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Abstract

This paper presents a method for the statistical analysis of the associations between longitudinal

neuroimaging measurements, e.g., of cortical thickness, and the timing of a clinical event of

interest, e.g., disease onset. The proposed approach consists of two steps, the first of which

employs a linear mixed effects (LME) model to capture temporal variation in serial imaging data.

The second step utilizes the extended Cox regression model to examine the relationship between

time-dependent imaging measurements and the timing of the event of interest. We demonstrate the

proposed method both for the univariate analysis of image-derived biomarkers, e.g., the volume of

a structure of interest, and the exploratory mass-univariate analysis of measurements contained in

maps, such as cortical thickness or gray matter density. The mass-univariate method employs a

recently developed spatial extension of the LME model. We applied our method to analyze

structural measurements computed using FreeSurfer, a widely used brain Magnetic Resonance

Image (MRI) analysis software package. We provide a quantitative and objective empirical

evaluation of the statistical performance of the proposed method on longitudinal data from

subjects suffering from Mild Cognitive Impairment (MCI) at baseline.
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INTRODUCTION

Medical events, such as the onset of disease, represent major landmarks in the course of a

patient’s clinical history. A significant portion of biomedical research is dedicated to

studying the risk factors associated with these events, aiming to predict, delay and ultimately

prevent their occurrence.

In recent decades, neuroimaging has accelerated the study of brain-related clinical

conditions. A classical neuroimaging approach has been to contrast measurements obtained

from those who have experienced the event (i.e., cases) with measurements from those who

have not (i.e., controls). This methodology has yielded reliable markers of disease, e.g.,

(Jack Jr et al., 2012), while providing insights about underlying biological mechanisms, e.g.

(Buckner et al., 2005; Sabuncu et al., 2012)

Yet, the classical case-control approach treats the two groups as distinct entities and assumes

a certain amount of within-group homogeneity. This approach can therefore be limited when

the control group is a high-risk cohort, that is, when a significant proportion of subjects have

not yet experienced the event of interest but are likely to do so in the not-too-distant future.

Such “pre-event” cases, which, in the absence of other information will be treated as

controls, typically fall in the gray area between a pure case and a pure control. Thus the

within-group homogeneity assumption is violated, which will in turn impact statistical

inference. Common examples for this are longitudinal studies of populations that are at high

risk for disease, based on their genetic make-up (e.g., carriers of a faulty allele of the

Huntingtin gene in a Huntington’s study (Albin et al., 1990)), familial history (e.g., subjects

who have a first-degree relative with schizophrenia (Whitfield-Gabrieli et al., 2009)) or

clinical presentation (e.g., subjects with Mild Cognitive Impairment, or MCI, in an

Alzheimer’s study (Forsberg et al., 2008)). These examples are particularly relevant to drug

trials focused on the pre-clinical or early phases of a disease and thus target high-risk

populations. In such scenarios, an inappropriate statistical treatment of the group of subjects

who have not been observed to experience the event (diagnosis or conversion to disease)

during the follow-up period (sometimes referred to as “non-converters”), can introduce bias

into the analysis and/or reduce efficiency.

An alternative strategy that addresses this issue, directly models the timing of the event of

interest, while accounting for finite follow-up or censoring. This is the event time (or

survival) analysis approach (Kleinbaum and Klein, 2012), which includes classical models

such as Cox proportional hazards regression (Cox, 1972). Standard event time analysis

models have been applied in prior neuroimaging studies (Desikan et al., 2009; Desikan et

al., 2010; Devanand et al., 2007; Geerlings et al., 2008; Marcus et al., 2007; Sabuncu, 2013;

Stoub et al., 2005; Tintore et al., 2008; Vemuri et al., 2011) and have yielded novel insights

about various clinical conditions. Most of these prior studies have analyzed associations

between imaging measurements from a single baseline visit and the timing of the event of

interest identified via follow-up clinical assessments. These analyses typically rely on

survival models (e.g., the standard Cox model) that assume the explanatory variables are

independent of time (e.g., gender, genetic marker, birth place, etc.). The employed models

are useful for constructing individualized survival curves and making predictions about the
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timing of a future event. Furthermore, they offer insights about the relationships between

independent variables and the event time. As such, survival models have been used to draw

conclusions about associations between neuroimaging measurements (e.g., volume of a

structure) and the clinical event (e.g., disease onset). This type of inference, however, suffers

from two problems. Firstly, imaging measurements typically vary over time (e.g., due to

anatomical changes). Yet, interpretation of the standard Cox model, for example, has to be

done with respect to the baseline imaging measurements only and not with respect to the

dynamically changing measurements. Secondly, in longitudinal designs that span an

extended time period, imaging measurements are likely to vary substantially over time,

making it harder to detect associations between baseline imaging markers and the clinical

event.

Longitudinal neuroimaging (LNI) studies, where multiple serial images are acquired for

each participant, provide a means to characterize the temporal trajectories of imaging

measurements. Furthermore LNI studies can offer a substantial increase in statistical power

for studying imaging markers (Bernal-Rusiel et al., 2013a; Bernal-Rusiel et al., 2013b),

while opening up the possibility of examining the relationship between the temporal

dynamics of imaging markers and clinical variables (Sabuncu et al., 2011). Today, the

standard strategy for analyzing the association between LNI data and the occurrence of a

clinical event, such as disease onset, is to perform a group comparison based on

dichotomizing the subjects into, for example, “converters” versus “non-converters”

(Borgwardt et al., 2011; Chetelat et al., 2005; Jack Jr et al., 2008a; Morgan et al., 2011; Sun

et al., 2009). However, as we discussed above, this approach can be suboptimal, since the

non-converter group likely includes subjects who might convert beyond the study follow-up.

The core goal of this paper is to propose a powerful method for the statistical analysis of the

associations between longitudinal neuroimaging measurements, e.g., of gray matter density

or cortical thickness, and the timing of a clinical event of interest, such as disease onset. The

proposed approach combines a linear mixed effects (LME) model that captures the

spatiotemporal correlation pattern in serial imaging data (Bernal-Rusiel et al., 2013a;

Bernal-Rusiel et al., 2013b; Verbeke and Molenberghs, 2000) and an extended Cox

regression model that allows the examination of associations between the time-dependent

imaging measurements and the timing of a clinical event (Kleinbaum and Klein, 2012).

Recent work showed that such a joint analysis can reduce bias and increase statistical

efficiency by exploiting all available information (Tsiatis and Davidian, 2004).

We demonstrate the proposed method both for the univariate and mass-univariate analysis of

imaging measurements automatically computed with FreeSurfer, a widely used brain

Magnetic Resonance Image (MRI) data analysis software package (Dale et al., 1999; Fischl,

2012; Fischl and Dale, 2000; Fischl et al., 1999a; Fischl et al., 1999b). We include a

quantitative and objective empirical evaluation of the statistical performance of the proposed

method based on publicly available data (the Alzheimer’s disease neuroimaging initiative,

ADNI1) from a group of subjects with Mild Cognitive Impairment (MCI) (Gauthier et al.,

2006), a clinically defined condition associated with high-risk incipient dementia. Our

1http://tinyurl.com/ADNI-main
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experiments revealed that the proposed method offers a substantial increase in statistical

efficiency relative to a “two-sample” benchmark method that compares those who convert

from MCI to clinical AD against those who remain MCI through follow-up; and a classical

Cox regression analysis that employs only baseline scans.

