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Abstract

Neuropsychiatric disorders are notoriously heterogeneous in their presentation, which precludes

straightforward and objective description of the differences between affected and typical

populations that therefore makes finding reliable biomarkers a challenge. This difficulty

underlines the need for reliable methods to capture sample characteristics of heterogeneity using a

single continuous measure, incorporating the multitude of scores used to describe different aspects

of functioning. This study addresses this challenge by proposing a general method of identifying

and quantifying the heterogeneity of any clinical population using a severity measure called the

PUNCH (Population Characterization of Heterogeneity). PUNCH is a decision level fusion

technique to incorporate decisions of various phenotypic scores, while providing interpretable

weights for scores. We provide an application of our framework to a simulated dataset and to a

large sample of youth with Autism Spectrum Disorder (ASD). Next we stratify PUNCH scores in

our ASD sample and show how severity moderates findings of group differences in diffusion

weighted brain imaging data; more severely affected subgroups of ASD show expanded

differences compared to age and gender matched healthy controls. Results demonstrate the ability

of our measure in quantifying the underlying heterogeneity of the clinical samples, and suggest its

utility in providing researchers with reliable severity assessments incorporating population

heterogeneity.
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1. Introduction

Quantitative characterization of population heterogeneity is an area of critical importance,

especially for studies of disorders spanning a wide spectrum in terms of pathobiology and

clinical phenomenology (Jeste & Geschwind, 2014; Klin et al., 2005; Lenroot & Yeung,

2013; Levy et al., 2009; Veatch et al., 2014). Neurobehavioral disorders, such as autism

spectrum disorder, are defined by difficulties in a number of discrete areas (e.g., social

functioning, communication) that are, in principle, amendable to description along different

severity dimensions. In fact, the National Institute of Mental Health (NIMH) has initiated a

new funding mechanism to encourage researchers to move away from trying to map genetics

and neurobiology onto diagnostic symptom descriptors and to instead focus on dimensions

of behavior and functional dimensions grounded in neuroscience (Cuthbert & Insel, 2013;

Cuthbert, 2014; Insel et al., 2010; Morris & Cuthbert, 2012). Severity measures, the focus of

this research, fits well within this new “Research Domain Criteria” (RDoC) approach by the

NIMH, and should prove valuable in describing individual differences and correlating those

with brain imaging data. However, finding reliable biomarkers to identify attributes of

heterogeneous clinical populations is challenging because the boundaries between

individuals with pathology (IPs) and typically developing controls (TDCs) is blurred with

significant overlap for any given phenotypic feature (Geschwind, 2009; Levy et al., 2009). It

is important to be able to aggregate phenotypic information into severity dimensions that

allow better separation between groups and validation through independent measure of

neurobiology (i.e., biomarkers). This process also improves the quality of the phenotypic

information, creating a more reliable dimension capable of portraying clinical heterogeneity

by the spread of the phenotypic measures under consideration. The aim of this study is to

analyze the performance of a continuous severity measure, which is obtained by combining

various phenotypic scores, and to validate it by an assessment of independent brain imaging

data aimed at showing group differences. A clearly defined fusion methodology can help

researchers with elaborating the effects of different measures on the final severity

assessment, related to the disorder being studied.

In this paper, we propose a method for quantifying biologically-based heterogeneity by

means of a severity measure that we call the Population Characterization of Heterogeneity

(PUNCH) score. PUNCH is explicitly designed to derive a severity distribution over IPs that

can be used for sub-grouping the sample by defining several thresholds over the resulting

distribution, in order to facilitate subsequent statistical analyses. The interpretability and

generalizability of the measure makes it applicable to any disorder.

To design PUNCH, we exploit the fact that each standardized score collected to describe the

behavioral phenotype provides an explicit ranking, and therefore a preliminary severity

measure by itself. One requirement is to normalize these individual measures to a common

metric so that they can be compared and combined as needed. As a decision level fusion

technique, PUNCH deals with the individual decision of each score. By this process, we can

alleviate difficulties with combining scores that have distributions with different

magnitudes, ranges, and shapes. Additionally, we define weights over decisions of scores,

summarizing the contributions of individual scores. Lastly, PUNCH does not require any

recalculation when new scores are introduced, or existing scores are removed.
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In the literature of machine learning, the heterogeneity of a population is usually

characterized by unsupervised learning methods such as clustering (finite mixture models or

latent class analysis) and factor analysis models (Alpaydin, 2010). Both try to find latent

organization of data, either by explicit groupings as in clustering or by thresholding some

latent variables as in factor analysis. The main difference between these approaches can be

identified as the assumed source of the heterogeneity in the sample (Lubke & Muthen,

2005). In clustering, the source is an observed variable (or several variables) that causes

separation between subgroups such as age, gender, or some phenotypic scores. On the other

hand, from the perspective of factor analysis, the heterogeneity in the sample is caused by

some unobserved, latent variables. As a more sophisticated choice, factor mixture models

(FMM) (Lazarsfeld & Neil, 1968; Muthen & Shedden, 1999) can be employed as they

combine clustering and factor analysis models.

Factor analysis models are popular choices to study the inter-relationship of items of

questionnaires and measures that are used to quantify effects of disorders e.g. eliminating

items that don’t load with the rest of the items, or designing subscales that are embedded

within the overall test. Factor analysis of clinical samples has been also studied to validate

commonly used scoring criteria such as ADI-R scoring for Autism Spectrum Disorder

(ASD) samples (Boomsma et al., 2008; Snow et al., 2009). In (Frazier et al., 2012;

Georgiades et al., 2012; Lubke & Muthen, 2005), FMM models were used to characterize

the heterogeneity of the clinical samples. These studies combined different phenotypic

scores and described heterogeneity with clustering based inferences.

