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Abstract

We introduce a framework for population analysis of white matter tracts based on diffusion-

weighted images of the brain. The framework enables extraction of fibers from high angular

resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge

from an atlas; representation of the fiber bundles compactly using a path following points of
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highest density (maximum density path; MDP); and registration of these paths together using

geodesic curve matching to find local correspondences across a population. We demonstrate our

method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50

white matter tracts based on fractional anisotropy (FA). Experimental results show increased

sensitivity in the determination of genetic influences on principal fiber tracts compared to the

tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals

important parts of the white matter structure and considerably reduces the dimensionality over

comparable fiber matching approaches.

Keywords

HARDI; tractography; MRI; brain; clustering; atlas; Dijkstra; shortest path; geodesic distance;
Hough; connectivity; maximum density path; curve registration; longest path

Introduction

Diffusion weighted imaging (DWI) measures the directional diffusion of water through the

brain in vivo. By following the dominant directions of diffusion across the brain, whole-

brain tractography algorithms can reconstruct the brain’s major white matter pathways,

extracting a vast number of fibers that are amenable to statistical analysis. We can then

study these white matter regions in individuals and populations to better understand disease

effects (Takahashi et al., 2002; Jahanshad et al., 2012b; Daianu et al., 2013), changes in

brain microstructure and connectivity with age (Abe et al., 2002; Dennis et al., 2012),

hemispheric differences (Jahanshad et al., 2010), sex differences (Peled et al., 1998), and

genetic influences (Kochunov et al., 2010; Jahanshad et al., 2013b).

High angular resolution diffusion imaging (HARDI) enables a more accurate representation

of fiber directions compared to the more standard single-tensor model (Basser and Pierpaoli,

1996). The single-tensor model does not account for fiber crossing or mixing, but the

orientation distribution function (ODF) (Tuch, 2004) can be derived from HARDI images to

discriminate multiple fibers with different orientations passing through a voxel (Leow et al.,

2009; Zhan et al., 2010).

The large number of fibers generated by the tractography algorithms first need to be

clustered according to known anatomical pathways before comparing them across subjects.

A wealth of clustering methods have been applied to tractography results including fuzzy

clustering (Shimony et al., 2002), normalized cuts (Brun et al., 2004), k-means (O’Donnell

and Westin, 2005), spectral clustering (O’Donnell et al., 2006), Dirichlet distributions

(Maddah et al., 2008), hierarchical clustering (Visser et al., 2011), a Gaussian process

framework (Wassermann et al., 2010b), and median filtering (Prasad et al., 2011a). Some of

these methods readily benefit from prior anatomical information provided by an atlas of

likely locations of the tracts in the brain (Yendiki et al., 2011), suggesting when to split or

combine clusters to conform to known anatomy. In one approach (Jin et al., 2011a,b, 2013),

several labeled atlases are deformed onto a fiber set extracted from a new subject, and a

fiber matching and voting process is used to help decide the anatomical bundles to which the

fibers belong.
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Following clustering, several methods can be used for fiber bundle matching. Colby et al.

(2011) use a parametric curve-based method to resample fibers in a bundle based on shared

seed points and then compute correspondences from the resampling to create a

representative path for an individual or group. A similar re-sampling approach is used in a

method (Yeatman et al., 2012) that filters fiber bundles to match a probabilistic atlas.

Corouge et al. (2006) analyze fiber bundles by resampling and then aligning them across

subjects using Procrustes analysis (Goodall, 1991) to generate a mean shape. Roberts et al.

(2005) apply a density measure derived from tractography results. Their measure (fiber

density index; FDi) quantifies the average number of detected fiber paths passing through

voxels in a ROI. Wassermann et al. (2010a) use Gaussian processes to create voxel-wise

probability maps of white matter structure. The fiber locations in high density regions of the

image space are used by O’Donnell et al. (2009) as a template to align other fibers and

compute correspondences. Yushkevich et al. (2008) analyze white matter tracts using

deformable geometric medial models that allow for integration of nearby tensor-based

features to reduce the dimensionality and improve registration. Patel et al. (2010) use a fast-

marching algorithm to encapsulate white matter tracts in voxel based boundaries, which are

then matched using variational techniques.

In contrast to the parameterized methods mentioned above, white matter analysis can also be

performed using a voxel-based approach. A popular method known as tract based spatial

statistics (TBSS) (Smith et al., 2006), uses a skeletonized representation of white matter and

uses nonlinear registration for matching the skeletons. Although it is a very popular

approach, TBSS does not explicitly represent tracts that would be recognized by anatomists,

and therefore is not guaranteed to produce a consistent labeling of tracts from one brain to

another (Schwarz et al., 2013). Although voxel-based methods can also be used to analyze

DWI, they are often sensitive to the image registration (Tustison et al., 2012). Most existing

white matter analysis techniques focus on nonlinear registration of fractional anisotropy

(FA) images as in TBSS (Smith et al., 2006) and voxel-based morphometry (VBM), which

can be applied to DWI-derived maps such as FA (Jones et al., 2005). Other approaches that

focus on diffusion tensor correspondences are usually based on a global image registration

(Wang et al., 2011b; Yeo et al., 2009), but a high-dimensional registration of tensor fields

may also be used, as can tensor-based statistics (Chiang et al., 2008; Lepore et al., 2008; Lee

et al., 2009). Given the richness of information provided by tractography, it seems

advantageous to directly study the fiber tract bundles rather than simply analyzing voxel-

based representation.

