of alpha rhythm
We recorded combined EEG–fMRI in two healthy subjects during

5 min of eyes-open/eyes-closed activity where the subject was
instructed to alternate these states every 20 s, resulting in about 5
state transitions. This task is known to induce high alpha power modu-
lations in the occipital cortex while reducing inter-subject variability
and frequency bands crosstalk when compared to measurements of
rest with only eyes open or closed (De Martino et al., 2010).
Data acquisition. EEG was acquired at 1 kHz using a GES 300MR high-
density EEG system (Electrical Geodesics Inc., Eugene, OR) with a 256
electrode net.

Functional MRI was acquired using a T2*-weighted single-shot
gradient-echo echo-planar images with a 3-Tesla MR scanner
(TR = 2000 ms, voxel size: 3 × 3 × 3.5 mm3, 34 slices). A high-
resolution anatomical MR scan was also acquired for each subject
(voxel size: 1 × 1 × 1 mm3).
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Data pre-processing
EEG. We removed gradient and pulse artifacts from the intra-MRI

EEG using average artifact subtraction methods (Allen et al., 1998,
2000; Debener et al., 2008). The data was then down sampled to
125 Hz and bad electrodes were interpolated using a 3D spline algo-
rithm (Brunet et al., 2011). We band-pass filtered this EEG between 8
and 12 Hz to isolate the alpha rhythm. For additional signal stability
we removed few time frames dominated by artifacts induced by eye
movement between state transitions (eyes open/closed). The same dis-
tributed linear inverse solution using the individual MRI for construct-
ing the head model was used.

The topographies related to eye-blink and physiological activity
were selectedwith temporal ICA of the EEG using the Infomax approach
(Bell and Sejnowski, 1995) and the decomposition criterion proposed
by Onton et al. (2006). We identified 9 artifact topographies for each
subject andwe included them in the set of statemaps forming TESS' de-
sign matrix.

fMRI. MR functional data were analyzed as described above. The
regressor associated with the alpha rhythm was computed as
described below. BOLD signal decreases were then expressed as equiv-
alent z-scores and corrected for multiple comparisons (FWE). We used
different correctionmethods (FWE for BOLD signal, Bonferroni for TESS)
considering the number of observations in each statistical test (in the
order of 800,000–900,000 for BOLD data and 4000–5000 for TESS).
We opted for this choice since applying Bonferroni for BOLD results
would be clearly over-conservative, while FWE for TESS would require
non-trivial adaptation of Gaussian random field theory to the (non-
Cartesian) grid of solution points.

Regressors. The alpha state map used for the analysis was defined as
the EEG independent component best representing the occipital alpha
rhythm in terms of topographical distribution and its time course
(De Martino et al., 2010). For the EEG analysis through TESS we added
9 independent components to the state design matrix to capture the
eye blinking artifacts and physiological activity of the brain at rest, as
it has been proposed for fMRI analysis in Chaudhary et al. (2012).

The power of time course of the same EEG alpha statemapwas used
as a regressor for the BOLD data analysis, after convolving it with the
HRF and down sampling it to the fMRI sampling rate (De Martino
et al., 2010). Motion-related regressorswere also added to the BOLDde-
sign matrix.

Simulated source
In order to quantify the performance difference between our meth-

od and the conventional direct application of electric source imaging to
the state topographies, we simulated a random time series of an occip-
ital source (Fig. 4(A), in the green box) and uncorrelated background
sources. We computed the corresponding EEG scalp measurements
with additional white Gaussian noise and applied an ESI method
(LAURA, Grave de Peralta et al., 2004) to a noisy version of the true to-
pography (in Fig. 4: the noisy (b) and true (a) scalp maps, and in
Fig. 4(B), red box, the ESI of map (b)). Then we used the noisy occipital
map and the background state map as well as the simulated EEG as
input to our new method to estimate the corresponding sources.

Results

Epilepsy source imaging

The results summarized in Table 1a–b indicate the high accuracy
of the new localization method to identify the generators of the
individual-specific epileptic map. In the last rows of the tables we
show the Euclidean distance between TESS/ESI/BOLD maximum and
the target area. In 5/7 patients (6 different epileptic foci) the generator
maxima, as well as its significant extent, fell within the target area
(Table 1a). In the other 2/7 patients (3 distinct epileptic foci) the gener-
ator maximum was localized within 5 mm of the target/resected area
(Table 1b). In these two cases, TESS localization is in agreement with
the BOLD data and ESI in 2/3 foci (in the third case BOLD results are in-
conclusive and ESI globalmaximum falls 85mm from the resected area)
(Table 1b last two rows). We chose these 2 patients to test our method
in the case of noisy intra-MRI EEG recordings with fewer electrodes
(64 instead of 256) and rare spike events, and in order to compare our
method's performance with BOLD's as well as icEEG's results.