The paper is organized as follows. Section 2.1 and 2.2 review the Cox proportional hazards

and linear mixed effects models, respectively. Section 2.3 presents the proposed method that

unifies these two frameworks. Section 2.4 describes the alternative analysis strategies that

we will use to benchmark our experimental results. Section 2.5 offers a description of the

data used in the experiments and section 2.6 details the statistical analyses conducted on

these data. In Section 3, we present experimental results that illustrate the proposed joint

modeling approach and compare it against benchmarks. Finally, Section 4 provides a

discussion of the main experimental findings and Section 5 closes with concluding remarks.

2 MATERIAL AND METHODS

2.1 The Cox Proportional Hazards Model and Its Extension

In this section, we provide a brief overview of the classical Cox proportional hazards model

(Cox, 1972) and its extension for time-varying explanatory (independent) variables. For a

detailed treatment, the reader is referred to dedicated texts, such as (Kleinbaum and Klein,

2012).

A core component of event time models is the so-called hazard function h(t), which is the

instantaneous probability of experiencing the event of interest (e.g., disease onset), given no

event up to time t. The hazard function is mathematically defined as:

where T is the random variable that represents the time of event and p(.|.) denotes

conditional probability. The classical Cox model assumes that the hazard function of a

sample with p time-independent explanatory variables X = (X1,X2,…Xp) can be expressed as:

(1)

where h0(t) is the so-called baseline hazard function and α = (α1,…,αp) are the coefficients

associated with the explanatory variables. This model assumes that the hazard function can

be written as a product of two factors: one that varies with time but is independent of X, and

another that is a function of the time-independent explanatory variables X and thus is fixed

over time. The foundation of the classical Cox model is the proportional hazards

assumption, i.e., the proportion of the hazard functions of two samples is constant over time:

, where Xj is the independent variables of the j’th

sample.
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A popular strategy to estimate the coefficients α is the so-called partial likelihood

maximization method (Cox, 1972, 1975). In particular, the partial likelihood is expressed as

a product of K terms, each corresponding to the likelihood of an observed event computed

based on the time of occurrence (i.e., there are K events observed during the study and K ≤

N, where N is the total number of samples2). Note that, although only observed events are

considered, their likelihood values depend on those samples that haven’t experienced the

event yet and still remain in the study (i.e., have not dropped out or are not “censored”

before the particular event time3.)

For readability, let us index the samples such that the first K are those that we have event

timing information on. All remaining samples are thus censored. That is, they either drop out

of the study before experiencing the event or do not experience the event during their

follow-up. Then, mathematically, the partial likelihood is computed as:

(2)

In Equation (2), tk and Xk denote the event time and exploratory variables of the k’th sample,

respectively. Rk is the so-called risk set at tk, i.e., the set of samples that are known to have

not experienced the event at tk. The partial likelihood function of Equation (2) is then

maximized with respect to the unknown model parameters α via a numerical optimization

strategy, such as Newton-Raphson.

As mentioned above, the original Cox model requires that the explanatory variables be

constant over time (e.g., a genetic marker). Hence, this model is not appropriate for

analyzing longitudinal imaging measurements that typically vary over time. We note that

baseline imaging measurements, however, have been employed in prior neuroimaging

studies with standard proportional hazard models (Desikan et al., 2009; Desikan et al., 2010;

Devanand et al., 2007; Geerlings et al., 2008; Marcus et al., 2007; Tintore et al., 2008;

Vemuri et al., 2011). Although these analyses offer predictive models, their use for inferring

associations are restricted to baseline measurements.

The Cox model can easily be extended to handle time-varying variables (Kleinbaum and

Klein, 2012). The hazard function is then expressed as:

(3)

2In this paper, we assume that each sample can experience the event of interest at most once. There are extended treatments that relax
this assumption. We consider these outside the scope of this manuscript.
3We note that the Cox model does not assume that the event will definitely occur for each individual during his or her lifetime, since
T can theoretically approach infinity.

Sabuncu et al. Page 5

Neuroimage. Author manuscript; available in PMC 2015 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



where the second term in the exponential includes the effects of q time-varying variables

Y(t) = (Y1(t),…,Yq(t)) with associated coefficients γ = (γ1,…,γq). Partial likelihood

maximization can also be employed to solve the extended Cox model of Equation (3).

Here, we make a crucial observation. To evaluate the partial likelihood function of the

extended Cox model, at each event time we need to be able to compute or observe the time-

dependent variable for all samples in the risk set, that is those samples under observation

and have not experienced the event yet. Note that, this means that the value of a time-

dependent variable of a subject needs to be identifiable not only for the event time of that

particular subject, but for other relevant event times that are prior to the subject’s own event/

censor time as well.

Longitudinal neuroimaging (LNI) studies offer us the opportunity for identifying the time-

varying imaging measurements at different time points. However, in a typical LNI study,

image data are acquired at certain intervals (e.g., every six months). Furthermore, these

serial scans are usually unbalanced across subjects, i.e., their number and timing can vary

between subjects. Finally, the visits for clinical assessments and image acquisitions might

not coincide. Hence, the fundamental challenge of the application of the (extended) Cox

model to the analysis of LNI data is the computation (or estimation) of the image data at the

times of the clinical events. Note that, even if we have image data coinciding with a

subject’s own event time (e.g. disease onset), we typically will not have the corresponding

imaging measurements for that subject for other relevant event times observed in the study.
We propose to use a linear mixed effects (LME) model, which captures the temporal

trajectories of each individual’s imaging measurements, to estimate image data at all

observed event times. The following section provides a brief description of the LME

approach and its recently introduced spatial extension.

2.2 Linear Mixed Effects Models for Longitudinal Data

In two recent papers (Bernal-Rusiel et al., 2013a; Bernal-Rusiel et al., 2013b), we illustrated

the use of Linear Mixed Effects (LME) models for the analysis of longitudinal neuroimage

data. The classical LME model can handle unbalanced data with high inter-subject

variability in scan times and missing data points, while offering a parsimonious yet effective

strategy to model the mean and covariance structure in longitudinal data (Fitzmaurice et al.,

2011; Verbeke and Molenberghs, 2000). The central idea in LME is to allow a subset of the

regression parameters to vary randomly across subjects. Hence, the mean trajectory is

modeled as a combination of population-level “fixed” effects and subject-specific “random”

effects (together, they are called mixed effects).

Formally, the LME model for longitudinal data can be expressed as:

(4)

where Y is the time-dependent outcome measurement of a subject, F(t) denotes the value of

F at time t, F = (F1,…Ff)’s are the f so-called “fixed” effects that can include subject-level

constant variables (e.g., gender, genotype) or time-varying variables (e.g., clinical status,
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measurement time, etc.), R = (R1,…,Rr)’s are the r “random” effects, which can include a

constant bias term and/or a subset of the time-varying fixed effect variables (e.g.,

measurement time). β = (β1,…,βf)’s and b = (b1,…br)’s are the unknown fixed and random

effect coefficients, respectively and e is independent and identically distributed zero-mean

Gaussian measurement noise with an unknown variance σ2. We further assume the random

effect vector b is sampled for each subject from a zero-mean Gaussian with an unknown,

non-diagonal r × r covariance matrix D. The unknown model parameters are the

measurement variance σ2 and random effect covariance matrix D. The traditional LME

approach solves for the model parameters via an iterative restricted maximum likelihood

(ReML) procedure.