The main drawback of such techniques is the difficulty in interpreting the derived clusters or

latent traits. For instance, clusters based on the whole sample are characterized by multiple

features and may include a mixture of TDCs and IPs. While these techniques can also be

applied to TDCs and IPs separately, in this case, they neither quantify the heterogeneity of

the sample nor provide a continuous severity measure over it. In any case, it is difficult to

use clustering to create groups that will facilitate analysis of other modalities, or characterize

the sample overlap precisely.

The framework we propose provides a method of combining different phenotypic scores to

obtain a common quantitative metric that characterizes each study participant along a linear

measure. Various scores characterizing totally different aspects of the disorder can be fused

at the decision level, using a probabilistic voting scheme. Different multimodality fusion

techniques have been proposed in the medical imaging domain (Sui, Adali, et al., 2012; Sui,

Yu, et al., 2012), but none of them provides a probabilistic quantification of the

heterogeneity.

Although previous studies have used threshold based clustering of single scores to obtain

sample subgroupings (Gotham et al., 2009), this is challenging if there are multiple scores

producing different groupings. Moreover, any single clinical tool will always pose

limitations in reliability and robustness and in its ability to sample the full range of

information, relevant to the manifestation of the disorder. PUNCH overcomes these

problems by combining attributes across an unlimited number of primary data sources, thus

smoothing measurement error and accentuating the available information within individual
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phenotypic measures. To our knowledge, this is the first study in the literature to

characterize the underlying heterogeneity of clinical samples in a fully probabilistic and

quantitative way.

We demonstrate the usage of PUNCH on a sample of adolescent with ASD, that has been

assessed with dozens of clinical symptom inventories and cognitive tests. Many of these

clinical evaluations contain redundant information, and all entail a degree of measurement

error that will lead to overlapping as well as conflicting information. The resulting PUNCH

distribution over such samples is Gaussian, which makes the clustering of individuals based

on distribution statistics easy and tractable. The groupings of the population, determined by

PUNCH, are used to study differences based on diffusion weighted imaging (DWI) data

acquired on the same sample. The DWI data provides a type of external, biologically

grounded validation, and is based on the assumption that brain based differences exist

between TDCs and ASD but that group differences become obscured with the ASD sample

having too many more mildly affected study participants (which can be common in study

samples in the autism literature). The ability to capture imaging based differences based on a

severity score, underlines the usefulness of PUNCH as a heterogeneity measure, especially

in identifying imaging correlates of different scores. We therefore expect our contribution to

be impactful and significant for spectrum disorders like ASD, where a standard for

determining the severity is crucial to the understanding of these disorders.

We compare subgroupings of ASD using PUNCH to that of using the current standard in the

field, the Social Responsive Scale (SRS) (Constantino et al., 2000), which focuses on the

core diagnostic symptoms. Here, we aim to show that the combination of several

independent measures that are rather ancillary to the core of ASD can provide a similar or

even better ontological coverage of ASD domain with respect to what is provided by a

single standard (SRS). We therefore expect PUNCH to reveal more affected areas in the

brain when used to stratify samples in experiments with imaging data. Such an analysis is

clearly helpful to investigate the contribution of such measures for the final clinical

assessments with ASD samples.

2. Material and methods

Here we describe the method for creating PUNCH scores for a population. The main

empirical substance of the study is a set of experiments establishing that heterogeneity of a

clinical sample can be identified by using PUNCH. In addition to several simulated

experiments, the proposed PUNCH score was calculated for a sample of youth with an ASD

and used to analyze these for group differences.

2.1 Dataset

Our dataset includes 370 males with an ASD and 118 male TDCs described by 50

phenotypic scores collected as part of several overlapping studies designed to understand

relationships between genes, brain and behavior in ASD. Participants with a community

diagnosis of an ASD were recruited in part through autismMatch (https://autismmatch.org),

and diagnoses were confirmed using diagnostic instruments (ADOS (Lord et al., 2000) and

ADI-R (Lord et al., 1994)) and expert consensus clinical judgment by two independent
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psychologists following Collaborative Programs of Excellence in Autism (CPEA) diagnostic

guidelines. Children with known genetic conditions associated with ASD were excluded

from the study. Tests include performance based measures collected by a psychologist for

each study participant, as well as parent rating forms designed to quantify behavioral

features of ASD.

Each participant was described by 50 phenotypic scores i.e. selected diagnostic and

neurobehavioral assessment instruments. Instruments used in this study are listed in Table 1.

The final ASD sample had a mean age of 10.4 years (std=3.07, range=6 to 18 years). TDCs

(mean age is 11.2 years with std=3.06, range=6 to 18 years) were recruited from the

community and ASD symptomatology was screened using the Social Responsiveness Scale-

Parent Report Version (SRS) (Constantino et al., 2000) and the Social Communication

Questionnaire (Eaves et al., 2006). TDCs were also excluded if they reported having a first

or second degree relative with an ASD diagnosis. All scores are age corrected and z-

normalized. These scores were fused into a PUNCH score that provides a severity measure

for this sample.

The heterogeneity characterization ability of PUNCH was tested on the subset of study

participants who also had diffusion imaging data of the brain. DTI data was acquired on a

Siemens 3T Verio™ scanner, using a 32 channel head coil and a single shot spin-echo,

echo-planar sequence with the following parameters: TR/TE = 11000/76 ms, b-value of

1000 s/mm2, 30 gradient directions. The DTI data were spatially normalized to a standard

WM atlas with 176 ROIs (Wakana et al., 2004). These ROIs were used to perform region

based morphometry based on average Fractional Anisotropy (FA) values in the regions. 69

youth with ASD and 54 TDCs having DTI data were used for studying diffusion imaging

based differences among different sub-groupings of the sample created using the PUNCH

measure.