In Fig. 2 we show the localization of the epileptic foci for one patient
(S5). This patient has tuberous sclerosis, a genetic form ofmultifocal ep-
ilepsy with multiple abnormalities of cortical development. He had two
independent interictal epileptogenic foci confirmed by intracranial EEG
using several subdural grids and strips. The most active interictal focus,
and corresponding to the seizure onset zone, was located in the parieto-
temporal tuber, which was resected with a seizure free outcome. In
Fig. 2we show the location of the icEEG electrodes that recorded epilep-
tic activity continuously (group 1), less frequently (group 2), and rarely
(group 3). We display the localization of two epileptic maps corre-
sponding to two distinct spikes at 50% rising phase. Both solutions
were overlaid on the post-operative anatomical MRI. Even the less fre-
quent epileptic activity (Fig. 2 right panel) was successfully localized,
as also confirmed by icEEG. The most active interictal source has been
shown to be concordant with the epileptogenic zone in most patients
(Mégevand et al., 2014), even in cases of multifocal spiking such as tu-
berous sclerosis (Kargiotis et al., accepted for publication), supporting
the clinical interest of our method.

Alpha rhythm source imaging

In Fig. 3 we show the areas involved during alpha modulation in
both subjects (green and yellow boxes) and the EEG topography of
the alpha state. As expected, we found primarily activity in the occipital
cortex (primary visual cortex and extrastriate areas, corresponding to
BA 17, 18, and 19). In both subjects the location of these EEG sources
is in agreement with the active “alpha” areas identified by the fMRI
analysis when convolving the time course of the EEG alpha map with
the hemodynamic response function (HRF). In the second subject
(Fig. 3 yellow boxes) we can also observe the localization of secondary
sources that are concordant with the BOLD response (Figs. 3.2 and
3.4) in the right parahippocampal gyrus and right fusiform gyrus. We
also show projections of the alpha state map into source space
(ESI, shown in Figs. 3.5–3.8) using two arbitrary thresholds. As expected
ESI accurately computes the location of the sources corresponding to
the alpha topography but misses the “alpha network” made of second-
ary sources temporally highly correlatedwith the alpha occipital source
(as shown in both TESS, Fig. 3.4, and BOLD data, Fig. 3.2). The extent of
the sources computed by ESI varies significantly with the arbitrary
choice of threshold (Figs. 3.5–3.6 versus Figs. 3.7–3.8).

Furthermore, this dataset showcases the use of TESS for the removal
of artifacts typically removed via ICA (eye blink, saccade, cardiac, etc.).

Simulated source imaging

In Fig. 4 we compare our method accuracy in source localization and
amplitude estimationwith the accuracy offered bydirect projection into
source space of the (noisy) map of interest. Such a projection, as well as
the noise applied to the original topography, has a combined blurry ef-
fect on the final source distribution, as highlighted by the black-and-
white source representation on top of the red box in Fig. 4(B). The appli-
cation of any ESI method is bound to generate a smooth distribution of
sources due to the ill pose-ness of the inverse problem and the need of
regularization. Ourmethod, however, benefits from themodified spatial
pattern of this intrinsic blurry effect, peaked at the location of the
sources, thanks to the spatial distribution of the covariance matrix of
minv (see Eq. (2)). The source distribution matrix minv is computed as
the ESI of the EEG measurements, and its covariance matrix is equal to
minv × minv

T . As a result, the spatial distribution of the TESS solution (β̂)



Fig. 3.We localized the sources of alpha rhythm during an eyes-close/eyes-open paradigm recorded in two healthy subjects by simultaneous EEG–fMRI. In 3.1 and 3.2 we show the areas
involved during alphamodulation as found in BOLD analysis (using an EEG-driven alpha regressor obtained convolving the time course of the EEG alpha power topographywith the HRF).
In 3.3 and 3.4we show the EEG generators of the alpha state represented by the ICA-alpha topography (shown to their right). The ESI of the alphamap is shown in the 3.5–3.6, and 3.7–3.8
(each pair of columns corresponds to a different arbitrary threshold).We found primarily activity in the occipital cortex (primary visual cortex and extrastriate areas, corresponding to BA
17, 18, and 19). In the second subject (yellow boxes) we can also observe the localization of secondary sources that are concordant with the BOLD response in the right parahippocampal
gyrus and right fusiform gyrus.