Given estimates D̂ and σ̂, we have a closed-form solution for the maximum likelihood (ML)

estimate of the fixed effect coefficients β̂. We can further use these estimates to compute a

prediction for the values of the subject-specific random effect coefficients b̂s, where the

subscript s denotes subject index (Fitzmaurice et al., 2011). One can then easily compute an

unbiased prediction for the temporal trajectory for subject s as:

(5)

We recently extended the classical LME model to handle spatial data, such as image-wide

measurements in a mass-univariate analysis (Bernal-Rusiel et al., 2013b). This approach,

called ST-LME, essentially builds on the LME framework but modifies it to model spatial

correlations via a parametric spatial covariance matrix. The parameters associated with the

spatial matrix are added to the list of unknown model parameters and estimated via ReML.

The prediction of subject-level trajectories can then be computed exactly the same way

using the estimated model coefficients and Equation (5). Our prior experiments have

demonstrated that the ST-LME model offers superior statistical efficiency since it exploits

the spatial structure in image data.

2.3 Proposed Strategy for Joint Analysis of Event Time and LNI Data

As discussed above, the extended Cox model requires that the value for the time-dependent

variables be specified for each subject in the risk set at each observed event time. In general,

many of these imaging measurements are unavailable. However, one can estimate these data

based on serial measurements available in a study. We propose to use the LME model to

compute these estimates. The LME approach (and its mass-univariate, spatial extension)

provides a way to parsimoniously model the spatial and temporal correlation structure in

serial imaging data, while accounting for unbalanced longitudinal data collection.

The proposed strategy consists of two steps. In the first step, we fit an LME model to the

longitudinal imaging data. The details of model selection, the determination of random

effects, and parameter estimation are provided in (Bernal-Rusiel et al., 2013a; Bernal-Rusiel

et al., 2013b). Once the model parameters are estimated, one then computes and saves the

population-level fixed-effect coefficients and subject-level random-effect coefficients.
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In the second step, we fit an extended Cox regression model (Equation 3) to the event time

data, where for each observed event time we compute the imaging measurements of each

subject based on the LME model fit in the previous step (Equation 5). Statistical inference

(i.e., hypothesis testing) on the association between imaging measurements and the event

can then be conducted based on the Wald statistic of the approximately standard normal

distribution of  (a Z score), which yields a p-value for the effect of interest

(Kleinbaum and Klein, 2012). The estimate for Vâr(γ̂i) is computed as the negative of the

inverse of the Hessian matrix associated with the ML solution of the extended Cox model.

Here, we would like to make several remarks. First, the LME model of the first step and the

extended Cox model of the second step can contain different sets of time-independent

variables, although in our experiments we chose to use the same set for both models. This

decision was motivated by recent joint frameworks, where models for the event time

distribution and longitudinal data are taken to depend on a common set of effects (Tsiatis

and Davidian, 2004). We note that the selection of the explanatory variables to be included

in a model is a general problem in regression and should be made based on domain

knowledge and study constraints. Second, the time-dependent variables of the LME model

have to be identifiable for arbitrary time-points, since we need to compute predictions for all

relevant observed event times, which in general do not coincide with the imaging times.

Common examples for such time-varying variables are time elapsed from baseline, subject

age, and functions of these, e.g., time squared. Finally, the predicted image measurements

computed at the exact imaging times, in general, will not be equal to the actual

measurements themselves. Rather, they can be considered as “denoised” measurements,

where the error in longitudinal observations is estimated and discounted via the LME model.

This is similar in spirit to recent joint longitudinal and survival models, e.g. (Kleinbaum and

Klein, 2012).

2.4 Alternative Methods

To date, the most common approach to perform an analysis between neuroimage data and a

clinical event of interest, such as disease onset, relies on a two-group comparison

(Borgwardt et al., 2011; Chetelat et al., 2005; Jack Jr et al., 2008a; Julkunen et al., 2009;

Morgan et al., 2011; Risacher et al., 2009; Sun et al., 2009). In this method, the subjects are

divided into two groups: “converters”, i.e., those who experience the event during follow-up,

and “non-converters”, i.e. those who remain clinically stable for a certain amount of follow-

up time. In our experiments, we used the two-group approach with a LME model that has

been demonstrated to offer excellent statistical power for the analysis of longitudinal

neuroimage data (Bernal-Rusiel et al., 2013a; Bernal-Rusiel et al., 2013b). Here, the output

variables are the imaging measurements and the analyses examine the differences between

the intercepts and slope coefficients of the two groups.

As a second alternative, we consider employing the extended Cox model but with a simpler

method to estimate the longitudinal trajectories of the imaging data. Recall that the proposed

approach fits an LME-based statistical model to longitudinal neuroimage data, which is then

utilized to estimate the imaging measurements for all observed event times in the second
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step. The LME-based statistical model examines the entire data, in order to characterize and

estimate the individual-level temporal trajectories. A more basic strategy would be to fit a

linear function independently to each individual’s serial imaging data. Note that this

alternative approach, while computationally very efficient, ignores the spatial structure in

the images. Furthermore, when estimating the individual temporal trajectories, it does not

pool information across the population, the way the LME approach does. Hence, we expect

the estimates of the temporal trajectories of the imaging measurements to be noisier and thus

the inference of the extended Cox model to be statistically less efficient.

Finally, to our knowledge, all prior neuroimaging studies that conducted a Cox regression

analysis, simply utilized the baseline scans of each subject. In our experiments, we

considered this method as a benchmark as well. However, as we discuss below, this analysis

tests a slightly different association.

2.5 The ADNI Data

2.5.1 MRI Processing—We analyzed serial brain MRI data (T1-weighted, 1.5 Tesla),

which were acquired and made public by the Alzheimer Disease Neuroimaging Initiative

(ADNI). We processed all MRI scans automatically using FreeSurfer (Fischl, 2012) (version

5.1.0, http://surfer.nmr.mgh.harvard.edu, specifically its longitudinal processing pipeline

(http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing) (Reuter and Fischl,

2011; Reuter et al., 2010; Reuter et al., 2012)).

FreeSurfer computes volume estimates for a wide range of brain structures such as the

hippocampus, and estimates of the intra-cranial volume (ICV). In all subsequent analyses,

we summed the volumes of the left and right hippocampi to obtain the total hippocampal

volume (HV). Additionally, for each MRI scan, FreeSurfer automatically computes subject-

specific thickness measurements across the entire cortical surface of each cerebral

hemisphere. These measurements are further spatially re-sampled onto a standard surface-

based template (fsaverage), which represents an average brain.