Approach

Our work adopts a parameterized approach by refining the representation of white matter

structure into compact and localized paths, represented as 3D curves. These paths represent

the most influential regions in tractography and are used as compact dimensional

representations of the fiber bundle. Our method uses an additional local registration of

specific white matter regions to fix biases (Tustison et al., 2012) in voxel-based analysis and

many of the problems of registration algorithms (Klein et al., 2009) that work on the entire

image. Additionally, our approach may offer increased statistical power as it finds shape

homologies across different white matter tracts.
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Termed the maximum density path (MDP) approach, it incorporates information from

tractography-derived fibers by selecting a subset of fiber bundles from a white matter atlas

in the same space. We generate a density image from the fiber bundles and use it to create a

graph with voxel locations as nodes and fiber density measures as edges. We implement a

widely used graph search algorithm to find the MDP between two pre-specified regions of

interest (ROI) in the atlas. The MDPs represent fiber bundles that characterize a tract using

points of highest density. These compact descriptions of a tract’s scale, location, and high-

level geometric information are computed for all subjects in a population. We find

correspondences across the paths by bringing them into the same space using geodesic curve

registration. Finally, the average MDP for a given population is computed using a nonlinear

iterative method. As an example, we use our method to determine genetic influences on

white matter tracts based on a large cohort of over 565 twin subjects scanned using HARDI

at 4-Tesla. We compare the results to those obtained by the more standard TBSS method.

MDPs have been used as one tool for pilot studies of sex differences and a variety of

diseases (Prasad et al., 2011b; Nir et al., 2012). In the current study we explicate the

technical details of the method, validate its repeatability, compare it to the widely used

TBSS, and use MDPs to study heritability along with genetic associations. The main

contributions of this work are as follows:

• Fiber tract bundles are represented by compact reduced dimensional representations

known as maximum density paths (MDPs).

• MDPs are represented by vector valued functions and are analyzed in an intrinsic

and invariant manner.

• Shape matching between MDPs is achieved using geodesic curve registration that

not only yields smooth deformations between MDPs, but also provides shape

distances between them.

• Group analysis of MDPs is conveniently performed using an intrinsic statistical

framework that enables the computation of shape averages and their first order

variations.

• Fiber bundle analysis via MDPs is used to identify highly heritable regions in the

white matter tissues in twin subjects and is also used to show genetic associations.

Materials and Methods

This section describes important steps starting with the extraction of fibers using HARDI

tractography, clustering of fibers using a white matter ROI atlas, representation and

matching of fiber bundles using MDPs, and finally, statistical analysis of MDPs in a

population. The schematic pipeline outlining the extraction and representation of MDPs is

shown in Figure 1, whereas the workflow for statistical group analysis is shown in Figure 2.

HARDI Tractography using the Hough Transform

We use a global tractography algorithm (Aganj et al., 2011) to extract fibers from HARDI

images.
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The algorithm uses extensive information provided by HARDI at each voxel, parametrized

by the orientation distribution function (ODF).

Our tractography method selects fibers in the diffusion image space by generating scores for

all possible curves at a seed point. These curves are parameterized using 2nd order

polynomials. An additional parameter controls the maximum expected curve length and is

set to a value representing the largest dimension of the volume. In practice, the number of

curves evaluated at each seed point is around one million based on resolution and

computational resources.

First, seed points are generated using a prior probability based on FA from the single-tensor

model of diffusion (Basser and Pierpaoli, 1996), defined as

(1)

where λ1, λ2, and λ3 are the eigenvalues of the diffusion tensor. These seed points are used

to generate curves that receive a score estimating the probability of their existence,

computed from the voxels the curve passes through.

The ODFs at each voxel from our HARDI images were computed using a normalized and

dimensionless estimator derived from Q-ball imaging (QBI) (Aganj et al., 2010). This

method uses the Jacobian factor r2 for the constant solid angle (CSA) ODF as

(2)

In this equation,  is the diffusion signal, S0 is the baseline image, FRT is the Funk-

Radon transform, and  is the Laplace-Beltrami operator. This estimate outperforms the

original definition (Tuch, 2004) with superior resolution for detecting multiple fiber

orientations (Aganj et al., 2010; Fritzsche et al., 2010; Descoteaux and Bore, 2012; Ghosh et

al., 2013).

The Hough transform tractography chooses fibers from all possible curves generated in the

image at a certain space and parameter resolution. These curves are parametrized by their

arc length, s, ranging in value from L− to L+ and approximated using simple polynomials.