Fig. 2.We showcase one epileptic patient with tuberous sclerosis and two independent interictal epileptogenic foci confirmed by intracranial EEG (red and green boxes). The most active
interictal focus and corresponding to the seizure onset zone was located in the parieto-temporal tuber, which was resected with a seizure free outcome (red box). For each epileptogenic
focus we display the average spike topography at 50% rising phase (top left of each box), a coronal, transverse, and axial view of the post-operative MRI centered at the maximum of the
superimposed estimated significant EEG source (red and green blobs). In the right bottom corner we show the cortical surface with the location of the icEEG electrodes that recorded ep-
ileptic activity continuously (group 1), less frequently (group 2), and rarely (group 3), aswell as the surface projection of the estimated sources (blobs in hot colormap) and the location of
theirmaximum. Themost active interictal focus (red box) is accurately localized by ourmethod, as shown by the post-operativeMRI aswell as the icEEG electrode locations, but even the
less frequent epileptic activity (green box) was successfully localized, as confirmed by icEEG.
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Fig. 4. In this figure we quantify the difference between ESI and TESS using a simulated random time series of an occipital source ((A), in the green box) and uncorrelated background
sources. We computed the corresponding EEG scalp measurements with additional white Gaussian noise and applied ESI to a noisy version (b) of the true topography (a), obtaining
(B) (red box). The noise applied to the true map and the computation of the corresponding source have a combined blurry effect on the final source map, as highlighted by the black-
and-white source representation on top of the red box (B). The application of any ESI method is bound to generate a smooth distribution of sources due to the ill pose-ness of the inverse
problem and the need of regularization. Our TESS method, however, benefits from the modified spatial pattern of this intrinsic blurry effect, peaked at the location of the sources. As a
result, the spatial distribution of the TESS solution (β̂) will resemble more closely that of the true sources, as shown (C1), in the blue box. Furthermore, if we compute a non-
parametric permutation test on the estimated betas (p b 0.005) we can further truncate the solution while adding a statistical significance to what is left of it ((C2) in the cyan box).
The overall performance of ESI versus TESS is shown in the ROC plot, in terms of sensitivity and specificity, indicating that TESS always offers a better compromise between these two.
Depending on the spatial or time dependency of the simulated sources, as well as the level of noise, the outperformance of TESS over ESI will be more or less absolute across the ROC
spectrum.
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will resemble more closely that of the true sources, as shown in
Fig. 4(C1), in the blue box. Even if willing to accept the greater amount
of smoothness introduced by an ESI, it will not be feasible to extract
state source maps directly in the inverse space because of lack of
bijectivity of the inverse operator: a different source map might corre-
spond to the same topography.

Furthermore, if we compute a non-parametric permutation test (see
Appendix A) on the estimated betas (p b 0.005)we can further truncate
the solution while adding a statistical significance to its remaining dis-
tribution (Fig. 4(C2) in the cyan box). The overall performance of ESI
versus TESS is shown in the plot of Fig. 4 in terms of sensitivity and spec-
ificity (see Appendix A for details), indicating that TESS always offers a
better compromise between these two. Depending on the spatial or
time dependency of the simulated sources, as well as the level of
noise, the outperformance of TESS over ESI will be more or less absolute
across the ROC spectrum.