In our experiments we performed both univariate and mass-univariate analyses. Our goal

was to detect the association between the longitudinal measurements of neuroimaging

biomarkers of AD and clinical progression from MCI to AD. Total hippocampal volume

(HV) was the imaging variable of interest in the univariate analyses. The mass-univariate

analyses were conducted on cortical thickness data computed across the entire cortex. These

two types of measurements were chosen since they have been shown to be strongly

associated with progression from MCI to AD (Dickerson et al., 2009; Dickerson et al., 2001;

Jack Jr et al., 1997; Lerch et al., 2005). Cortical thickness maps were smoothed by applying

an iterative nearest neighbor averaging procedure that approximates Gaussian kernel

smoothing on the high resolution surface of FreeSurfer’s fsaverage template subject (full-

width at half max = 15 mm) (Hagler Jr et al., 2006; Han et al., 2006). For computational

efficiency, the mass-univariate analyses were conducted on the left hemisphere of

fsaverage6, which is a lower resolution version of fsaverage (FreeSurfer’s average template

surface) and has about 35k vertices.
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2.5.2 Longitudinal Data from MCI Subjects—In our experiments, we analyzed

longitudinal imaging and clinical data from the ADNI subjects with MCI (N=374, 75.7± 6.7

years, 32.6% female). As can be appreciated from Table 1, there is substantial variation

between the timing and number of longitudinal visits across these subjects. In many prior

studies, the MCI subjects were sub-divided into two categories: progressor MCIs (or

converters), i.e., those who convert to clinical AD during follow-up; and stable MCIs (or

non-converters), i.e., those who do not progress. However, as we have emphasized above,

many so-called stable MCIs, in fact, drop out from the study prematurely or might convert

beyond the study follow-up. Hence, a better illustration of the MCI-to-AD conversion data is

the non-parametric estimate of the cumulative AD diagnosis probability (see Figure 1).

In the analyzed data, there were 160 observed event times (i.e., diagnosis of clinical AD),

which was on average 1.32 years from baseline with a standard deviation of 0.77 years. For

the remaining 214 MCI subjects, the average censor time, i.e., the final follow-up visit, was

on average 2.35 years from baseline with a standard deviation of 1.16 years.

2.6 Statistical Models

2.6.1 Proposed Method—The first step of the proposed method fits an LME model to

the longitudinal neuroimage data. Here, two important design decisions need to be made: (1)

the specification of time-dependent variables that model the mean temporal trajectory, and

(2) the selection of the intercept and/or time-dependent variables that will determine the

temporal covariance structure. For further detail, the reader is referred to (Bernal-Rusiel et

al., 2013a). In the mass-univariate setting, these model specification/selection questions are

particularly challenging due to the large number of tests that need to be conducted. In our

previous analyses of the ADNI data (Bernal-Rusiel et al., 2013a; Bernal-Rusiel et al.,

2013b), we found that a clinical group-specific linear trajectory was an appropriate model

for Alzheimer-associated hippocampal atrophy and cortical thinning during the 4.5-year

follow-up period of the ADNI study.

In all reported analyses with the proposed method, the following variables were included as

independent (fixed effect) variables: time from baseline, baseline age, sex, APOE genotype

status (one if e4 carrier or zero otherwise), interaction between time and APOE genotype

status (note that this variable was included based on the evidence that e4 accelerates atrophy

during the prodromal phases of AD (Jack Jr et al., 2008b)), and education (in years). For

hippocampal volume (HV), we further added ICV to normalize for the confounding effect of

head size. Intercept and time from baseline were the only random effect variables in the

LME models. For the mass-univariate analyses, we used the recently developed spatial

extension of LME, namely ST-LME, with the parameter setting recommended in (Bernal-

Rusiel et al., 2013b).

We report the results of the statistical tests that examine the association between LNI data

and the timing of MCI-to-AD progression. This test employs an extended Cox model with

the aforementioned explanatory variables and the time-dependent imaging measurements

(variable of interest) estimated using the LME model fit in the first step. For all the mass-

univariate analyses, multiple comparisons were corrected by employing a powerful two-

stage adaptive False Discovery Rate (FDR) procedure at q-level=0.05 (Benjamini et al.,
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2006). We note that the proposed method tests for the hypothesis that there is an association

between the imaging measurements and concurrent AD onset.

2.6.2 Benchmark two-group method—Our two-sample LME-based analyses used the

same independent fixed and random effect variables as the proposed method. In addition,

these models included a binary clinical group membership variable (1 if the subject

converted to from MCI to AD or 0 if subject was stable during follow-up4), and the

interaction between group membership and time as additional fixed effects. Under the null

hypothesis of the extended Cox analysis there is no association between the imaging

measurements and MCI-to-AD conversion. The corresponding null hypothesis for a two-

group analysis is that the coefficients associated with group membership are zero. In other

words, under the null, the progressor and stable MCIs have the same intercept and slope

coefficient. All the reported results for the benchmark two-group method employed an F-test

that was based on this null hypothesis.

2.6.3 Alternative Cox Models—We conducted two alternative event time analyses using

the Cox proportional hazards model. The first method replaces the first step of the proposed

approach with a simple line-fitting scheme. So, instead of fitting an LME based (or ST-LME

based) model to the longitudinal imaging data, we fit the best line (in the least squares sense)

to the serial measurements of each individual. In the mass-univariate setting, each spatial

location was treated independently. We then computed the imaging measurements for each

subject and at each observed event time based on these estimated linear trajectories. Given

these estimates, the extended Cox regression model and statistical test were identical to the

proposed method. The tested hypothesis was identical to that of the proposed model.

In the second method, we ignored the temporal trajectories in the imaging data and simply

treated baseline measurements as time-independent variables in a classical Cox regression

analysis. All remaining explanatory variables were identical to the extended Cox models.

The reported results were for the test of association between the baseline image variables

and time of event. Here, we caution the reader that the tested hypothesis is in fact somewhat

different from the one tested with the longitudinal neuroimage data. Relying on baseline

measurements allow us only to test associations between the baseline measurement and the

timing of a future event. In contrast, the extended Cox analysis we propose in this paper can

be used to test associations between the (time-dependent) imaging marker and clinical event.

We return to this issue in the Discussion, where we emphasize the distinction between the

two approaches.

3 EXPERIMENTAL RESULTS

3.1 Univariate analysis of hippocampal volume

In our first experiment, we compared the statistical performance of the proposed method

with the alternative benchmarks based on detecting the known association between MCI-to-

4Stable MCIs were those subjects who were categorized as MCI at baseline and remained so during a clinical follow-up of at least 1
year. Converter MCIs were those MCI subjects who were diagnosed with clinical AD at follow-up.
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AD conversion and total hippocampal volume. To achieve this, we utilized an empirical

strategy inspired by (Thirion et al., 2007).

For different sample size values (N = 30–100), we randomly selected two sets of

independent MCI samples, (i.e., two independent samples of size N) from the MCI subjects

in the ADNI sample (Total N=374). Note that there was no overlap between the two

independent samples. We repeated this procedure 1,000 times to obtain 1,000 random pairs

of independent MCI samples of a certain size (that is, for a given size we had 2,000 random

MCI samples in total).

To assess sensitivity, we computed the detection (true positive) rate across the 2,000

samples for a range of p-value thresholds and sample sizes (N=30–100). Here we assumed

that the underlying ground truth was that there is an association between hippocampal

volume and MCI-to-AD conversion. Instances where the p-value was less than a threshold

were considered a “detection” and remaining cases were treated as a false negative. The true

positive rate (or sensitivity) was quantified as the fraction of detections.

Figure 2 shows empirical sensitivity as a function of the p-value threshold and sample size.