The scores for each possible curve, s, derive from the ODF and FA values

(3)

where  is the value from the ODF at the 3D location  and direction

specified by the unit tangent vector . The method scores as many fibers as possible

arising from a seed point and uses the voting process provided by the Hough transform to

select the best fitting curve. These filtered curves comprise the final set of fibers produced

by the method for a single subject, which we refer to as F.
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The method is probabilistic in its selection of a fiber at a certain seed point but does not

generate volumetric data giving a distribution of fibers in the white matter. It chooses seed

points (voxel locations) randomly throughout the white matter tissue with a probability

proportional to their fractional anisotropy. Once a seed point is chosen, the algorithm scores

all possible fibers that pass through this point. The number of fibers is restricted by the

parameterization and range of the variables involved, but is close to one million candidate

fibers. For each fiber this score represents the probability of that fiber existing and is

constructed by integrating the orientation distribution function over the span of the fiber

combined with the probability of the corresponding seed point. The method then uses the

Hough transform to select the fiber with the highest probability or highest score as the final

fiber for that seed point.

The tractography algorithm was run on each subject image and generated around 10,000

fibers (Fig. 1 shows a representative example with our data), which represents a good

balance between computational efficiency and sampling enough of the image space (Prasad

et al., 2013c). We subsequently clustered these fibers using a white matter atlas.

Fiber Clustering with White Matter ROI Atlas

Fibers extracted using the Hough transform-based tractography method are clustered using a

ROI atlas to incorporate prior anatomical information. We use the Johns Hopkins University

(JHU) atlas (Wakana et al., 2004), which delineates 50 white matter regions of interest

(ROI). This ROI atlas is first registered to our subject space using an affine transform

provided by FMRIB’s Linear Image Registration Tool (FLIRT) (Jenkinson and Smith,

2001). This is then followed by a nonlinear transform from the Automatic Registration

Toolbox (ART) (Klein et al., 2009; Ardekani et al., 2005) to refine the registration further.

We then cluster the fiber bundles by measuring the intersection of fibers with the ROI atlas

as follows. A fiber intersection score is computed by counting the number of ROI voxels

that intersect with the fiber tract. This score is used to select fibers that belong to an ROI and

thus a white matter tract. Spuriously intersecting fibers are eliminated by applying an

experimentally determined threshold that is dependent on the number and the type of fibers

obtained from the tractography algorithm. Formally, if F is the set of fibers for a subject and

r is a specific white matter ROI label in the atlas, then the subset of selected fibers in a

bundle is given by,

(4)

where t is the intersection threshold and A is an indicator function defined to be

(5)
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Bundle Representation using the Maximum Density Path

The fiber bundle B representing a white matter tract is reduced to a compact representation

also referred to as the maximum density path as follows. We first compute a density volume

of our fiber bundle to characterize our search space, and denote it as

(6)

where  represents a 3D voxel location and Q is the indicator function

(7)

This value specifies the number of fibers that intersect each voxel. We then construct a

graph that represents the voxel-wise fiber density in our fiber bundle. The above voxels are

used as nodes in a graph, G = {N, E} (a set of nodes and undirected edges connecting them)

with those of positive value connected to their 26 neighbors by undirected edges. In our

formulation, the weight of an edge between nodes i and j is calculated as the sum of the

voxel densities it connected as

(8)

with  as the density for the voxel location  corresponding to node k. These

edge weights are then modified by subtracting each from the maximum initial edge cost, em,

such that edges in high density regions have weights close to zero. These edge weights are

designed to allow the shortest path algorithm to go through edges in high density regions.

We use Dijkstra’s algorithm (Dijkstra, 1959) to compute the path through this graph

following the nodes with highest density. Dijkstra’s algorithm is a graph search method that

finds the shortest path from a source node to every other node. However, the number of

nodes in the graph may be large and when the algorithm is used for a single destination

node, it may be stopped once that path is found. To find the shortest path to represent a

white matter region, we require the graph to have start and end nodes to constrain the path to

a specific region of the graph. These nodes are specified by an expert in the ROI atlas. The

ROI points for the start and end locations may not always correspond to the positive density

values derived from our bundle. Thus, we find the closest voxels in the density volume as

the corresponding start and end nodes in subsequent computation with Euclidean distance

used as the metric.