2.2. PUNCH Score

The proposed framework uses probabilistic voting (Alpaydin, 2010), to fuse individual

decisions of different phenotypic scores. Here, we first elaborate the fusion model by

defining the individual decisions of phenotypic scores. Computation of these individual

decisions is described in Section 2.3. The weighting over these individual decisions is

discussed in Section 2.4. Finally, we introduce a noise model in Section 2.5 to make the

framework more robust to uncertainties caused by different sources of noise in scoring of

individuals.

We start with the assumption that each individual can be characterized by a feature vector

 consisting of m different phenotypic scores, x ≡ (x1,…, xm). Here, a single feature,

xj is a random variable related to jth phenotypic score. Again, each individual is provided

with a binary diagnosis label y ∈ {0,1}. The severity of an individual is determined by a

latent ranking function f which assigns a rank f(x) ∈ Y for each individual, where Y is a finite

set of ordered severity categories. The fact that we do not have any ground truth ranks or

categorical identifications, f(x) ∈ Y, for individuals, poses an obstacle while using a ranking

approach for severity calculation. We therefore approximate the output of the ranking

function f(x) by defining several thresholds over the probability p(y = 1 | x).
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Each feature xj provides a preliminary measure of severity, called severity belief, by

characterizing a distinct aspect of the pathology. We quantify this belief by a probability p(y

= 1 | xj, sj), where the variable sj indicates that the decision model of jth score is used. Then,

the Population Characterization of Heterogeneity (PUNCH) score is defined as

(1)

The probability p(sj) plays the role of the vote/weight in the voting scheme. With this

formulation, the contribution of each feature to the final decision is clearly described.

Moreover, it provides the flexibility of introducing new features or discarding existing ones

by re-normalizing weights, without altering any individual severity belief.

As an alternative to fusion of individual decisions, multivariate classification techniques

such as logistic regression, support vector machines (Alpaydin, 2010), or Gaussian process

classification (Rasmussen & Williams, 2005) can be considered, each providing a

probabilistic class membership measure that can be used to approximate latent ranking

function. Nevertheless, rankings estimated by such measures comes with several limitations.

Figure 1 demonstrates two problematic cases where illustrated problems are induce by the

use of posterior class probability as the decision function. For two phenotypic scores from

our dataset, distributions for TDC and IP samples are shown, along with final decision

functions P(y = 1|x) (green curves), which are calculated through Bayes’ rule (i.e. P(y = 1|x)

∝ P(x|y = 1)P(y = 1)). In Figure 1.a, P(y = 1|x) is constantly 1 for all individuals having a

score higher than 0 due to good separation between TDCs and IPs. A second limitation is

shown in Figure 1.b, where P(y = 1|x) fluctuates due to variations in likelihoods P(x|y = 1)

and P(x|y = 0). This behavior contradicts the linear decision model of clinical scores that

requires monotonically increasing or decreasing ranking (i.e. the severity must increase

monotonically as the clinical score increases/decreases). Such limitations can be addressed

by using intermediate level measures as an estimate of ranking, instead of posterior

probability. For instance, distance from optimal hyperplane in support vector classification

has been shown to provide better rankings (Ecker, Marquand, et al., 2010; Ecker, Rocha-

Rego, et al., 2010). Instead of using classification, outlier detection has also been considered

in which the degree of being an outlier can be used as an estimate for ranking (Mourão-

Miranda et al., 2011). PUNCH alleviates these limitations by defining a simple probit

regression model over each phenotypic score.

2.3. Individual Severity Belief

In equation (1), the individual severity belief p(y = 1 | xj, sj) is the decision regarding the

severity provided by the score sj. The derivation of such decisions can vary depending on

the selected feature. As using posterior class probabilities to estimate p(y = 1 | xj,sj) has

several issues, as explained in Section 2.2 (see also Figure 1), we use the cumulative

distribution function (CDF) of the whole sample (without separating TDCs and IPs). The

idea of using CDF as a feature-wise severity belief is based on the fact that the severity of an

individual is proportional to the fraction of individuals having lower scores than the
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individual’s. Blue curves in Figure 1 show such CDFs. They are monotonically increasing

and provide rankings for every pair of individuals.

One issue with using CDF for severity assessments is that the difference between sample

sizes of TDCs and IPs becomes significant as we estimate the CDF empirically from the

total sample. We therefore propose to use the CDF response of a standard normal

distribution as in probit model (Long, 1997), to standardize the shape of the CDF of scores.

(2)

where Φ(xj) is the CDF response of the standard normal distribution, , with mean

0 and standard variation 1, and is defined as

(3)

The standardization of the shape of the CDF, while being helpful, cannot address issues

introduced by sample size ratio between IPs and TDCs completely, which becomes

significant especially during normalization of data. Thus, having a reliable ratio of group

sizes seems to be a crucial requirement in practice.

2.4. Weights of Scores

In Equation 1, the probability p(sj) defines the weight of the severity belief of the score sj

and plays a critical role in the final PUNCH score, p(y = 1 | x). The probit regression model

as defined in Section 2.3 is an incomplete approach by itself, since each score provides a

severity belief in the range 0 – 1, regardless of separation between TDCs and IPs. Here, we

present a way of computing these probabilities, which defines the weights of the scores, in

an objective and data-driven manner.