Figure 3 plots repeatability, defined as the rate of detection in both of the independent

samples. These results demonstrate that the proposed method offers the highest statistical

sensitivity and repeatability for detecting associations between imaging measurements and

the clinical event of interest. Yet, as we emphasized above, technically, each method is

testing a slightly different hypothesis. In particular, the classical Cox analyses of the

baseline measurements are testing associations between these values and the timing of the

future diagnosis of AD. The two-group method is testing for differences in the trajectories of

imaging measurements between those who convert to AD and those who remain MCI during

follow-up. Finally, the extended Cox analyses directly test for the associations between the

value of imaging measurements and concurrent risk of AD diagnosis.

The boost in statistical efficiency with respect to the common two-group method is

substantial: for a given sample size (e.g. 50) and p-value threshold (e.g. 0.05), the increase in

statistical power can be over 10%. These results further illustrate that employing

longitudinal imaging data can improve the statistical efficiency of a Cox regression model.

Finally, these univariate analyses revealed that the proposed LME-based two-step approach

can offer a modest, yet consistent improvement over a more basic extended Cox strategy

that uses a simple line-fitting scheme to interpolate the imaging data. This result suggests

that the LME-based model, which pools data across subjects, provides improved estimates

of the longitudinal trajectories of the imaging measurements.

Finally, to examine the type I error control offered by the Cox models, we conducted an

additional analysis. Here, we randomly permuted the event time information within each

sample (1,000 times), and repeated the analyses with the three Cox-based methods: (i) a

classical proportional hazards model that uses the baseline scans only, extended Cox

models, with (ii) a line-based interpolation scheme, and (iii) the proposed LME-based

estimation strategy. The random permutations simulate a null hypothesis, where the imaging

measurements and the event of MCI-to-AD conversion were statistically independent. Since
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the random permutations broke down the relationship between the image data and the timing

of MCI-to-AD conversion, we considered these data as samples from the null hypothesis

(Good, 2000; Nichols and Holmes, 2002). Then, for each p-value threshold, we computed

the detection rate of the association between the event time and imaging measurement, with

each method. Under these random permutations, a method with good type I error control

should achieve a detection rate that is close to the used theoretical threshold. Table 2 shows

that this is indeed the case. All three Cox-based methods achieve type I error rates that are

very close to each other and to the theoretical threshold.

3.2 Mass-univariate analysis of cortical thickness

In our second experiment, we exploited the known association between regional cortical

thinning and MCI-to-AD conversion (Dickerson et al., 2009) and used an empirical strategy

similar to the one in the first experiment. Out of 374 ADNI MCI subjects, we randomly

drew independent pairs of samples of 80 subjects. Each independent pair shared no common

subject. This way, we generated 1,000 pairs of independent samples (or 2,000 samples in

total). For each sample, we used the aforementioned methods to compute significance maps

for the association between cortical thickness values and MCI-to-AD conversion. We used

the two-stage adaptive FDR procedure with an array of q-values (Benjamini et al., 2006) to

control for multiple comparisons. Thus, for each sample, each method and each q-value

threshold, we obtained a map of significant associations.

We computed the statistical power (sensitivity) at the sample-level as the fraction of

instances (out of the 2,000) where a statistical method detected a significant association at a

given FDR q-value (see Figure 4). Next, we assessed repeatability via the overlap area

between the two independent MCI samples of size 80 (for FDR q-value = 0.05). Figure 5

shows the means and standard errors across the 1000 random draws for the four methods

that were compared in this study. These results demonstrate that the benchmark two-group

method offers the least repeatability, while the extended Cox strategy yields a dramatic

improvement in the repeatability of the results. The proposed method of using an LME-

based first step to capture the spatiotemporal patterns in the neuroimaging data provides a

subtle increase in repeatability.

3.3 Analyzing the entire ADNI MCI sample

Finally, we employed the proposed strategy to analyze the association between longitudinal

cortical thickness measurements and MCI-to-AD conversion in the entire ADNI MCI

sample. Figure 6 presents the map of significant associations. We note that these maps,

which include regions associated with the default-mode network, show a striking

resemblance to previously reported regions where cortical atrophy was correlated with AD

dementia (Buckner et al., 2005; Dickerson et al., 2009). The strong agreement between these

results and prior studies increase our confidence in the validity of the proposed method.

4. DISCUSSION

As shown by recent studies, the event time analysis framework can provide a substantial

increase in statistical efficiency when examining associations between imaging biomarkers
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and a clinical event of interest in a longitudinal study design (Vemuri et al., 2011). In

contrast with the more popular two-group comparison method that compares converters and

non-converters (i.e., those who experience the event and those who do not), the event time

analysis method exploits the variation in the event timing data and, crucially, accounts for

finite follow-up. Hence non-converters, i.e., those who are not observed to experience the

event of interest, are not treated as a uniform group, separate from the converters, since

some of these subjects might eventually experience the event beyond the study follow-up.

The Cox proportional hazards model, which has been employed in neuroimage analysis

before (Desikan et al., 2009; Desikan et al., 2010; Devanand et al., 2007; Geerlings et al.,

2008; Marcus et al., 2007; Stoub et al., 2005; Tintore et al., 2008; Vemuri et al., 2011), is a

very flexible and powerful method for conducting event time analyses. However, this

method has only been employed to analyze baseline measurements with respect to the

timing of a future event, which restricts the associations we can examine and detect.

An alternative approach is to model the temporal trajectory in image data and use an

extended Cox model that handles time-dependent variables. Longitudinal neuroimaging

studies offer us this opportunity. However, the fundamental challenge is that in the extended

Cox modeling approach, time-varying variables have to be identifiable at all relevant

observed event times, and not just the time of event for the corresponding sample. In this

paper, we proposed to model the spatiotemporal patterns in neuroimaging measurements

using an LME-based approach (Bernal-Rusiel et al., 2013a; Bernal-Rusiel et al., 2013b). The

LME model is then used to estimate the image data at observed event times.

We conducted an empirical evaluation of the proposed method, along with three alternative

strategies. Each comparison with a benchmark allowed us to quantify the effect of a

different factor. The comparison with the popular two-group analysis, which simply

contrasts the longitudinal data of converters versus non-converters, reveals the influence of

explicit event time modeling achieved with the Cox approach. The comparison with the

baseline Cox model, which ignores the longitudinal neuroimage data and simply uses the

baseline scans (as done in prior neruoimaging studies), gives us information on the effect of

exploiting longitudinal imaging. Finally, the comparison with an alternative extended Cox

method that uses a simple line-fitting step to model the temporal trajectory in the imaging

measurements, uncovers the impact of the LME-based first step in the proposed approach.

In agreement with prior studies, we found that the Cox proportional hazards approach offers

a significant improvement in statistical power and repeatability. For example, the agreement

between the maps of two independent MCI samples of 80 subjects was about 50 times

greater for the proposed method compared to the two-group benchmark. Similar gains were

consistently observed in other univariate and mass-univariate analyses.

Secondly, the proposed method was substantially more powerful and reliable than a classical

Cox analysis of the baseline scans. In the mass-univariate experiment, this gain was slightly

less than the improvement with respect to the two-group method, yet it was consistent across

all analyses. These results highlight the advantage of utilizing and modeling longitudinal

imaging data in a Cox analysis. Obviously, this might be impractical in experimental designs
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with no serial imaging follow-up. However, to our knowledge, we offer the first discussion

of this issue in neuroimaging and propose a strategy that might boost statistical efficiency

for detecting associations of interest.