In our implementation, we used Dijkstra’s algorithm (Dijkstra, 1959) to only find the

shortest path between the start and the end nodes selected in the graph. If Dijkstra’s

algorithm is unable to find the path between the start and end nodes our method

automatically identifies this situation and takes steps to remedy the graph and find the

shortest path. The algorithm will be incapable of finding a connection between the two

nodes if the structure of the graph is such that there are no edges from the subgraph

containing the start node with the subgraph containing the end node. This can be caused by

scanner artifacts or suboptimal solutions due to the fiber tractrography algorithm. In this
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situation, we add extra edges and nodes to the graph so all voxels within our ROI are fully

connected with their neighbors. The edges are weighted by the largest edge cost in the

current graph. This allows gaps between the start and end nodes to be filled in and use as

few edges as possible in regions with unknown data. The nodes in the path correspond to a

set of voxel locations in our image space. We smooth the path so it is better conditioned for

subsequent processing. We convolve the 3D coordinates of our path with a Gaussian kernel

to achieve this, though fitting these points to a spline would also have sufficed. A summary

of these steps is presented in Algorithm 1. We represent the maximum density path by the

coordinate function of the parameterized curve, and denote it to be β such that

. Figure 3 shows an example of a maximum density path computed for a fiber

bundle. Additionally, we show the density and the FA images that correspond to the fibers.

For comparison, we also show a representative mean fiber by applying Procrustes analysis

to align the fibers in the bundle to their mean. We then compute a new mean (shown in blue)

of the fibers after alignment. This example shows that even if the bundle includes a few

spurious fibers, it can drastically change the appearance of the mean fiber derived from

Procrustes analysis, while the MDP remains stable. Figure 5 shows an example of MDPs for

a population of subjects overlaid on each other. Some of these paths are short because the

corresponding regions of interest in the white matter atlas are small. This means the seed

points specified in the atlas are not very far apart and even if the fibers are much larger they

are summarized by the structure within the white matter region and points with the highest

density. An alternative could be to use a probabilistic white matter atlas and threshold the

regions so they encompass a larger fraction of the fiber lengths in the white matter region.

Algorithm 1 Maximum Density Path Method

1: Generate fibers from tractography

2: for r = 1 to M (number of atlas regions) do

3:   for f = 1 to N (number of fibers) do

4:    Find intersection of fiber f and region r

5:    If intersection measure ∫f A(s, r)ds > t add to
 bundle B

6:   end for

7:   Convert fiber bundle, B, to density image

8:   Generate graph G{N,E} with density image voxels
 as nodes and edge weights as em – (Id(i) + Id(j))

9:   Find the closest (in Euclidean distance) start, a,
 and end, b, nodes from region r in the atlas

10:   Use Dijkstra’s algorithm to find the shortest path,
 p, between nodes a and b

11:   Convolve p with a Gaussian kernel to generate the
 maximum density path (MDP), β

12: end for

Shape Analysis of Maximum Density Paths

This section outlines the method for shape representation and analysis for maximum density

paths. The maximum density paths denoting tracts are modeled as continuous open curves in
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 but they can also be considered as points in an infinite-dimensional space of curves. This

space is induced by a suitable Riemannian metric defined on its tangent space. Shape

matching between MDPs is enabled by measuring shortest length paths, also known as

geodesics connecting two shapes in the shape space. The geodesic not only measures the

length of the path and quantifies the geometric distance between two shapes, but also

represents an optimal geometric deformation that highlights the anatomical differences

between the shapes. Additionally geodesics are an important ingredient for constructing

intrinsic population averages for shapes - an essential step in statistical analysis of shapes.

Representation of MDPs

We represent the shape of the coordinate function of the MDP using a vector-valued

function (Joshi et al., 2007a,b; Srivastava et al., 2011) as

(9)

Here, s ∈ [0, 1],  and  is the standard Euclidean product in . Our

goal is to achieve an elastic shape matching between MDPs. We would also prefer that the

shape matching is invariant with respect to the orientation and scale of the MDPs. Owing to

the derivative, the function q is invariant to the translation of the MDP coordinate curve. To

impose scale-invariance, we normalize the q functions by its magnitude. Thus we denote

 as the space of all unit-length curves.

On account of scale invariance, the space  becomes an infinite-dimensional unit-sphere of

functions, and represents all open elastic curves invariant to translation and uniform scaling.

The elasticity of the representation is due to the presence of the square-root in the

denominator, that allows the q function to have arbitrary speeds. To define a metric on the

space , we first define its tangent space which is the set of all tangent vectors orthogonal to

q. Formally, the tangent space of  is given by

, ∀s ∈ [0,1] such that

, where n = 3. Here each wi represents a tangent vector in the

tangent space of . Now, the metric on the tangent space  is defined as follows.

Given a curve , and the first order perturbations of q given by ,

respectively, the inner product between the tangent vectors u, v to  at q is defined as,

(10)

Now given two shapes q1 and q2, the translation and scale-invariant shape distance between

them is simply found by measuring the length of the geodesic, or the great circle connecting

them on the sphere. Thus given a tangent vector  in the direction of q2 given by f

= q2 – ⟨q1, q2⟩q1, the geodesic (Joshi et al., 2007a) on  between the two points 

along f, for an infinitesimal time t is given by
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(11)

Then the geodesic distance between the two shapes q1 and q2 is given by

(12)

The geodesic distance (Joshi et al., 2007a) given in Eqn. 12 is only invariant to translation

and scale. To make it invariant to rotations, we consider the shortest distance

(13)

Eqn. 13 can be minimized either using gradient descent over the tangent space of SO(3) or

by using singular value decomposition (Rohlf and Slice, 1990). In this paper, we find the

rotation invariant distance as

(14)

where , A and B are left and right unitary matrices, and D is

a matrix given by . Finally, since we are representing MDPs by

parameterized curves, we would like the shape matching to be invariant to

reparameterizations. Following Joshi et al. (2007a), we denote the reparameterization of a

MDP curve using a group action by a diffeomorphism γ, given by . Then the

optimal reparameterization  is approximated by the minimizer

(15)

where . In this paper, we use dynamic programming to obtain the solution to Eq.

