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Abstract

Linking structural neuroimaging data from multiple modalities to cognitive performance is an

important challenge for cognitive neuroscience. In this study we examined the relationship

between verbal fluency performance and neuroanatomy in 54 patients with frontotemporal

degeneration (FTD) and 15 age-matched controls, all of whom had T1- and diffusion-weighted

imaging. Our goal was to incorporate measures of both gray matter (voxel-based cortical

thickness) and white matter (fractional anisotropy) into a single statistical model that relates to

behavioral performance. We first used eigenanatomy to define data-driven regions of interest

(DD-ROIs) for both gray matter and white matter. Eigenanatomy is a multivariate dimensionality

reduction approach that identifies spatially smooth, unsigned principal components that explain

the maximal amount of variance across subjects. We then used a statistical model selection

procedure to see which of these DD-ROIs best modeled performance on verbal fluency tasks

hypothesized to rely on distinct components of a large-scale neural network that support language:

category fluency requires a semantic-guided search and is hypothesized to rely primarily on

temporal cortices that support lexical-semantic representations; letter-guided fluency requires a

strategic mental search and is hypothesized to require executive resources to support a more

demanding search process, which depends on prefrontal cortex in addition to temporal network

components that support lexical representations. We observed that both types of verbal fluency

performance are best described by a network that includes a combination of gray matter and white

matter. For category fluency, the identified regions included bilateral temporal cortex and a white

matter region including left inferior longitudinal fasciculus and frontal–occipital fasciculus. For

letter fluency, a left temporal lobe region was also selected, and also regions of frontal cortex.
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These results are consistent with our hypothesized neuroanatomical models of language

processing and its breakdown in FTD. We conclude that clustering the data with eigenanatomy

before performing linear regression is a promising tool for multimodal data analysis.
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Introduction

One of the fundamental challenges of cognitive neuroscience is relating brain anatomy to

cognitive processes. Most neuroimaging studies linking brain structure to behavior use mass

univariate approaches, relying on a whole-brain regression framework in which the

relationship between a dependent variable (e.g. gray matter density or fractional anisotropy;

FA) and a behavioral measure is assessed at every voxel in the brain.1 An advantage of this

traditional approach is that it makes few a priori assumptions about the location of the

relationship, or the spatial extent of the brain region(s) relating to behavior. However, there

are also some challenges. An obvious limitation is that, without some sort of prior narrowing

of focus, voxelwise methods result in a large number of statistical tests that need correction

for multiple comparisons. A common strategy to address multiple comparisons is to

accumulate voxel data into larger regions of interest (ROIs). However, ROIs are often

difficult and labor-intensive to define for each application. For example, the

cytoarchitectonic boundaries of Broca's area involved in language are both structurally

(Amunts et al., 1999) and functionally (Clos et al., 2013) heterogeneous across individuals.

The anatomical boundaries of a particular label set may not align with functionally relevant

areas or the concentration of pathological change in a disease under study. These issues

motivate the use of data-driven ROIs (DD-ROIs) that can be defined automatically on

different populations of images, have soft boundaries instead of the hard labeling of most

manual label sets, and can be optimized based on criteria other than visual anatomical

boundaries. Such approaches have been used for automated diagnosis of Alzheimer's disease

(Klöppel et al., 2008) and the classification of primary progressive aphasia variants (Wilson

et al., 2009). Variability of white matter across individuals has also been suggested to impact

language performance (Berthier et al., 2012; Flöel et al., 2009). Another important issue

with ROI studies of white matter is the lack of available labels: while there are several dense

parcellations of cortical gray matter available to researchers, there are few white matter

atlases and those that are available focus on major tracts that can be delineated using

diffusion tensor imaging.

In this report, we use a multivariate approach that aims to integrate neuroimaging measures

of gray matter and white matter in order to define a large-scale neural network that accounts

for linguistic performance. This approach relies on “eigenanatomy” (Avants et al., 2012a;

McMillan et al., 2013b, 2014), which is a recently proposed algorithm for generating DD-

ROIs. These soft ROIs are defined automatically by maximizing the covariance of voxel-

1For parsimony we refer to “voxelwise” analyses, but this also applies to mass-univariate surface-based analyses.
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wise measurements normalized to template space and collected into a matrix representation.