Finally, we can quantify the effect of the LME-based first step in the proposed approach.

The LME model attempts to capture the spatiotemporal structure in the neuroimaging data

by examining the entire longitudinal sample. In contrast, a simpler strategy would be to

estimate the temporal trajectory of each imaging measurement in isolation, without

considering other subjects or spatial locations in a mass-univariate analysis. From a

theoretical standpoint, we expect the proposed method to yield a more accurate model for

the longitudinal data, and hence improve the power of the Cox regression, which relies on

the estimates of the imaging data at time-points with no observation. Empirically, we find

this is indeed the case. Our experiments suggest that the improvement in statistical power

and reliability due to the LME step is subtle, yet consistent. In the mass-univariate setting,

the agreement between the maps of two independent samples can increase by over 5% as a

result of the LME step.

The extended Cox analysis we advocate in this article has several drawbacks and technical

subtleties, as discussed in prior work (Fisher and Lin, 1999). Firstly, the model parameters

have no straightforward interpretation as in the classical Cox model, where under the

proportional hazards assumption, the estimated coefficients can be interpreted as a constant

hazard ratio. Therefore, we are largely constrained to testing the statistical strength of

associations, rather than presenting interpretable hazard ratios. Secondly, we need to

underscore the difference between internal versus external time-dependent variables, as

distinguished by (Kalbfleisch and Prentice, 2011). Internal variables are those that are

generated by the studied subject directly (e.g., blood pressure) and are directly related to the

event (i.e., the event is defined via this variable or these variables cannot be measured after

the event – e.g., blood pressure after death). When dealing with such variables and events,

the relationship between the conditional hazard function and survival function breaks down.

For example, a measurable value of blood pressure is indicative of the subject being still

alive and hence survival at that time point is known. However, in the scenarios we

considered in this article, longitudinal imaging measurements, which might be considered as

internal, do not generally suffer from this technical problem. This is because scans can be

and are acquired after the event of interest and the event is not directly defined via imaging

measurements. Another issue with time-dependent variables is that usually they do not yield

individual predictions of event risk curves. This is because these curves depend on the

typically unknown temporal trajectories of the time-dependent variables. Finally, our

analysis interrogated the relationship between imaging measurements and concurrent risk of

event. Alternative functional forms for this relationship can also be used within the extended

Cox analysis. For instance, one could consider the cumulative history of the variable (e.g.,

history of high blood pressure). One alternative promising approach in neuroimaging might

be to consider the concurrent or past slope (rate of change) in imaging measurements as a

potential biomarker of the event. This would require reliable estimates of derivatives of the

longitudinal imaging trajectory, which could also be obtained from the LME step. We leave

the exploration of this direction to future work.
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5 CONCLUSIONS

We presented a statistical method for the event time analysis of longitudinal neuroimage

data. We have implemented and validated the proposed method for mapping longitudinal

brain atrophy effects within the FreeSurfer framework, yet its adaptation to other types of

spatial data is straightforward. Our results suggest that the proposed method can offer

excellent statistical power for detecting associations between longitudinal imaging

measurements and a clinical event, such as disease onset.

Acknowledgments

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) and the National Institutes of Health (NIH) (grant U01 AG024904). The ADNI is funded by the National
Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering, and through generous
contributions from the following: Abbott Laboratories, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-
Myers Squibb, Eisai Global Clinical Development, Elan Corporation Plc, Genentech Inc, GE Healthcare,
GlaxoSmithKline, Innogenetics, Johnson and Johnson Services Inc, Eli Lilly and Company, Medpace Inc, Merck
and Co Inc, Novartis International AG, Pfizer Inc, F. Hoffman-La Roche Ltd, Schering-Plough Corporation,
CCBR-SYNARC Inc, and Wyeth Pharmaceuticals, as well as nonprofit partners the Alzheimer’s Association and
Alzheimer’s Drug Discovery Foundation, with participation from the US Food and Drug Administration. Private
sector contributions to the ADNI are facilitated by the Foundation for the NIH. The grantee organization is the
Northern California Institute for Research and Education Inc, and the study is coordinated by the Alzheimer’s
Disease Cooperative Study at the University of California, San Diego. The ADNI data are disseminated by the
Laboratory for NeuroImaging at the University of Southern California.

This research was carried out in whole or in part at the Athinoula A. Martinos Center for Biomedical Imaging at the
Massachusetts General Hospital, using resources provided by the Center for Functional Neuroimaging
Technologies, P41EB015896, a P41 Biotechnology Resource Grant supported by the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health. Further support for this research
was provided in part by the National Center for Research Resources (P41-RR14075), the National Institute for
Biomedical Imaging and Bioengineering (R01EB006758), the National Institute on Aging (AG022381), the
National Center for Alternative Medicine (RC1 AT005728-01), the National Institute for Neurological Disorders
and Stroke (R01 NS052585-01, 1R21NS072652-01, 1R01NS070963, 2R01NS042861-06A1, 5P01NS058793-03),
the National Institute of Child Health and Human Development (R01-HD071664), and was made possible by the
resources provided by Shared Instrumentation Grants 1S10RR023401, 1S10RR019307, and 1S10RR023043.
Additional support was provided by The Autism & Dyslexia Project funded by the Ellison Medical Foundation, by
the NIH 5R01AG008122-22 grant, and by the NIH Blueprint for Neuroscience Research (5U01-MH093765), part
of the multi-institutional Human Connectome Project. Dr. Sabuncu received support from an AHAF (BrightFocus)
Alzheimer’s Disease pilot grant (AHAF A2012333), and an NIH K25 grant (NIBIB 1K25EB013649-01).

Finally, the authors would like to thank Nick Schmansky and Louis Vinke for their efforts in downloading and
processing the ADNI MRI scans.

References

Albin RL, Young AB, Penney JB, Handelin B, Balfour R, Anderson KD, Markel DS, Tourtellotte
WW, Reiner A. Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in
presymptomatic Huntington’s disease. New England Journal of Medicine. 1990; 322:1293–1298.
[PubMed: 1691447]

Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false
discovery rate. Biometrika. 2006; 93:491–507.

Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR. Statistical Analysis of Longitudinal
Neuroimage Data with Linear Mixed Effects Models. Neuroimage. 2013a; 66:249–260.

Bernal-Rusiel JL, Reuter M, Greve DN, Fischl B, Sabuncu MR. Spatiotemporal Linear Mixed Effects
Modeling for the Mass-univariate Analysis of Longitudinal Neuroimage Data. Neuroimage. 2013b:
81.

Borgwardt S, McGuire P, Fusar-Poli P. Gray matters: Mapping the transition to psychosis.
Schizophrenia research. 2011; 133:63–67. [PubMed: 21943556]

Sabuncu et al. Page 16

Neuroimage. Author manuscript; available in PMC 2015 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE,
Mathis CA, Morris JC. Molecular, structural, and functional characterization of Alzheimer’s
disease: evidence for a relationship between default activity, amyloid, and memory. The Journal of
Neuroscience. 2005; 25:7709–7717. [PubMed: 16120771]

Chetelat G, Landeau B, Eustache F, Mezenge F, Viader F, de La Sayette V, Desgranges B, Baron JC.
Using voxel-based morphometry to map the structural changes associated with rapid conversion in
MCI: a longitudinal MRI study. Neuroimage. 2005; 27:934–946. [PubMed: 15979341]

Cox DR. Regression models and life-tables. Journal of the Royal Statistical Society. Series B
(Methodological). 1972:187–220.