15. The fully elastic, pose, scale, and reparameterization invariant distance between MDPs is

given by

(16)

The optimal geodesic path can also be denoted by a one-parameter flow Ψ and the tangent

vector , such that

(17)

The optimal tangent vector can then be written from Eqn. 17 as

(18)

Prasad et al. Page 10

Neuroimage. Author manuscript; available in PMC 2015 August 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Statistical analysis of MDPs across a Population

To evaluate group-level effects of sex, age, disease or even genetic influences on the MDP

representations of white matter tracts, we need a suitable mechanism for performing

statistical analysis. As MDPs are represented by parameterized functions defined on a shape

space, one natural approach is to use the inherent non-linearity of the shape space, and

define appropriate statistical measures under the Riemannian metric in Eqn. 10. This

approach is also called an intrinsic statistical analysis and leads to the definition of the

Karcher mean (also known as the Fréchet mean) (Le, 1995; Srivastava et al., 2005; Joshi et

al., 2013) in the shape space of all MDPs. Given a collection of MDP shapes {qi}, i = 1, …,

N, the Karcher mean is defined as

(19)

The computation of the Karcher mean involves computing geodesics at each step iteratively

and proceeds as follows. For the first iteration, an extrinsic mean (Euclidean average) is

computed and projected on the shape space. This is assumed to be the current estimate of the

Karcher mean. For the subsequent iterations, geodesics are computed between all the

individual shapes in the population to the current estimate. The tangent vectors

 are then computed as a result of minimizing Eqn. 16 and averaged

together. A geodesic flow is then constructed using Eqn. 17 to yield a new estimate of the

mean shape. This procedure is repeated until the geodesic variance given by the sum of the

squared geodesic distances to the mean shape is minimized, and the mean converges. The

Karcher mean completely relies on the geometry of the shape space and is useful in

computing intrinsic statistical estimates such as covariances of MDPs. Additionally, the

geodesics produce correspondences, making it easier to compare white matter measures

projected on the MDPs across a population. This is also useful for studying differences in

disease, sex, aging, or even heritability in a population.

Results

Experiments

We show experimental results on a dataset of N = 565 young adults, including healthy twins

and their siblings. The participants were scanned with a 4-Tesla Bruker Medspec MRI

scanner, collecting 3D 105-gradient high angular resolution diffusion images (HARDI) and

standard structural T1-weighted magnetic resolution images (MRI). The images consisted of

55 slices, 2-mm thick, with a 1.79 × 1.79 mm2 in-plane resolution. For each person, we

collected 94 diffusion-weighted images (b = 1159 s/mm2) using a uniform distribution of

gradient directions on the hemisphere. We also collected 11 b0 (non-diffusion encoding)

images and corrected all images for eddy current distortions and motion with FSL

(www.fmrib.ox.ax.uk/fsl). Our cohort consisted of 367 women and 198 men, ranging from

20 to 29 years of age. Study participants gave informed consent; institutional ethics

committees at the Queensland Institute of Medical Research, the university of Queensland,

the Wesley Hospital, and at UCLA approved the study.
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For each T1-weighted image, we manually removed non-brain tissue and registered it to the

Colin27 (Holmes et al., 1998) high resolution brain template using a 9-parameter

transformation. These skull-stripped and registered T1-weighted images each have a

corresponding average b0 diffusion weighted image (DWI), combining all the eleven

images. These average images were masked using BET (Smith, 2002) and this space was

used to generate FA maps. Additionally, we used the FA images to compute a

geometrically-centered study-specific mean template (mean deformation template; MDT).

We registered the JHU ROI atlas to the MDT for the MDP analysis. Our ROI atlas contained

50 different white matter regions, which were seeded to extract 67 different MDPs. Our

results based on all 565 subjects are shown in Figure 6.

Repeatability of MDPs

We examined the reliability of the MDP construction procedure by analyzing subjects with

repeat scans. Twenty-three subjects in the total population used in our analysis had repeat

scans, which were used to test the stability of MDP construction across the two acquisitions.

We used the MDP algorithm to find corresponding points along each MDP and used paired-

sample t-tests to study if the FA values in these white matter tract representations were

significantly different. Figure 4 shows the collection of MDPs with 46 curves in each white

matter region from the ROI atlas. Each of the 23 pairs is colored randomly with the two

MDPs in a single pair having matching coloring. We corrected for multiple comparisons

using the false discover rate (FDR) (Benjamini and Hochberg, 1995) at the 0.05 level and

none of the values were significantly different between scans. This provides an indication of

the stability of MDP representation and may help support a more meaningful interpretation

of the subsequent statistical analyses.