Discussion

The application of distributed source imaging methods to instanta-
neous EEG recordings suffers from a severe under-determination of
the inverse problem because of the large number of unknown sources
in the 3D space and the relatively limited number of measurements
(i.e., electrodes). Even when restricting the solution space to the gray
matter and fixing the dipole orientation, the number of unknowns
largely exceeds the number of sensors that can possibly be applied. To
obtain a unique solution of the inverse problem we need to assume a
priori constraints. For example, different weighting methods applied
to the classical minimum-norm solution (e.g., the Laplacian weights
used in LORETA, Pascual-Marqui et al., 1994) provide, in some cases, a
reasonable solution to the ill posedproblem (Michel et al., 2004). Higher
stability against noise is achieved through regularization procedures,
but results are becoming spatially blurred. Evaluation of inverse solu-
tions using resolution kernels showed that dipole moments and dipole
strengths are systematically underestimated in distributed linear in-
verse solutions (Grave de Peralta and Gonzalez Andino, 1998). Incorrect
estimation of the source strength can lead to ghost sources (Michel
et al., 2004) and a low SNR of the recorded EEG can lead to inaccurate
source localization. Multiple occurrences of the same event, that
assumingly evokes activation of the same sources (e.g., stimulus-
evoked potentials ormultiple epileptic spikes recording), allow a reduc-
tion of the effect of low SNR by averaging the data over the repetitions.
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Such repetitions also allow performing statistical analysis in the source
space by comparing baseline versus activity periods (Plomp et al., 2010;
Sperli et al., 2006). However, we do not always record repetitive events.
The most obvious example is the analysis of spontaneous brain activity
that, by definition, is not evoked by a repeatedly occurring event. Direct-
ly transforming spontaneous activity into the source space using linear
inverse solutions and applying signal analysis methods to the estimated
sourcewaveforms (De Pasquale et al., 2010) inherently suffers from low
SNR, unknown regularization, incorrect strength estimation, creation of
ghost sources, etc. (Michel and He, 2011). TESS builds on a chosen ESI
method and, therefore, it inherits some of its limitations. However,
TESS also improves the accuracy and applicability of the ESI method
by estimating the repetitions of the events of interest (expressed by
the time courses of the topographies in the state design matrix) and lo-
calizing the statistically significant contributing sources; i.e., temporal
consistency is exploited maximally.

In the method presented here, we propose to use the temporal dy-
namics of a given scalp potential map (i.e., the topography of a chosen
electrophysiological state) as a posteriori constraint for the inverse solu-
tion. There is a close relationship between a scalp potential map and
corresponding brain sources: any array of sources in the brain produces
a specific configuration of scalp potentials, i.e., a specific topography
(Fender, 1987). Consequently, any estimated source waveform in the
brain that temporally correlates with the presence of this specific map
is likely belonging to the array of sources that produced it. Thus, it is
the time course of the source strength systematically correlated with
the scalp potential map that counts, and not the instantaneous estima-
tion of the source strength, which, as described above, can be
underestimated. Our method is similar to the dual regression described
in Beckmann et al. (2009) where fMRI group data is analyzed with a
spatial ICA and the resulting components form the equivalent of our
state design matrix. Then a spatial GLM estimates the time courses of
the independent components (group maps) and a temporal GLM finds
the subject-specific maps corresponding to the group-maps.

The described method has been inspired by a similar strategy that
was used to analyze the BOLD activity that correlates with certain EEG
maps (Britz et al., 2010; Grouiller et al., 2011; Musso et al., 2010). In
these studies the temporal dynamics of spontaneous EEG maps or
patient-specific epileptic maps have been convolved with the HRF lead-
ing to BOLD networks corresponding to the known fMRI resting-state
networks or to the known epileptic focus, respectively. These results in-
dicate that the EEG topographies are accurate representations of global
brain states, characterized by simultaneous activity of large-scale net-
works of sources. Our method stems from these EEG–fMRI
implementations but with the role of the BOLD data replaced by the
EEG source maps. The result is a new EEG state-based source imaging
method capable of localizing the generators of electrophysiological
states, without being penalized as much by false negatives (lost
sources) and false positives (ghost sources) hindering the direct projec-
tion of a state map into source space.

TESS' strength hinges on the ability to define a set of state topogra-
phies capturing the relevant part of the recorded EEG. If we have
relevant accurate topographies, with high SNR, any ESI of these topogra-
phies should be sufficient to compute the location, if not directly the ex-
tent, of the corresponding sources. However, if we want to investigate
the generators of “weak” states (i.e., states with low SNR), TESS is able
to estimate the location and extent of the underlying sources, provided
the state design matrix is well defined. To this end, when defining the
states to include, attention should be given to:

1. Capturing the relevant part of the data: including the statemaps cor-
responding to the predominant events (in amplitude) as well as, if
we are interested in studying the more subtle states, the “weak”
ones. For example, when recording epileptic spikes, our state design
matrix should include secondary state topographies besides the
spikemaps ifwewant to analyze effects past the epileptic discharges,
like brain networks at rest. Similarly, it is a good practice to add
(residual) artifact maps to the design matrix, but it becomes crucial
when the artifacts' SNR overcomes the SNR of the targeted states.