There is no need for prior manual labeling of the subject images and one only needs to

define an anatomical domain of interest in the template, for example cortical gray matter for

cortical thickness and white matter for diffusion-tensor statistics. Eigenanatomy also

addresses the need to take into account spatial smoothness in the ROIs. Voxelwise

approaches do this in a post-hoc manner by considering clusters of contiguous results. More

recent multivariate approaches take spatial dependency as a given, and seek to capitalize on

this from the outset. We view this as a sensible assumption, given the continuous nature of

the neural tissue, and the fact that processes such as neural development, age-related cortical

thinning, and gray matter loss due to neurodegenerative disease all show a significant degree

of spatial localization. By capitalizing on these dependencies, we should be able to better

characterize variations in brain shape and tissue structure. Further, theoretical arguments

suggest that exploiting prior knowledge when solving challenging optimization problems

fundamentally improves results in terms of performance, stability and interpretability

(Wolpert and Macready, 1997).

In combination with eigenanatomy dimensionality reduction, we apply a model selection

procedure to determine which DD-ROIs in gray matter and white matter form the most

efficient regression models of behavioral measures. This approach combines information

from multiple imaging modalities in a principled manner within a single regression

framework while maintaining the interpretability of classic regression models. Although in

theory researchers certainly appreciate the joint contribution of gray matter and white matter

integrity to behavioral performance, in practice it has proven difficult to study these at the

same time in the same set of subjects. In particular, it has been challenging to quantitatively

evaluate the relative contribution of gray matter and white matter to behavior: if a patient

has damage to both, which is the better predictor of performance?

To demonstrate the utility of our multivariate approach, we focus on the neural basis of

language limitations in patients with frontotemporal degeneration (FTD). The two most

common forms of FTD yield either a language disorder, primary progressive aphasia (PPA)

(Gorno-Tempini et al., 2011), or a disorder of personality, social comportment, and

executive dysfunction, behavioral-variant FTD (bvFTD) (Rascovsky et al., 2011). Within

PPA there is a semantic variant (svPPA) that is characterized by difficulty with naming,

word meaning, and object knowledge. This variant has been associated with considerable

atrophy in the anterior and ventral temporal lobe, more prominently on the left than the

right, as well as disease in uncinate and inferior longitudinal fasciculi projections (Mahoney

et al., 2013; Whitwell et al., 2010). There is also a non-fluent/agrammatic variant (naPPA),

involving slowed, effortful speech with grammatical difficulty and this has been associated

with left-lateralized frontal and anterior-superior temporal cortical regions and prominent

white matter disease in corpus callosum and inferior frontal-occipital fasciculus (Grossman,

2012; Grossman et al., 2012; Mahoney et al., 2013). bvFTD is not associated with an

obvious aphasia, though executive-social limitations can have consequences on language

processing (McMillan et al., 2013a), and these patients have gray matter frontal atrophy that

is most prominent in ventral and medial frontal regions and extends into dorsolateral frontal

areas, with associated disease in white matter projections from these areas (Lillo et al., 2012;

Zhang et al., 2013).
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Given the distributed localization of disease within the FTD variants we hypothesize that

distinct large-scale neural networks contribute to patients' language limitations. Specifically,

we focus on verbal fluency. This is a complex task that involves mental search through the

lexicon of words that meet the criteria of a category. This process requires conceptual

knowledge of word meanings, lexical retrieval, and executive resources involving a flexible

mental search strategy. Verbal fluency tasks are common neuropsychological measures that

can be adjusted to stress different cognitive processes and thus place different demands on a

large-scale neuroanatomical network. For example, a category fluency task (“Name as many

animals as you can”) emphasizes knowledge of lexical and conceptual information. By

contrast, a letter fluency task (“Name as many words as you can that begin with the letter

F”) requires lexical information and additionally requires an advanced executive search

strategy to search through all words that begin with a specific letter. In the context of FTD

patients, svPPA patients have more difficulty with category fluency than letter fluency and

this has been associated with temporal cortex disease (Libon et al., 2009a). However, letter

fluency appears to be more associated with frontal cortex disease in FTD and is

compromised in bvFTD and nvPPA (Libon et al., 2009a). Assessments of gray matter

regions contributing to verbal fluency tasks have been performed using a priori regions of

interest (Amunts et al., 2004) or regression analyses using voxel-based morphometry (Libon

et al., 2009b). We are unaware of investigations evaluating the relative contributions of gray

matter and white matter disease to verbal fluency deficits in FTD.

Together, we hypothesize that our novel multivariate approach and model selection

procedure will reveal a large-scale neural network that supports verbal fluency, including

fronto-temporal gray matter regions as well as white matter projections between these brain

regions, and that the cortical-white matter network implicated in performance will be

tailored to the specific task. We test this in a multimodal imaging study of FTD. These

observations would provide proof-of-concept evidence for utilizing this approach to better

understand the relative contributions of gray matter and white matter in the context of

cognitive neuroscience, and would improve our understanding of brain-behavior

relationships in neurodegenerative conditions like FTD.