Genetic effects on white matter morphology using MDPs

The twin cohort in the data is made up of monozyogotic (MZ) and dizygotic (DZ) pairs,

allowing us to estimate the relative contributions of additive genetic factors (A), shared

environment (C), and unshared or unique environment (E) to the measures derived from the

scans - in our case, FA along the MDPs. This standard “A/C/E” model describes the FA at

each point on the MDP as a combination of latent variables, FA = aA + cC + eE. In this

formulation the total variance is var(FA) = a2 + c2 + e2 with var(A) = a2, var(C) = c2, and

var(E) = e2. We are able to estimate the unobserved factor loadings as there is a difference in

the theoretical covariance of FA for a MZ twin pair, a2 + c2, and for a DZ twin pair, (1/2)a2

+ c2, which we solved using a maximum likelihood fitting (Neale and Cardon, 1992) that

estimated the parameters of the model. These methods are detailed in (Chiang et al., 2009).

Several studies (Chiang et al., 2011; Patel et al., 2010; Thompson et al., 2001; Jahanshad et

al., 2013a) have shown evidence for heritability of the white matter structure in the brain.

Here, we use heritability as a metric to understand how well MDPs were able to model and

capture the underlying morphology of the white matter structure in our data. If the

representation is able to effectively pick up heritability effects then our hypothesis is that the

MDP matching across subjects reflects the underlying anatomical homology, and that the

MDP model is better able to describe white matter brain structure.
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We fitted the “A/C/E” model to the FA values on the skeleton that fell within the ROI atlas.

In our experiments we compared the full “A/C/E” model to the simpler formulation with

two variables using minus two times the log-likelihood ratio, which approximately follows a

χ2 distribution, meaning that P > 0.05 indicates a good fit. We found that the shared

environment term (C component) did not have a significant fit for either method, so we used

a simplified “A/E” model instead. This model selection procedure and selecting the “A/E”

model instead of the more complicated “A/C/E” is widely used (Geschwind et al., 2002) and

common with real data (Baaré et al., 2001). In the “A/E” model, a2 represents the proportion

of the variance due to additive genetic factors and the other parameter in the model, e2,

represents the proportion of variance that is due to environmental factors including

measurement error. Thus we model the components of FA variance as simply var(FA) = a2

+ e2 and since we are interested in the relative proportion of variance captured by each

component we can normalize this equation by var(FA) to interpret their relationship as

 or . The goal here is to use the model that best fits the data to

understand the genetic and environmental contributions to the variance. Maximizing

heritable estimates in this case may imply minimizing measurement error and therefore may

represent a stronger metric for measuring white matter microstructure. In addition, these

highly heritable regions present good candidates for genetic associations and could be useful

for cutting down on the dimensionality of the image for these types of analyses.

We also compared our method of analyzing white matter bundles using MDPs and analyzing

the white matter skeletons from TBSS (Figure 7) in our subjects. We used the genetic

contribution due to FA using both methods to compare heritability. We found that the

density and FA images smoothed with an isotropic Gaussian filter with full-width at half

maximum (FWHM) = 3 mm produced higher a2 values (Chiang et al., 2012). We restricted

the analysis to 238 (48 monozygotic and 71 dizygotic) of the 565 twins because of issues

with the nonlinear registration from TBSS in the omitted subjects.

We computed genetic associations with mixed-model regression (Jahanshad et al., 2012a;

Aulchenko et al., 2007) along the MDPs using the genes NTRK1, CLU, and COMT. We

found NTRK1 passed a local false discovery rate (FDR) threshold (for a single MDP) in 20

regions across our white matter atlas represented as MDPs. In addition, we found CLU

passed local FDR at the anterior limb of internal capsule right, posterior limb of internal

capsule right, and anterior corona radiata left, and COMT passed at the sagittal stratum right

(including inferior longitidinal fasciculus and inferior fronto-occipital fasciculus). When we

used a global FDR, by combining the 67 MDPs into one large MDP, NTRK1 was the only

SNP that survived in 600 of the total 1897 points in the global MDP. The results from

NTRK1 and CLU agree with earlier studies of this dataset using voxel-based maps (Braskie

et al., 2012, 2011).

Discussion and Conclusion

We have presented a method for extracting, representing, and analyzing the geometry of

white matter bundles using maximum density paths. Our method enables population analysis

of diffusion-weighted images without relying exclusively on global registration of the

images into the same space. Image registration is performed only once to transform the ROI
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white matter atlas to the subject space for the purpose of initializing the seed points for

clustering fibers from tractography. Density image volumes are computed from the fiber

bundles, and MDPs are constructed using Dijkstra’s algorithm by imposing a graph structure

on the images. The shapes of MDPs are then brought into correspondence through geodesic

curve registration, allowing us to focus specifically on the white matter region we are

interested in without involving the rest of the image. Further, our method introduces a way

to perform localized statistical analysis of white matter tracts. The MDPs, use the start and

end points from major white matter pathways, and provide a compact representation so that

correspondences can be easily computed. The correspondences can be directly visualized on

the MDPs to reveal which part of a white matter tract depends on an external parameter.