For each score sj, the best separation threshold is determined by minimizing the Type-1 and

Type-2 errors (see Figure 2) i.e. finding the intersection point of the two distributions (TDCs

and IPs). The weight of a score is inversely proportional to the total error (summation of

Type-1 and Type-2), and we define the initial weight of a score sj as

(4)

where εj is the total classification error (in percentages) when using score sj alone. Then, the

probability p(sj) is calculated by normalizing all weights so that the sum of all weights will

add up to 1.

When the set of scores to be used for the computation of PUNCH is changed as a result of

adding or deleting a score, the initial weights, wj, stay the same and we only need to re-

normalize them. Such an approach provides an integration of classification and ranking; the

final decision over severity is accomplished by blending rankings of individuals and the

separation between TDCs and IPs.
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2.5. Noise Model

All previous calculations performed in Sections 2.3 and 2.4 assume that the score set, x, is

noise free and we can directly calculate p(y = 1 | x). Here, we introduce a noise model into

the formulation to handle uncertainty. We assume an additive Gaussian noise model as

(5)

where  is the true score that we do not observe, and x is the noisy score, that we observe.

The score x is assumed to be z-normalized. The vector n is a collection of individual noise

terms nj defined for each score sj separately, by Gaussians ; n ≡ (n1, n2,…, nm).

Noise variance,  for each score can be different. Such information is usually available in

terms of psychometric reliability e.g. Chronbach’s Alpha; (Cronbach, 1951).

Then, instead of calculating the exact value of , we calculate an expected value,

 with respect to posterior probability of the real scores given the observed

scores, .

(6)

The integral in equation (6) is not tractable since the probability  does not obey a

standard distribution. We use a sampling method for an approximate solution. The detailed

algorithm for PUNCH measure is given in Table 2.

3. Results

We first validate our claim that ranking of individuals with ASD can be attained by using

phenotypic scores; and that PUNCH can provide better rankings compared to classification

or clustering techniques. Validation is performed with simulated datasets for which we have

ground truth severity values. Then, we derive the PUNCH measure for a sample with ASD

described by 50 phenotypic scores. PUNCH-based subgroups of individuals have been

analyzed for diffusion imaging based differences, to identify an imaging correlate of the

underlying pathology-based heterogeneity.

We used 10 fold cross validation for experiments with both simulated and real life data.

With simulated experiments, we randomly generated 100 different data sets and applied

cross validation to each of them separately, resulting in 100 sets of statistics (100 averages

and 100 variances). Plots show statistics over these averages. For the real life data set, we

used the standard setting of 10 fold cross validation with the single data set we have, and

statistics of cross validation are shown with plots. Data was z-normalized inside the cross

validation, by calculating the transformation using only training data and applying it to the

test data. For comparison purposes, three other methods were used in classification and

ranking experiments, namely support vector machine (SVM), logistic regression, and

clustering (Gaussian mixture model). All three methods were implemented using scikit-learn

Python library (Pedregosa et al., 2011) with their default parameters.
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3.1. Simulated Experiments

For simulated experiments, we have generated datasets that are characterized by different

kinds of heterogeneity. We have compared PUNCH with classification and clustering

methods to show (1) discriminatory ability between two groups that emulate IPs and TDCs,

(2) ranking of the group that simulates IPs.

We have run tests on 100 randomly generated datasets. Each dataset consists of 500

individuals (200 TDCs and 300 IPs). The ground truth severity values for these individuals

are randomly sampled from two Beta distributions with(α,β)values of (4,11) for IPs and

(7,3) for TDCs. The parameters of distributions are selected so that the two groups are

separated with a region of overlap. Then, these ground truth severity values are used to

generate different types of scores that emulate the behavior of phenotypic scores in a clinical

sample.

As in a real life scenario, we assume that scores are either directly or indirectly related to a

disorder, providing varying degrees of information about the separation and ranking of the

groups. To simulate this behavior, we randomly generate two families of scores, namely,

informative and less informative. We believe that these simulations adequately describe a

real life scenario with phenotypic scores.

For the informative scores, an additive noise sampled from a Gaussian with zero mean and

 variance is applied directly to the ground truth severity values. For each individual score,

the variance  is randomly sampled from a uniform distribution with a range of (0,0.8) to

prepare 15 scores with different levels of descriptive capacity.

Less informative scores are generated by an extra step of quantization to have smaller

capacities of ranking. The original severity values are quantized by K-means clustering (C.

M. Bishop, 2006) (by assigning the cluster center value to all individuals in the same cluster)

where the K value is randomly sampled from a uniform distribution with a range of (2,10).

Then an additive noise sampled from a Gaussian with zero mean and  variance is applied

to the quantized values similar to the informative scores. A uniform distribution with a range

of (0,1.2) is used to sample variance values for each score to have relatively higher noise

levels compared to the informative scores. We have generated 30 scores of the second type,

resulting in 45 scores in total. A randomly generated sample is illustrated in Figure 3 along

with three randomly generated scores with different noise levels.

Using these 100 random datasets each described with 45 scores, we analyzed whether the

PUNCH score can: (1) discriminate between TDCs and IPs, and (2) create a ranking of IPs.

First, we tested the discriminatory ability of PUNCH in the setting of a classification

problem, between TDCs and IPs. This was compared with classification using support

vector machines (SVM) with a linear kernel (C. M. Bishop, 2006) and logistic regression

(Alpaydin, 2010). Figure 4 gives comparisons of classification performances of these three

methods with 10-fold cross validation. There are no significant differences between

classification performances of the different methods, although PUNCH performs slightly

better, suggesting at least similar discriminative ability.
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On the other hand, PUNCH outperforms other methods in terms of ranking, as seen in

Figure 5. For ranking tests, we have compared PUNCH with the probabilistic output of the

classification (logistic regression) and likelihood measure of clustering (mixture of

Gaussians) (C. M. Bishop, 2006). With mixture of Gaussians, two clusters are generated

based on the best Bayesian Information Criterion (BIC) value (C. M. Bishop, 2006). The

first cluster includes mostly TDCs and the second one, mostly IPs. Then, the severity value

of an individual is calculated by the likelihood of its being a member of the second cluster.