Materials and methods

Participants

We recruited 54 patients from the Penn Frontotemporal Degeneration Center and Hospital of

the University of Pennsylvania Cognitive Neurology Clinic who were native-English

speakers and clinically-diagnosed with FTD by a board-certified neurologist using published

criteria of either PPA (Gorno-Tempini et al., 2011) or bvFTD (Rascovsky et al., 2011).

Other causes of dementia were excluded by clinical exam, blood and neuroimaging tests.

Exclusion criteria included other neurologic, psychiatric or medical conditions that can

result in cognitive change. Some patients may have been on a small, stable dose of a non-

sedating neuroleptic or anti-depressant medication. We also recruited 15 healthy older adults

who were demographically comparable in age and education relative to the patient cohort.

All subjects had T1-and diffusion-weighted structural MRI scans. Thirty-eight subjects

performed cognitive testing on the same day as image acquisition, a further 20 were tested
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within 90 days of imaging, and the remaining 11 subjects had testing within 6 months of

MRI. All participants and, if necessary, their caregivers, participated in an informed consent

process approved by the University of Pennsylvania Institutional Review Board.

The demographics and dementia diagnoses of the subjects are summarized in Table 1. The

subgroups are demographically matched but are diverse in terms of cognitive performance

on the verbal fluency tasks. The control subgroup has a negative history of neurological or

psychiatric diagnoses, and has the highest average fluency scores. The PPA subgroups (split

in Table 1 into a non-fluent/agrammatic aphasic naPPA and semantic-variant svPPA) have

the lowest average scores. The bvFTD subgroup has the largest range of scores, overlapping

with both the control and PPA subgroup. Including all of these groups gives us data points

spanning a wide range of the verbal fluency scores, which is important for building

regression models in which they are the dependent variables. The differences in subgroup

verbal fluency are discussed further in the Results section and illustrated in Figs. 6 and 7.

Cognitive testing

We administered 2 verbal fluency measures to patients, letter fluency (FAS) and category

fluency (animals). For letter fluency, participants are required to name as many words as

possible that begin with the letters F, A, or S. Participants are given 1 min per letter and we

report the mean words per minute. For category fluency, participants are required to produce

as many animal names as possible in 1 min. We report the total names produced.

Magnetic resonance imaging

Images were acquired on a 3 T Siemens scanner. AT1 structural acquisition was acquired

with TR (repetition time) 1620 ms, TE (echo time) 3 s, 192 slices of thickness 1 mm, field of

view (FOV) 256 × 256 mm, reconstructed to 0.9766 × 0.9766 mm2 in-plane resolution. The

diffusion tensor imaging acquisition was a single-shot, spin-echo, diffusion-weighted echo-

planar imaging sequence with GRAPPA acceleration factor of 3. The diffusion sampling

scheme consists of four images with b = 0 s/mm2, followed by measurements with 30 non-

collinear/non-coplanar directions isotropically distributed in angular space (b = 1000

s/mm2), TR 6700 ms, TE 85 ms, slice thickness 2.2 mm, and FOV 245 × 245 mm2,

reconstructed to 2.19 × 2.19 mm2 in-plane resolution.

Image pre-processing

The MRI images were processed with the PipeDream neuroimaging toolkit http://

sourceforge.net/projects/neuropipedream, which implements multi-modal spatial

normalization pipelines powered by ANTs (Avants et al., 2014). To compute cortical

thickness, the T1 brain image is first segmented into three tissues using the Atropos tool in

ANTs (Avants et al., 2011). The gray matter and white matter probability maps are then

input to the Diffeomorphic Registration-Based Cortical Thickness (DiReCT) algorithm (Das

et al., 2009). The diffusion images are skull-stripped and diffusion tensors are calculated

using a weighted linear least squares algorithm (Salvador et al., 2005) implemented in

Camino (Cook et al., 2006). Both the diffusion and the T1 images are normalized to a

common template space using ANTs. A regularized intra-subject registration corrects for the

distortion between the diffusion image and the T1 image, this is then combined with the
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warp between the T1 image and the T1 template. After warping, the anatomical alignment of

diffusion tensors is restored by applying the Preservation of Principal Directions algorithm

(Alexander etal., 2001).

Gray matter and white matter parcellation using eigenanatomy

Given the set of spatially aligned images, we used eigenanatomy to parcellate the data into

coherent regions based upon the variation in the subject population (Avants et al., 2012a).