These tools provide the foundation for any study of white matter tracts or any type of

population analysis using diffusion weighted images. The complete procedure is available as

a end-to-end computational pipeline for white matter tract-based analysis of diffusion

images.

In the examples presented here, we used a global Hough transform method for tractography,

but the MDP representation is general enough to be used with any type of tractography

method. Our method relies on density images from tractography, which could be computed

using streamlines (Basser et al., 2000), a deflection based algorithm (Lazar et al., 2003), or

any of the recent deterministic and probabilistic methods (Zhan et al., 2013). In our case, we

chose a tractography method that could benefit from the information rich HARDI data, but

depending on the resources and data available, researchers may prefer to use fibers from

diffusion tensor imaging or diffusion spectrum imaging (Wedeen et al., 2005) based

algorithms. The graph-based representation for the fiber density volume led to conveniently

incorporating the density information in the structure, and further led to an efficient solution

provided by Dijkstra’s algorithm. However we could have formulated the problem using

snakes (Kass et al., 1988) or splines (Park and Lee, 2007) as well. Alternatively, other

density representations such as those using surfaces (Zijdenbos et al., 1994) or using the

volumetric segmentations (Kubicki et al., 2005) directly would have introduced a host of

issues with registration and subsequent analysis of correspondences. We chose to use an

ROI atlas to select fibers for analysis and representation with the MDP though alternative

approaches may work without relying on the registration of the atlas into the image space.

Future work could incorporate automatic clustering of tractography fibers using approaches

such as a hierarchical Dirichlet processes mixture model (Wang et al., 2011a), a voxel based

approach (Guevara et al., 2011), a spectral approach (Guevara et al., 2011), or even shape

clustering (Joshi and Srivastava, 2003; Joshi et al., 2004). Hierarchical approaches may

enable a user to specify the resolution of MDPs in the brain tissue. As an alternative to FA,

any other type of statistics on the density paths could be used instead. We could compute

mean diffusivity (Le Bihan et al., 2001), generalized FA (Barmpoutis et al., 2009), or the

tensor distribution function and interpolate them along each MDP. Our white matter analysis

framework could even be scored by their capacity (Prasad et al., 2013b) and used as

measures of connectivity to complement (Prasad et al., 2013a) and optimize our

representation of brain connectivity networks (Prasad et al., 2014).

Preliminary studies have used MDPs to study sex differences (Prasad et al., 2011b),

Alzheimer’s disease (Nir et al., 2012, 2014), 22q11.2 deletion syndrome (Villalon-Reina et
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al., 2012), and depression (Sacchet et al., 2014). Our results in the current study showed

promise in our new representation and agreed with voxelwise analyses of the entire white

matter tissue in diffusion images (Chiang et al., 2011; Patel et al., 2010; Thompson et al.,

2001; Jahanshad et al., 2013a) that showed a pattern of highly heritable regions. In this

work, we evaluated MDPs by their ability to detect the effects of heritability in a cohort of

monozyogitic and dizygotic twins. Heritability analysis of FA in 50 regions of interest

delineated in an ROI atlas, suggested promise of the method for detecting other factors that

affect tracts, such as disease and risk genes. When comparing the genetic contributions

(Figure 7) to brain structure detected by our MDP method versus the TBSS method, we

showed that MDPs can represent and display the structure using only one-tenth of the points

in a TBSS skeleton. This reduction of the structural image data, which contains millions of

voxels, may prove useful for genome-wise association studies (Stein et al., 2010; Cichon et

al., 2009), as an alternative to voxel-based morphometry, or instead of group comparisons of

statistics from segmentations. These data reduction steps may reduce the computational

expense of a genome-wide search, and may also increase statistical power. In summary, we

find that using tractography and creating MDPs gives a similar skeletonized, yet more

neuroanatomically accurate estimate of white matter microstructure than does TBSS as we

found through improved heritability measures in the same sample.
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• Fiber bundles represented by compact reduced dimensional paths.

• Paths are vector functions and are analyzed in an intrinsic, invariant manner.

• Shape matching between paths is achieved using geodesic curve registration.

• Group analysis of paths enables shape averages and their first order variations.