Figure 5 gives several statistics of correlation with the ground truth severity values and the

mean absolute error of ranking (difference between suggested ranking and the original

ranking) for the 100 data sets. These simulated experiments validate the fact that PUNCH

can provide reliable severity values enabling ranking of the population.

3.2. Application to a Clinical Sample

We have applied our framework for characterizing the heterogeneity, to a sample of youth

with ASD, which is described by a large number of standardized measures in a research

setting, to yield a collection of phenotypic scores. Then, subgroups of ASD based on the

PUNCH score of the sample have been analyzed for imaging based brain differences, to

determine whether the heterogeneity described by PUNCH has an imaging correlate. This is

done with the aim of determining whether the ranking provided by PUNCH can be used to

probe group differences in other modalities. Also by analyzing imaging differences between

low and high PUNCH scores, we will assess the validity of the PUNCH ranking.

First, we tested the discriminatory ability of PUNCH by comparing its classification

accuracy with other methods. The classification is performed between TDC and ASD. Next,

a single clinical score that is widely used in the current literature was chosen as a ground

truth measure of symptom severity (in our case SRS) to validate the rankings provided by

PUNCH and other methods. SRS was chosen because it is one of the most frequently used

proxies for ASD severity both for clinical and research purposes. The SRS, therefore, was

not included in the computation of the PUNCH score for it to remain an independent

criterion score to assess predictive and convergent validity.

Table 3 gives classification performance with 10-fold cross validation and correlation to

SRS for different methods. SVM with a linear kernel and logistic regression are used for

classification comparisons as in Section 3.1. For the correlation experiment, we compared

PUNCH score with the probabilistic output of logistic regression and the likelihood value of

clustering, again as in Section 3.1. Both comparisons yield results similar to the simulated

experiments. The difference between accuracies of methods, in terms of classification

between TDCs and ASD, is not significant. On the other hand, PUNCH provides better

severity assessments compared to other methods since the correlation to SRS is much higher

with PUNCH. For all pairs of comparisons, we compared correlation coefficients using

Fisher’s r to z transform (Cohen & Cohen, 1983) and estimate the statistical significance; p

values are less than 1e-10. As suggested in (Ecker, Marquand, et al., 2010; Ecker, Rocha-

Rego, et al., 2010), we also tried to correlate SRS with distance to the optimal hyperplane in

SVM, instead of correlating with posterior class probability. This approach indeed boosts

the ranking capability of SVM significantly by alleviating limitations of using a decision
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function relying on the class probabilities, which are illustrated in Figure 1. PUNCH

performs better in comparison with this boosted performance.

The PUNCH distribution of the whole clinical sample is illustrated in Figure 6. For both

TDC and ASD groups, we have well behaved Gaussian distributions, which enable us to

determine statistically meaningful regions of interest. For instance, the ASD group can be

easily divided into three regions, as depicted in Figure 6, corresponding to least severe with

a PUNCH interval (0, μ − σ), average severity with a PUNCH interval (μ − σ, μ + σ), and

most severely affected with a PUNCH interval (μ + σ, 1), where μ and σ are the mean and

the standard deviation of the ASD distribution.

The ASD distribution approximates a normal curve, with the bulk of those with ASD having

average severity (see Figure 6). We can define the heterogeneity in terms of variance. In this

case, distributions in Figure 6 provide a picture that is consistent with the common belief

that the ASD sample suffers from high phenotypic variability, with an overlapping region

between TDCs and ASD groups that corresponds to lower end of the ASD severity

distribution.

In order to validate the ranking ability of PUNCH, we use the calculated scores to

interrogate group differences in brain measurements from DWI data. By defining subgroups

of the ASD sample according to this measure, and analyzing differences between these

groups and TDCs, we should be able to reveal differences that are not apparent when the

whole sample is used. We first divided the ASD sample into three subgroups according to

the PUNCH measure that is calculated using only phenotypic scores. Then group differences

between each of these subgroups and the TDC group were determined in terms of the

imaging data.

Figure 7 shows results of such a study. The middle column of Figure 7 shows ROIs out of

176 WM regions (Wakana et al., 2004) with significant (p < 0.01) Fractional Anisotropy

(FA) differences between TDCs and the entire ASD sample. When we discard the lower tail

of the severity distribution within the ASD sample, more differences are revealed, as seen in

the third column of Figure 7. Similarly, when the most severely affected in the ASD group

are discarded, as in the first column of Figure 7, some differences disappear. Table 4 lists the

regions that have significantly different FA values between TDC and ASD subgroups shown

in representative slices in Figure 7, with the number of regions increasing with the increase

in severity. From the table, it can be seen that parts of the corona radiata and the corpus

callosum are implicated in all the ASD subgroups. However, it is only in the comparison of

the most severely impaired group that the WM tracts like the superior longitudinal fasciculus

(SLF) and the inferior fronto-occipital fasciculus (IFOF) are shown to be affected in ASD.

Finally, we compared our ASD subgroupings with those that are generated by the current

standard in the ASD field (SRS). Figure 8 demonstrates the success of PUNCH for the most

severely affected individuals. When using PUNCH, with or without including SRS in the

instrument list, more affected regions are revealed compared to that of using SRS alone.