Cox DR. Partial likelihood. Biometrika. 1975; 62:269–276.

Dale AM, Fischl B, Sereno MI. Cortical Surface-Based Analysis* 1:: I. Segmentation and Surface
Reconstruction. Neuroimage. 1999; 9:179–194. [PubMed: 9931268]

Desikan RS, Cabral HJ, Fischl B, Guttmann CR, Blacker D, Hyman BT, Albert MS, Killiany RJ.
Temporoparietal MR imaging measures of atrophy in subjects with mild cognitive impairment that
predict subsequent diagnosis of Alzheimer disease. American Journal of Neuroradiology. 2009;
30:532–538. [PubMed: 19112067]

Desikan RS, Cabral HJ, Settecase F, Hess CP, Dillon WP, Glastonbury CM, Weiner MW, Schmansky
NJ, Salat DH, Fischl B. Automated MRI measures predict progression to Alzheimer’s disease.
Neurobiology of aging. 2010; 31:1364–1374. [PubMed: 20570399]

Devanand D, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S, Rusinek H, Pelton G, Honig L,
Mayeux R. Hippocampal and entorhinal atrophy in mild cognitive impairment Prediction of
Alzheimer disease. Neurology. 2007; 68:828–836. [PubMed: 17353470]

Dickerson BC, Bakkour A, Salat DH, Feczko E, Pacheco J, Greve DN, Grodstein F, Wright CI,
Blacker D, Rosas HD. The cortical signature of Alzheimer’s disease: regionally specific cortical
thinning relates to symptom severity in very mild to mild AD dementia and is detectable in
asymptomatic amyloid-positive individuals. Cerebral Cortex. 2009; 19:497–510. [PubMed:
18632739]

Dickerson BC, Goncharova I, Sullivan M, Forchetti C, Wilson R, Bennett D, Beckett L, deToledo-
Morrell L. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild
Alzheimer’s disease. Neurobiology of aging. 2001; 22:747–754. [PubMed: 11705634]

Fischl B. Freesurfer. Neuroimage. 2012

Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance
images. Proceedings of the National Academy of Sciences. 2000; 97:11050.

Fischl B, Sereno MI, Dale AM. Cortical Surface-Based Analysis* 1:: II: Inflation, Flattening, and a
Surface-Based Coordinate System. Neuroimage. 1999a; 9:195–207. [PubMed: 9931269]

Fischl B, Sereno MI, Tootell RBH, Dale AM. High-resolution intersubject averaging and a coordinate
system for the cortical surface. Human Brain Mapping. 1999b; 8:272–284. [PubMed: 10619420]

Fisher LD, Lin D. Time-dependent covariates in the Cox proportional-hazards regression model.
Annual review of public health. 1999; 20:145–157.

Fitzmaurice, GM.; Laird, NM.; Ware, JH. Applied longitudinal analysis. Wiley; 2011.

Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Langstrom B,
Nordberg A. PET imaging of amyloid deposition in patients with mild cognitive impairment.
Neurobiology of aging. 2008; 29:1456–1465. [PubMed: 17499392]

Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, Brodaty H, Bennett
D, Chertkow H. Mild cognitive impairment. The Lancet. 2006; 367:1262–1270.

Geerlings M, Den Heijer T, Koudstaal P, Hofman A, Breteler M. History of depression, depressive
symptoms, and medial temporal lobe atrophy and the risk of Alzheimer disease. Neurology. 2008;
70:1258–1264. [PubMed: 18391157]

Good, PI. Permutation tests. Wiley Online Library; 2000.

Hagler DJ Jr, Saygin AP, Sereno MI. Smoothing and cluster thresholding for cortical surface-based
group analysis of fMRI data. Neuroimage. 2006; 33:1093–1103. [PubMed: 17011792]

Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M,
Killiany R. Reliability of MRI-derived measurements of human cerebral cortical thickness: the

Sabuncu et al. Page 17

Neuroimage. Author manuscript; available in PMC 2015 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



effects of field strength, scanner upgrade and manufacturer. Neuroimage. 2006; 32:180–194.
[PubMed: 16651008]

Jack CR Jr, Petersen RC, Grundman M, Jin S, Gamst A, Ward CP, Sencakova D, Doody RS, Thal LJ.
Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI.
Neurobiology of aging. 2008a; 29:1285–1295. [PubMed: 17452062]

Jack CR Jr, Petersen RC, Xu YC, Waring SC, O’Brien PC, Tangalos EG, Smith GE, Ivnik RJ,
Kokmen E. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease.
Neurology. 1997; 49:786–794. [PubMed: 9305341]

Jack CR Jr, Vemuri P, Wiste HJ, Weigand SD, Lesnick TG, Lowe V, Kantarci K, Bernstein MA,
Senjem ML, Gunter JL. Shapes of the Trajectories of 5 Major Biomarkers of Alzheimer Disease.
Archives of Neurology, archneurol. 2012 2011.3405 v2011.

Jack CR Jr, Weigand SD, Shiung MM, Przybelski SA, O’Brien PC, Gunter JL, Knopman DS, Boeve
BF, Smith GE, Petersen RC. Atrophy rates accelerate in amnestic mild cognitive impairment.
Neurology. 2008b; 70:1740–1752. [PubMed: 18032747]

Julkunen V, Niskanen E, Muehlboeck S, Pihlajamaki M, Kononen M, Hallikainen M, Kivipelto M,
Tervo S, Vanninen R, Evans A. Cortical thickness analysis to detect progressive mild cognitive
impairment: a reference to Alzheimer’s disease. Dementia and geriatric cognitive disorders. 2009;
28:404–412. [PubMed: 19907176]

Kalbfleisch, JD.; Prentice, RL. The statistical analysis of failure time data. John Wiley & Sons; 2011.

Kleinbaum, DG.; Klein, M. Survival analysis. Springer; 2012.

Lerch JP, Pruessner JC, Zijdenbos A, Hampel H, Teipel SJ, Evans AC. Focal decline of cortical
thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex. 2005;
15:995–1001. [PubMed: 15537673]

Marcus KJ, Astrakas LG, Zurakowski D, Zarifi MK, Mintzopoulos D, Poussaint TY, Anthony DC, De
Girolami U, Black PM, Tarbell NJ. Predicting survival of children with CNS tumors using proton
magnetic resonance spectroscopic imaging biomarkers. International journal of oncology. 2007;
30:651. [PubMed: 17273766]

Morgan V, Riches S, Thomas K, Vanas N, Parker C, Giles S, Desouza N. Diffusion-weighted
magnetic resonance imaging for monitoring prostate cancer progression in patients managed by
active surveillance. British Journal of radiology. 2011; 84:31–37. [PubMed: 21172965]

Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with
examples. Human brain mapping. 2002; 15:1–25. [PubMed: 11747097]

Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image processing. Neuroimage.
2011; 57:19–21. [PubMed: 21376812]

Reuter M, Rosas HD, Fischl B. Highly accurate inverse consistent registration: A robust approach.
Neuroimage. 2010; 53:1181–1196. [PubMed: 20637289]

Reuter, M.; Schmansky, NJ.; Rosas, HD.; Fischl, B. Within-subject template estimation for unbiased
longitudinal image analysis. Neuroimage. 2012. http://dx.doi.org/10.1016/j.neuroimage.
2012.02.084

Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, McDonald BC. Baseline MRI predictors of
conversion from MCI to probable AD in the ADNI cohort. Current Alzheimer Research. 2009;
6:347. [PubMed: 19689234]

Sabuncu, MR. A Bayesian Algorithm for Image-based Time-to-event Prediction. MLMI Workshop,
MICCAI; 2013; 2013.