• Paths identify highly heritable parts of white matter tissue in a set of twins.
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Figure 1.
Schematic of the pipeline for extraction, clustering, and representation of maximum density

paths (MDPs) for a single subject. The first panel shows the fibers from our HARDI global

tractrography method. The co-registered region of interest (ROI) atlas is used to select a

fiber bundle representing a particular white matter tract. The resulting fiber bundle is then

converted to a volumetric density image, which is transformed into a graph. Selected seed

points in the image form the nodes of the graph, that are used to compute maximum density

paths. The maximum density path compactly summarizes a given white matter structure and

enables specific matching of these regions across subjects using curve registration.
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Figure 2.
Schematic of the pipeline for performing statistical analysis of populations of MDPs. The

first panel represents MDPs for a population of subjects for a given white matter tract. A

nonlinear iterative method that uses geodesic curve registrations is used to compute an

average MDP representing the mean shape of the population. A correspondence is

established for all subject MDPs via the average MDP. Fractional anisotropy (FA) from

each subject is resampled for the corresponding points and compared across the population.
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Figure 3.
This figure shows the advantage of using the maximum density path method to represent

fiber bundles. The first panel shows the tractography fibers that intersect a white matter

tract. The selected fibers all intersect the region of interest to the same degree, but the

selection process includes spurious fibers. In the context of fractional anisotropy, we can see

that the spurious fibers may be part of another adjacent tract. Our method represents the

fiber bundle as a density image and searches for a representative path based on seed points

from a registered atlas. The final slide shows the resulting maximum density path compared

to a path found by taking the mean of the fibers and using Procrustes analysis to align and

recompute a representative mean. If only the fiber shape is used, the resulting representative

path from Procrustes analysis may not effectively traverse the region of interest due to

spuriously included fibers. By leveraging the distribution of fibers the MDPs seek to build a

representation of the white matter that is reflective of the underlying feature geometry of the

most important regions and help matching across subjects for subsequent population

analysis.
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Figure 4.
To study the variability of the maximum density paths (MDPs), we used 23 subjects with

repeat scans. We used the MDP algorithm to represent 67 white matter regions from an ROI

atlas and find correspondences between the two acquisitions for a single subject. We used

paired-sample t-tests to compare the fractional anisotropy (FA) values across corresponding

points. We found that there were no significant differences in the MDPs when correcting for

multiple comparisons using the false discovery rate (FDR) at the 0.05 level. This helps

provide support that the statistical analysis tools using MDPs will be able to investigate

patterns of white matter structure and may be less affected by noisy or highly variable

representation inherent to the algorithm.
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Figure 5.
We show here the maximum density paths (MDPs) computed for 238 subjects in 67 regions

from the white matter atlas before they are matched together using curve registration. This

sample was used for our heritability analysis. The color represents the direction or

orientation of the middle segment connecting two points at the middle of each MDP. If the

orientation is anterior to posterior it is colored green, if it is from left to right it is red, and if

it is superior to inferior it is colored blue. In each of the 67 areas, we register the 238 MDPs

to a mean MDP to find correspondences using geodesic curve registration. We then sample

FA along corresponding points in each subject for our subsequent statistical and genetic

analysis. A few of these paths are relatively short because the corresponding region of

interest in the white matter atlas was small and thus the MDP will cover a shorter range even

though the tractography fibers it represents may be much larger.
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Figure 6.
Average maximum density paths (MDPs) for 67 fiber bundles in 565 twin images. The color

represents the direction or orientation of the middle segment connecting two points at the

middle of each MDP. If the orientation is anterior to posterior it is colored green, if it is from

left to right it is red, and if it is superior to inferior it is colored blue. The paths are derived

from tractography fibers, clustered into white matter tracts, and then represented as paths

that follow points in these white matter bundles of maximum density of fibers. The 67

different paths come from regions in our white matter atlas that have been annotated with

seed points, which become the endpoints of the paths. The mean MDPs provide a template

for curve registration to find correspondences between the individual subjects and allow us

to compactly represent population statistics across the entire white matter.
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Figure 7.
Our twin data contained monozygotic (MZ) twins that share 100% of their genetic material

and dizygotic twins (DZ) that share 50% of their genetic material. This structure in our data

allows us to use structural equation models, particularly the A/E model, to estimate the

amount of variance in a phenotype (in our case the white matter structure) that is due to

genetic effects (heritability), or to unique environment factors and measurement error. In

this figure we show the genetic contribution to white matter structure using our maximum

density (MDP) path representation method compared with the white matter skeleton from

tract-based spatial statistics (TBSS). A high value (red) means a large fraction of the

variance in white matter structure is determined by genetic effects while a low value (blue)

means the variance in structure was accounted for more by the environment. Since this is the

proportion of variance accounted for by heritability, an analogous figure of the

environmental contributions would involve simply reversing the color bar. Previous studies

have shown high heritability of white matter tissue and we used the fraction of genetic

determination as the metric to evaluate how well our MDP representation summarized the

white matter structure in our data. The MDP method may have a better ability to pick up on

the heritability because of the curve registration that is computed for each white matter

region individually, which improves coherence of homologous points across subjects. We

used a subset of 238 subjects for this analysis (48 MZ pairs, 71 DZ pairs). The top panel

shows the MDPs from 67 white matter regions with slices of the atlas overlaid. The TBSS

results show orthogonal slices of the TBSS skeleton overlaid on the white matter atlas.
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