Even though SRS focuses clearly on the core diagnostic symptoms of ASD, PUNCH is able
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to fuse various measures that are rather ancillary to the core of ASD and characterize

underlying heterogeneity of the sample as well or even better.

4. Discussion

We have proposed a new severity measure for clinical samples that incorporates information

from all the phenotypic scores that describe the sample. PUNCH provides a continuous

severity score, in the process introducing a ranking of the sample. It does so by exploiting

the fact that each phenotypic score provides a preliminary ranking decision due to its

monotonic trajectory. Additionally, different phenotypic scores include different aspects of

symptom severity but none of them individually provides a complete characterization of the

sample heterogeneity. PUNCH fuses these individual severity beliefs into a final severity

decision, by incorporating relevant weighted information from all these multitude scores of

severity.

An important advantage of PUNCH score is its flexibility. Inclusion or exclusion of scores

into the computation of PUNCH, requires just the re-normalization of weights as explained

in Section 2.4. Furthermore, as the scores for TDCs are only used in calculating these

weights, a distribution of the variability of these scores over the TDCs from previously

published studies is sufficient. This is a significant feature of the proposed measure, as it can

be computed for any ASD sample, without the need for these measures on TDCs.

Additionally, flexibility over the inclusion or exclusion of scores can be useful when

analyzing the effect that a particular score will have on PUNCH and its ability to rank the

sample.

This segues into another crucial feature of PUNCH, that being its ability to rank a sample.

This is evident from the results of the experiment on simulated data, described in Section

3.1. In these experiments, the groups were assigned ground truth severity scores, as well as

simulated phenotypic scores that described different aspects of the sample heterogeneity,

emulating a real life clinical sample. Then the computation of PUNCH based on these

samples demonstrated an ability to discriminate the two groups, as well as any other

classification methods, but surpassed alternate methods in its ranking ability, based on the

comparison with the ground truth severity ranking available for this data. This underlines the

importance of PUNCH, as a ranking score of severity.

Providing a reliable severity measure can be very helpful in the case of population studies

that involve statistical comparison of groups. Due to the large underlying heterogeneity,

some group differences may be hidden by the fact that the groups being compared include

individuals of varying degrees of severity. The group differences are difficult to discern

because the sample being compared with the TDCs consists of individuals only mildly

impacted by the disorder. In order to study this problem, PUNCH was computed for an ASD

sample that has diffusion imaging data associated with it, as described in Section 3.2. The

aim was to determine whether the groupings based on the ranking provided by PUNCH

were able to identify group differences that were unique to the sample subgroups, but were

lost when the sample was analyzed as whole owing to the underlying heterogeneity. Figure 7

shows differences between the subgroups created by removing the least severe individuals,
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the most severe individuals and by including all the individuals. The gradual change in

regions between the three groups seen in the representative slices of this figure is enhanced

by the examination of the regions listed in Table 4. In all the three groups, the splenium of

the corpus callosum is affected, although the effect on the body of the corpus callosum is

only seen in the most severe group. This is in line with diffusion-based studies in ASD

(Alexander et al., n.d.; Barnea-Goraly et al., 2004) which have shown the corpus callosum to

be affected by pathology, with varying degrees of severity. The difference between these

results may be indicative of the variation in heterogeneity of the samples being studied, as is

captured by our study of various subgroups. The corona radiata shows a similar trend; the

anterior part of it is affected in all the ASD groups, however the severe subgroup shows an

increased area of the corona radiata implicated by pathology. Most interestingly, two

important white matter tracts, namely the SLF and the IFOF are only affected in the most

severe ASD subgroup. These tracts have been implicated in several ASD studies in the

literature (Fletcher et al., 2010; Ingalhalikar et al., 2011).

Experiments with the ASD sample collectively suggests that PUNCH is a promising tool to

analyze the contribution of different measures, which are directly or indirectly related to the

disorder, for clinical assessments. The clinical scores as listed in Table 1 characterize

different aspects of ASD each covering a different subdomain of ASD ontology, with most

of them being auxiliary to clinical decision making. The quantified ASD domain concept(s)

can change critically from score to score. Their correlation to SRS range in the interval

(−0.68,0.57). The variables with these extreme correlation values are non verbal

communication variable (−0.68) of Children Communication Checklist-2 and behavioral

variable (0.57) of Behavior Rating Inventory of Executive Function. The least correlated

variable is the pragmatic language variable (0.002) of Broader Autism Phenotype

Questionnaire. The high correlation of PUNCH with SRS as shown in Table 3 suggests that

the ranking that is provided by PUNCH is significantly reliable. Even though this is

expected behavior due to the high correlation of several individual variables with SRS, poor

performance of other techniques (see Table 3) suggests that a lower correlation maybe due

to an improper combination of these scores. SRS is a single questionnaire based on just one

source of information i.e. parent opinion whereas PUNCH combines scores with different

sources that encode different concepts of ASD domain. Indeed, PUNCH should be

considered as a framework to extend the ontological coverage of scores by fusing them, but

not as an alternative scoring criterion. This fact is validated in Figure 8, showing that fusing

decisions of several instruments using PUNCH can provide similar yet better clinical

diagnostic assessments than those that are provided by an instrument like SRS.