Sabuncu MR, Buckner RL, Smoller JW, Lee PH, Fischl B, Sperling RA. The association between a
polygenic alzheimer score and cortical thickness in clinically normal subjects. Cerebral Cortex.
2012; 22:2653–2661. [PubMed: 22169231]

Sabuncu MR, Desikan RS, Sepulcre J, Yeo BTT, Liu H, Schmansky NJ, Reuter M, Weiner MW,
Buckner RL, Sperling RA. The dynamics of cortical and hippocampal atrophy in Alzheimer
disease. Archives of neurology. 2011; 68:1040. [PubMed: 21825241]

Stoub T, Bulgakova M, Leurgans S, Bennett D, Fleischman D, Turner D. MRI predictors of risk of
incident Alzheimer disease A longitudinal study. Neurology. 2005; 64:1520–1524. [PubMed:
15883311]

Sabuncu et al. Page 18

Neuroimage. Author manuscript; available in PMC 2015 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://dx.doi.org/10.1016/j.neuroimage.2012.02.084
http://dx.doi.org/10.1016/j.neuroimage.2012.02.084


Sun D, Phillips L, Velakoulis D, Yung A, McGorry PD, Wood SJ, van Erp TG, Thompson PM, Toga
AW, Cannon TD. Progressive brain structural changes mapped as psychosis develops in at risk
individuals. Schizophrenia research. 2009; 108:85–92. [PubMed: 19138834]

Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline JB. Analysis of a large fMRI cohort:
Statistical and methodological issues for group analyses. Neuroimage. 2007; 35:105–120.
[PubMed: 17239619]

Tintore M, Rovira A, Rio J, Tur C, Pelayo R, Nos C, Tellez N, Perkal H, Comabella M, Sastre-Garriga
J. Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology.
2008; 70:1079–1083. [PubMed: 17881717]

Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event data: an overview. Statistica
Sinica. 2004; 14:809–834.

Vemuri P, Weigand SD, Knopman DS, Kantarci K, Boeve BF, Petersen RC, Jack CR Jr. Time-to-
event voxel-based techniques to assess regional atrophy associated with MCI risk of progression to
AD. Neuroimage. 2011; 54:985–991. [PubMed: 20832487]

Verbeke, G.; Molenberghs, G. Linear mixed models for longitudinal data. N.Y: Springer; 2000.

Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton
ME, Green AI, Nieto-Castanon A, LaViolette P. Hyperactivity and hyperconnectivity of the
default network in schizophrenia and in first-degree relatives of persons with schizophrenia.
Proceedings of the National Academy of Sciences. 2009; 106:1279–1284.

Sabuncu et al. Page 19

Neuroimage. Author manuscript; available in PMC 2015 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Non-parametric estimate of the AD diagnosis cumulative distribution function for the ADNI

MCI subjects. The dashed lines show the 95% confidence interval.
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Figure 2.
Empirical sensitivity (statistical power) as a function of (a) the p-value threshold (N=50) and

(b) sample size (p-value threshold = 0.05) for detecting the association between total

hippocampal volume, a univariate marker, and MCI-to-AD conversion. The proposed

method (Ext. Cox with LME) yields the most statistical power. Ext. Cox (Line) replaces the

LME-based first step of the proposed method with a simple line fit. Two-Class LME is the

popular approach of comparing converter MCIs with stable MCIs. Cox Baseline uses only

the baseline scans and treats imaging measurements as time-independent exploratory

variables in a classical Cox regression. See text for further details.
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Figure 3.
Repeatability (the frequency at which a method detects an association between total

hippocampal volume, a univariate marker, and MCI-to-AD conversion in two independent

samples) as a function of: (a) the p-value threshold (N=50), (b) sample size (p-value

threshold=0.05). See caption of Figure 2 for further details.
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Figure 4.
Empirical statistical power as a function of FDR q-value for detecting the association

between mass-univariate cortical thickness measurements and MCI-to-AD conversion in

groups of 80 MCI subjects. The proposed method (Ext. Cox with LME) yields the most

statistical power. Ext. Cox (Line) replaces the LME-based first step of the proposed method

with a simple line fit. Two-Class LME is the popular approach of comparing converter

MCIs with stable MCIs. Cox Baseline uses only the baseline scans and treats imaging

measurements as time-independent exploratory variables in a classical Cox regression. See

text for further details.
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Figure 5.
Average overlap area (in mm^2) between the detection maps obtained from two independent

samples consisting of 80 MCI subjects. The detection maps were binary masks, where the

FDR-corrected statistical association (q-value = 0.05) between cortical thickness and MCI-

to-AD conversion was recorded. Vertices that exhibited a significant association in both

independent samples were included in the overlap area. See caption of Figure 4 and text for

further details. Errorbars show the standard error of the mean.
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Figure 6.
Brain regions where there is an association between cortical thickness and MCI-to-AD

conversion, as determined by the proposed method and based on analyzing the entire

longitudinal ADNI MCI sample. Results are overlaid on an inflated representation of the

cortex of an average human brain (fsaverage). The gray pattern reflects the underlying

cortical folding. Colored regions are where there is a significant association (uncorrected P <

0.01). The color reflects the significance of the association, which was computed as

−log10(P-value) (see color bar). The sign encodes the direction of association, where a

positive value suggests that thinner cortex at that particular location is associated with an

earlier date of onset of AD dementia. Top and bottom rows show views of the lateral and

medial surfaces, respectively. Left and right panels correspond to the left and right

hemispheres, respectively.
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Table 1
The ADNI MCI Cohort

Number and timing of analyzed longitudinal MRI scans per visit

Visit Number of Individual Scans Time from baseline (years)

Baseline 374 0

year 0.5 (month 6) 354 0.58 ± 0.07 [0.32–0.94]

year 1 319 1.08 ± 0.07 [0.82–1.35]

year 1.5 281 1.59 ± 0.07 [1.26–1.92]

year 2 210 2.08 ± 0.08 [1.70–2.52]

year 3 100 3.09 ± 0.08 [2.98–3.45]

year 4 13 4.10 ± 0.10 [3.98–4.38]

Total 1651

Time from baseline (in years) is in mean ± standard deviation; Ranges are listed in square brackets.
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Table 2
Empirical type I error rate for the three Cox-based event time models and different p-
value thresholds

The null hypothesis was simulated by randomly permuting the event time data.

Theoretical P-value Threshold 0.01 0.03 0.05 0.10

Cox with Baseline Scans 0.00 0.03 0.06 0.11

Extended Cox with Line-based Interp. 0.01 0.03 0.06 0.12

Extended Cox with LME 0.01 0.03 0.06 0.11
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