2. Different states with near identical time courses will not be distin-
guishable in source space by TESS; to check for co-linearity between
the estimated time courses ( T̂ i from Eq. (2), which is β̂1 in the
Appendix's matrix notation) TESS outputs their correlation coeffi-
cients and displays a warning if two or more states have highly cor-
related time courses.

3. If in doubt whether state topographies apparently spatially correlat-
ed have distinct generators (small differences in the electrodes space
might relate to larger differences in source space, which is a higher
dimensional space), one can run TESSwith amore inclusive state de-
sign matrix and, upon inspecting TESS' output, reduce the matrix as
needed and re-compute the results. Typically TESS runs one subject's
EEG analysis (~45,000 time frames, 204 electrodes, 12 maps in the
state design matrix, ~5000 solution points) in a few seconds when
skipping the permutation test, or in ~15 min when performing
1999 permutations.

TESS results can be directly expressed as probability values with a
statistical threshold. In the case of epileptic patients, for example, the
ESI of an averaged spike map does not provide information on the ex-
tent of the epileptic generators, which then depends solely on the
arbitrarily chosen threshold of the solution. While statistical post-pro-
cessing can solve this problem if sufficient spikes are recorded in a
given patient (Sperli et al., 2006; Zumsteg et al., 2006), the present
method does not require repeated visible occurrences of spikes in the
patient's EEG. As already shown by Grouiller et al. (2011), the temporal
fluctuation of the epileptic map seems to describe the variations of neu-
ronal activity in the epileptic focus. A reasonable hypothesis is that the
significant solution's voxels directly determine the spatial extent of
the epileptic zone, similarly to the hypothesis proposed by Chaudhary
et al. (2012) using Bayesian methods.

All significant clusters identify sources time-locked with the state
represented by a given topography (e.g., the spike map, in Fig. 2). Al-
though for the epileptic data we focus on the cluster with maximal ac-
tivity, conforming to the clinical use of other EEG- or fMRI-based
localizing techniques (Brodbeck et al., 2011; Grouiller et al., 2011), the
neurophysiological significance of secondary clusters in terms of in-
volvement in neuronal networks modulating epileptic activity is highly
relevant and interesting, but it is not the scope of this paper. Secondary
clusters might indeed be true positives when considering not only the
epileptogenic network but also the localization of a putative focus ame-
nable to surgery (Richardson, 2012). A global analysis of TESS results
considering all statistically significant (secondary) clusters is certainly
important for better understanding the benefits and shortcomings of
thismethod but requires a separate studywith a larger group of patients
and additional source-localization tools serving as ground truth.

An important application of our method is the localization of brain
networks that participate in the generation of meaningful rhythms in
the EEG, like the alpha rhythm highlighted in this paper. Many simulta-
neous EEG–fMRI studies convolve the time-course of the EEG power of
selected electrodes, or the sum of all electrodes at a selected frequency
band, with the HRF to compute the BOLD correlates to EEG selected fre-
quencies (Laufs et al., 2003; Mantini et al., 2007; Tyvaert et al., 2008).
This approach ignores the fact that different scalp potential maps exist
for any given frequency with different time-courses (Koenig et al.,
2001), directly indicating that in the brain there are different generators
working independently in the same frequency. Using time–frequency
decomposition as proposed in Koenig et al. (2001) we can identify all
the frequency-specific maps and our method can use these topogra-
phies to compute the complete set of independent generators contrib-
uting to the same EEG rhythm.

Another consideration to bemade is that EEG at rest can be analyzed
with this procedure in a similar fashion as demonstrated in previous
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EEG–fMRI studies (Britz et al., 2010;Musso et al., 2010). The low tempo-
ral correlation, or even anti-correlation, of the resting state EEG maps
makes them ideal candidates to separate the corresponding sources
using the proposed approach. Since our method generates statistical
maps for each subject, we can quantify stability of the resting state net-
works within and across subjects as done for fMRI resting state maps.
Sincemany studies have demonstrated a relationship between the tem-
poral dynamics of resting EEG maps and different mental diseases
(Nishida et al., 2013), our method is particularly suited to further our
understanding of psychiatric disorders non-invasively.

Conclusions

Unlike conventional EEG source imaging method, our spatiotempo-
ral regression method can differentiate between electrophysiological
sources of interest and linearly independent background sources (neu-
rophysiological or not) in a single convenient framework. Once the EEG
traces are analyzed and decomposed into topographically stable states
(using ICA, k-means, epoch average, etc.), the method will compute
the statistically significant generators of each defined state. The main
features of the proposed method are:

1. The set of states driving the method can be generated from the EEG
data itself or computed otherwise (group maps, suspected epileptic
generators without spike recording, simulated maps, etc.).