The ASD sample that we used to demonstrate the imaging correlate of PUNCH score suffers

from the fact that it is relatively small and most of the individuals are mildly affected by

ASD as seen in Figure 6. This fact prevents us from analyzing the sample heterogeneity in

detail i.e. showing imaging characteristics of subgroups that reside at the tails of distribution

by grouping individuals having PUNCH scores in the range (0, μ − σ) or (μ + σ, 1), where μ

is the sample mean and σ is the sample variance. For this reason, we showed results in

Figure 7 with an overlapping setting, by analyzing subgroups of individuals with PUNCH

scores in intervals of (0, μ + σ) and (μ − σ, 1). Even with this constraint, PUNCH is able to
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capture the heterogeneity of the ASD sample, and with the imaging study showing the

gradual effect of the underlying pathology.

Besides performing more imaging studies using different modalities, there are several

methodological improvements that should be done in the future work. One possible

improvement is introducing score specific parameters in the probit regression model as

defined in Section 2.3. This will increase the specificity of the decision model of phenotypic

scores over the one generated by the use of cumulative distribution function (CDF) of the

standard normal distribution. Moreover, for future work, we are planning to incorporate a

new weighting scheme that encodes information not only on discrimination between TDCs

and individuals with ASD, but also on ranking. Sample statistics like variance may be

employed to simulate such information. Additionally, in the current formulation, the

inclusion/exclusion of scores can change the final PUNCH score considerably, depending on

the weights of the scores. The contributions of scores to the final PUNCH value is

determined by their weights that are calculated solely based on their classification

performance. This means that the change in the PUNCH score in a case of inclusion or

exclusion, is determined by how well the new/discarded score classifies the sample, relative

to the remaining scores. For instance, in the case of inclusion of a score that has a

substantially higher classification accuracy compared to other scores, the final ranking value

is predominantly determined by the ranking of this single score. However, since we know

the scores that are available in the clinical inventory, and their individual uses, the

robustness to unknown and unpredictable scores is not a crucial practical issue.

It is our expectation that PUNCH scores taken from a highly specific domain (compared to

the broad range of phenotypic scores used in this study), such as measures of motor function

only or measures of language function only, will yield within domain severity metrics that

are even better at parsing differences in brain anatomy between patients and controls. One

would expect the total volume of the brain areas that differ between IPs and controls to be

smaller, with a more specific set of measures feeding into a PUNCH severity score.

However, such an approach can provide a much greater degree of specificity such that a

motor PUNCH score would highlight group differences in the motor systems and the a

language PUNCH score would reflect specifically on language circuitry. With this approach,

a future study could propose a small set of targeted brain-behavior comparisons across two

or more groups, which shows an equal or greater range of biological correlates in

comparison to the current performance of PUNCH with a large but not very specific set of

phenotypic inputs.

5. Conclusions

We have designed a framework to fuse severity decisions of individual phenotypic scores

that are provided to characterize clinical samples. PUNCH uses probabilistic voting to

combine different phenotypic scores of a sample and provides an explicit ranking of the

individuals with pathology to estimate a continuous severity measure with the aim of

capturing sample heterogeneity.
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Both simulated and real life experiments were used to validate the discriminative and

ranking abilities of PUNCH, which are shown to be better than traditional classification or

clustering based approaches. Experiments with an ASD sample were performed to show that

PUNCH can quantify pathology induced sample heterogeneity by defining a continuous

severity metric and a corresponding distribution. PUNCH distribution of the sample is used

to analyze groupings of individuals, which depicts the heterogeneity in terms of group

differences. Comparing brain imaging data from TDC and ASD groups enabled us to

determine that PUNCH provides a useful measure of phenotypic heterogeneity since

imaging measurements correlate with the estimated severity ranking of individuals with

ASD.

Our DTI based imaging analysis also showed a successful application of PUNCH by

revealing differences between subgroups of ASD and TDC sample, in terms of white matter

diffusion statistics (FA in our case), which could not be observed without separating out the

least severely affected members of the ASD group. It is a common problem in the ASD

literature that study results do not always replicate, and one reason could be that the

percentage of milder cases cause a loss of statistical power in finding true group differences,

when the group is represented only by moderate and severe cases. Patterns revealed by this

imaging analysis are in line with previous diffusion-based studies in ASD literature.

Moreover, FA changes in two important white matter tracts, namely the SLF and the IFOF,

which are known to be affected in ASD, were found to be present only in the more severely

affected subgroup of ASD in our sample.

Future directions for this line of research include two obvious next steps as possible

improvements. First, with respect to methodological design, individual severity beliefs

related to the scores should be enhanced by introducing more specificity to each score

instead of simply using the CDF of standard normal distribution. In this way, the slight

differences between scores can be simulated and information loss in different aspects of the

pathology as described by different scores can be prevented. Additionally, sample statistics

related to the ranking, such as variance and statistics of measurement reliability, can be

incorporated into the calculation of weights of scores during fusing decisions of individual

scores. Second, additional imaging modalities can be studied, again by examining group

differences between groups of individuals as determined by PUNCH scorings, to capture

other characteristics of the disorder that are affected by the sample heterogeneity.
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Highlight

• Designed fusion technique to combine phenotypic scores with interpretable

weights.

• Obtained continuous measure for population heterogeneity quantification.

• Evaluated exhaustively on simulated data.

• Validated measure based on group analysis of diffusion imaging data.

• Applied on a large sample of youth with Autism Spectrum Disorder.
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Figure 1.
Three different decision functions for two phenotypic scores from our dataset. The dashed

lines show distributions of score values for TDCs and IPs. Green curves show decision

functions (posterior class probability) calculated by P(y = 1|x) ∝ P(x|y = 1)P(y = 1). Blue

curves show cumulative distribution functions (CDF) of actual sample while red curves

show the CDF response of the standard normal distribution over this sample.
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Figure 2.
Type-1 and Type-2 errors of classification illustrated by shaded areas under the curves. The

solid black line is the threshold for this score to get the best classification performance.
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Figure 3.
(a) Randomly generated sample of TDCs and IPs; x-axis gives the original severity value.

(b), (c), and (d) Three randomly generated scores with different noise and quantization

levels, based on the original severity values in (a).
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Figure 4.
Box plot for classification performance (%) of three methods. Statistics for 100 simulated

datasets are shown.
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Figure 5.
Box plots for (a) correlation with the original severity values and (b) mean absolute ranking

error (difference between suggested ranking and the actual ranking). Statistics for 100

simulated datasets are shown.
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Figure 6.
PUNCH distributions of TDCs and ASD for the clinical sample. Both tails of ASD

distribution are shaded depicting least severely affected cases with PUNCH value between

(0, μ − σ) and most severely affected cases with PUNCH value between (μ + σ, 1).

Background histograms show real distributions while curves show fitted normal

distributions.
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Figure 7.
Regions with significant difference of FA values between TDC and ASD groups, color

coded by p-value. Each column shows a comparison between a specific subgroup of ASD

whose severity values are shown in parentheses as a range and a fixed group of TDCs.

Different views and slices are given for better comprehension.
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Figure 8.
Comparison of significantly affected regions using different severity scores for individuals

that are severely affected by ASD. The columns show results when (1) using only SRS, (2)

fusing instruments given in Table 1 by PUNCH excluding SRS, and (3) fusing instruments

given in Table 1 by PUNCH including SRS. PUNCH assessments reveal more affected

regions.
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Table 1

Names of phenotypic scores used in tests.

Test Instrument # Items Variable Used in Analyses

Social Responsiveness Scale -Parent Report Version (Constantino et al.,
2000) 1 Total (t) score

Differential Ability Scales, Second Edition (Elliott, 2007) 5
Global IQ (GCA) and constituent subscales: verbal
ability, non verbal ability, spatial ability, special
nonverbal composite

Behavior Rating Inventory of Executive Function (Gioia et al., 2000) 10 inhibit, shift, emot, behave, initiate, work, plan, org,
monitor, metacog

Vineland Adaptive Behavior Scale: Parent/Caregiver Rating Form
(Sparrow et al., 2007) 3 communication, daily living, socialization

ADHD Rating Scale-Parent Report Version (DuPaul et al., 1994) 2 inattention, hyper

Children Communication Checklist-2 (D. V. M. Bishop, 2003) 10 speech, syntax, semantic, coherence, initiation, scripted,
context, nvcomm, social relations, interests

Screen for Child Anxiety Related Disorders-Revised (SCARED-R)
(Birmaher B, Khetarpal S, Cully M, Brent D, 1995) 5 panic, anx, sep_anx, social_anx, school avoid

Children’s Sleep Habits Questionnaire (Owens et al., 2000) 8 bedtime_resis, sleep_onset, sleep_dur, sleep_anx,
night_walk, parasomnia, sleep_dis_breath, day_sleepy

Broader Autism Phenotype Questionnaire (BAPQ) (Hurley et al., 2007) 6 bapqfa_aloof, bapqfa_rigid, bapqfa_prag,
bapqmo_aloof, bapqmo_rigid, bapqmo_prag
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Tunc et al. Page 29

Table 2

The detailed algorithm for PUNCH.

Given a sample of n individuals with their corresponding score sets X ≡ {x1, x2,…, xn}, each having m different scores, x ≡ {x1,x2,…, xm}, their

diagnosis labels y ∈ {0,1}, and noise variances  of scores,

1. For each score sj

a.
Sample noise nj from 

b. Calculate , by 

c. Calculate wj, by using  (Equation 4)

d. Calculate  (Equations 2 and 3)

2. Calculate probabilities p(sj) by normalizing weights wj

3. Fuse individual severity beliefs to get  (Equation 1)

4. Repeat 1–3 to get a distribution over 

5. Calculate expected value  by averaging
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Table 3

Comparison of different methods in terms of their classification performance (%) and correlation with a

diagnosis phenotypic score, SRS. For logistic regression, only probabilistic output is used for ranking while

the distance to the optimal hyperplane (wT x) is also considered for SVM.

Method SVM Logistic Regression PUNCH

Classification Performance 0.95 0.96 0.95

Method SVM SVM (wT x) Logistic Regression Clustering PUNCH

Correlation with SRS 0.42 0.63 0.46 0.34 0.76
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Table 4

Regions with significant difference of FA values between TDC and ASD groups as compared in Figure 7.

Region names with statistically important p-values (p < 0.01) of t-test comparison between all TDCs and three

different subgroups of ASD sample are provided (✓: ROI is significantly affected, ✗: ROI is not significantly

affected).

ROI Name Most sever ASD group is
discarded (0, μ + σ)

Whole ASD sample (0,
1)

Least sever ASD group is
discarded (μ − σ, 1)

Anterior Corona Radiata Right ✓ ✓ ✓

Anterior Corona Radiata Left ✓ ✓ ✓

Splenium of Corpus Callosum Right ✓ ✓ ✓

Splenium of Corpus Callosum Left ✓ ✓ ✓

Body of Corpus Callosum Right ✗ ✓ ✓

Superior Temporal WM Left ✗ ✓ ✓

Anterior Limb of Internal Capsule Right ✓ ✗ ✗

Cuneus WM Left ✗ ✓ ✗

Superior Longitudinal Fasciculus Right ✗ ✓ ✗

Superior Longitudinal Fasciculus Left ✗ ✗ ✓

Inferior Fronto-Occipital Fasciculus Right ✗ ✗ ✓

Middle Occipital WM Left ✗ ✗ ✓

Posterior Corona Radiata Left ✗ ✗ ✓
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