2. The method is robust against most common artifacts: adding non-
physiological topographies to the method's set of states will have
the same effect as an ICA back-projection, with the additional advan-
tage that the artifactmaps can be simulated avoiding any further EEG
pre-processing step.

3. Similarly to what has been proposed for fMRI analysis (Chaudhary
et al., 2012), it is possible to add maps to the model as cofounds to
capture the residual unexplained part of the data (e.g., for rest-
microstate analysis in epileptic patients: combining epileptic topog-
raphies with rest-state topographies; in evoke potential analysis:
adding rest-microstates and predominant rhythm topographies
helps separate linearly coupled baseline effects from true evoked
responses).

4. While using state topographies, our method has proven effective in
accurately estimating the time course of spontaneous activity
(alpha rhythm, see Fig. 3) and correctly identifying the correspond-
ing significant generators in the brain. The ability to find and statisti-
cally threshold the sources of EEG spontaneous activity promises
further insight in rest-microstates analysis and its application to
early diagnosis of mental diseases (Lehmann et al., 2005).

5. Our method makes use of an Electrical Source Imaging method (any
ESImethod) and it inherits the chosen ESImethod's strengths aswell
as biases (e.g.: cortical regions affected by a lower SNR, artifacts due
to simplified head models (Montes-Restrepo et al., 2014), inaccurate
electrodes' coregistration, inadequate electrodes' number or distri-
bution, forwardmodel's errors (Akalin Acar andMakeig, 2013), etc.).

Future work includes several applications of our method to event-
related and spontaneous activitymeasurements. In one handwebelieve
that wewill be able to shed new light into rest-microstates source anal-
ysis, in the other we expect better source localization and source
amplitude estimation by using our method in better known cases
(e.g., epilepsy and evoked potentials), also by adding background activ-
ity and non-physiological activity maps to our state model.
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Appendix A

Method

Here we derive the full matrix expression of the consecutive fitting
by the spatial and temporal GLMs as applied in TESS. We define V
as the number of solution points in source space, E as the number
of sensors, T as the number of time points, and S as the number
of state topographies in the design matrix Me : E × S. The projection
operator A : E × V incorporates the forward model from source to
sensor space, and B : V × E is the inverse solution operator from sensor
space to source space. Further on, Xe : E × T is the EEG data in sensor
space.

The different steps can then be described as follows:

1. (Spatial) GLM I:
Putting forward the GLM Xe = Me ⋅ β1, we derive the estimate of β1

coefficients as:

β̂1 ¼ M†
e � Xe : S� T;

where (…)† is the notation for the pseudo-inverse operator; i.e., A†=
(ATA)−1AT.

2. Source-space projection, which leads to Xs : V × T, the reconstructed
data in source space for each time instance:

Xs ¼ B � Xe : V � T:

3. (Temporal) GLM II:
Putting forward the GLM XT

s ¼ β̂
T
1 � β2, we derive the estimate of β2

coefficients as:

β̂2 ¼ β̂T
1

� �
† � Xsð ÞT : S� V

from which we obtain: β̂2 ¼ XT
e �M†

T

e

� �† � XT
e � BT . We can now ex-

pand the expression of the outer pseudo-inverse, from which β̂2
can be rewritten as:

β̂2 ¼ XT
e �M†T

e

� �T
� XT

e �M†T

e

� �� �−1
� XT

e �M†T

e

� �T
� XT

e � BT
;

applying the outer transpose, it becomes:

β̂2 ¼ M†
e � Xe � XT

e �M†
T

e

h i−1
�M†

e � Xe � XT
e � BT

:

From the definition of covariancematrix in sensor space: Ce= Xe ⋅ XeT,
we obtain:

β̂2 ¼ M†
e � Ce �M†

T

e

h i−1
�M†

e � Ce � BT

¼ M†
e � C1=2

e � C1=2
e �M†T

e

h i−1
�M†

e � C1=2
e � C1=2

e � BT
;

where we have factorized the covariance matrix (a positive-
semidefinite matrix, by construction) using its principal square
root. Taking the transpose of the transpose of Me

† ⋅ Ce1/2 and noting
that C1=2

e ¼ C1=2T

e , we derive:

β̂2 ¼ C1=2T

e �M†T

e

� �T
� C1=2T

e �M†T

e

� �� �−1
� C1=2T

e �M†T

e

� �T
� C1=2

e � BT
;

given that: A† = (ATA)−1AT, we rewrite the equation as:

β̂2 ¼ C1=2
e �M†T

e

� �†

� C1=2
e � BT

:
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Non-parametric statistical testing

To evaluate the statistical significance of the fitted coefficients in the
solution space (obtained after the 2nd GLM), we performed a non-
parametric permutation test since we observed that their distribution
is non-Gaussian (Nichols and Holmes, 2002; Winkler et al., 2014). In
particular, we applied Fourier phase randomization on β̂1 (number of
state maps × time points) to obtain surrogate regressors; the same
phase randomization is applied to each regressor (Bullmore et al.,
2001; Theiler et al., 1992). However, for the alpha-rhythm validation
experiment, we used temporal permutation of blocks with length
100 ms, because phase randomization did not allow for sufficient ran-
domness of the surrogate regressors with respect to the true ones.
Then, we fitted source maps using these surrogate temporal regressors.
We repeated the procedure 1999 times, which effectively gen-
erates an empirical null-distribution of the source-maps (smallest pos-
sible p = 0.0005). Finally, we use this empirical distribution to
compute equivalent z-scores, in particular, in the tail of the distribution
(0.0005 b p b 0.005). The z-scoreswere Bonferroni corrected to account
for multiple comparisons by combining the null-distributions of all
solution points (4000–5000 points). We used different correction
methods (i.e., Gauss-random Fields theory FWE and Bonferroni correc-
tion for BOLD and TESS, respectively) considering the number of obser-
vations in each statistical test (in the order of 800,000–900,000 for BOLD
data and 4000–5000 for TESS). We opted for this choice since applying
Bonferroni for BOLD results would be clearly over-conservative, while
FWE for TESS would require non-trivial adaptation of Gaussian random
field theory to the (non-Cartesian) grid of solution points.

Simulation parameters

Simulated EEG
We simulated an EEGwith 204 electrodes and 6000 time points. The

EEGwas defined as Xe= B ⋅ Xs, i.e.: the projection into sensors space (B)
of Xs, where Xs=Ms ⋅ Ts is the simulated brain activitymade of 3 source-

maps:Ms = [ms1 ms2 ms3], with time courses Ts ¼
ts1
ts2
ts3

2
4

3
5:

ms1 is the background noise map; it is continuously present
with ts1 = K, where K is a [1 × k] matrix drawn from a
Gaussiandistribution,N 0;1ð Þ, and k= number of time points
and ms1 = W ⋅ 0.01, where W is a [m × 1] matrix also
drawn from a Gaussian distribution, N 0;1ð Þ , and m =
number of solution points.

ms2 is the confound map: ms2 = W ⋅ 0.1 and it is present at ran-
dom times (on/off) with random durations.

ms3 is the occipitalmap, the source-map of interest; it is a normal-
ized simulated occipital source with radius 5 mm and direc-
tion along the norm to the cortical surface at its centroid
location; this map is present at random times (on/off) with
random durations.

In the sensor space we define:me2 = A ⋅ W, me3 = A ⋅ ms3, Q is a
[n× 1] matrix s.t.Q∈N 0;1ð Þ, n= number of electrodes, and A : E× V is
the projection operator from source space to sensor space. TESS regres-
sors are me2 ⋅ 0.01 + Q and me3 ⋅ 0.1 + Q. In Fig. 4 we show the true
map me3 (Fig. 4a) and the perturbed topography mm3 ⋅ 0.1 + Q
(Fig. 4b).

ROC
Sensitivity and specificity are computed using the standard defini-

tions: sensitivity = TP / (TP + FN), and specificity = TN / (TN + FP);
where TP/TN/FP/FN (true positives/true negatives/false positives/false
negatives) are computed as the difference between the number of
binarized active/non-active voxels in the estimated source map (ESI or
TESS) and the ground truth (ms3, i.e.: the simulated occipital source).
For the computation of the number of true/false positives/negatives,
as well as TESS's results graphical display, we interpolated that the re-
covered signal on the EEG solution points to the 3-D Cartesian brain vol-
ume using heat diffusion with a Gaussian kernel (sigma of 2.5 mm and
10 iterations) and fixing the EEG solution points as boundary
conditions.
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