Like Principal Component Analysis (PCA), eigenanatomy finds a low-dimensional

representation of the very high-dimensional data matrix containing all voxel data for all

subjects, specifically by computing a sparse singular value decomposition of the input data

matrix (either cortical thickness or FA). Further details of the algorithm are given in Avants

et al. (2012b). We use the eigenvectors as DD-ROIs to compute weighted-average gray

matter and white matter values for use in regression modeling of verbal fluency.

Eigenanatomy has additional constraints compared to traditional PCA, which are relevant to

neuroimaging data. The decomposition is sparse, meaning that the principal components are

constrained to have nonzero weights in a small fraction of the brain. The eigenvectors are

unsigned, meaning they can be straightforwardly used to compute linear weighted averages

in a similar manner to standard ROIs based on anatomical labeling. Unsigned eigenvectors

avoid the difficulties of interpreting statistics computed on components containing a

combination of positive and negative weights (Todd et al., 2013). The decomposition is

spatially clustered, meaning that although we do not force the components to be a single

contiguous region, we prefer components that retain spatial smoothness and specificity,

compared to traditional PCA eigenvectors, which can be distributed widely throughout the

brain.

We produced gray matter and white matter eigenanatomy separately. For gray matter,

cortical thickness images were aligned to the template space and averaged. A mask was

defined by thresholding in voxels where the average thickness is greater than 0.1 mm, then

multiplying this image by a pre-defined binary cortical mask in the template space. The

binary cortical mask was defined by warping the Non-rigid Image Registration Evaluation

Project (N1REP) cortical labels (Christensen et al., 2006) to the template space. A Gaussian

smoothing was applied to the normalized subject images with kernel standard deviation 1

mm. The data were then transcribed into an n × pt matrix where pt = 504471 is the number

of voxels in the thickness mask and there are n = 69 subjects. The procedure for white

matter is similar, the average FA image was masked at a value of 0.25, including pf =

392248 voxels, and subject images were smoothed and converted to an n × pf matrix format

in the same way. We defined the mask to include cerebral tissue only, excluding cerebellum

and brainstem.

The eigenanatomy algorithm requires the user to define the number of eigenvectors to be

output and their sparsity, which controls the maximum spatial extent of each eigenvector.

With N eigenvectors, sparsity of 1/N will produce a set of eigenvectors that approximately

cover the whole brain. We set the number of eigenvectors to 32, which yielded the same

number of cortical DD-ROIs as there are labels in the NIREP parcellation (Christensen et

al., 2006) that we used to generate the cortical mask. We used the same settings for white
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matter. Gray matter and white matter images were parcellated independently using the same

parameters in sccan: 20 iterations, L1 penalty with gradient step size 0.5, manifold

smoothing kernel of 1 voxel, and a minimum cluster size of 1000 voxels within each

eigenvector. In each case, eigenanatomy is computed by maximizing the variance in the

original data that is captured by the decomposition. Using this process, we reduced our input

data of approximately 1 million voxels to 64 DD-ROIs that capture most of the variance in

the data set. We compute the eigenanatomy on the complete data set, yielding a

decomposition determined only by the input images, without reference to disease diagnosis

or cognitive test scores.

Surface renderings of the DD-ROIs are shown in Fig. 2. They are thresholded and rendered

as hard labels for easier visualization, however we use the original soft DD-ROIs for

correlation with cognitive performance.

Model selection for correlation with cognition

Our hypothesis is that both gray matter integrity and white matter integrity make important

contributions to cognitive performance, and hence we predict a stronger correlation between

the MRI measures and cognition when we include relevant gray matter and white matter

predictors. Mathematically, if we have a matrix of voxel data Pt for thickness or Pf for FA,

eigenanatomy outputs principal component eigenvectors qi, 1 ≤ i ≤ 32. We normalized the

eigenvectors, q̂i = qi/|qi| to unity, so that the projections are the weighted mean of the

thickness or FA. We arrange the eigenvectors into a matrix Q = [q̂1, …, q̂32]. Concatenating

the projections Xt = Pt Qt and Xf = Pf Qf, we have a matrix X containing the 64 projections

for each of the 69 subjects.

We applied model selection techniques to search for an efficient model of category-guided

and letter-guided fluency scores using a subset of predictors within X. A variety of

techniques exist for model selection in linear regression. It is usually not feasible to examine

all possible models, so a strategy is required for exploring the space of possible models and

ranking them using some metric that can reliably separate better from worse models. The

Aikake Information Criterion (AIC) (Akaike, 1974) favors models that fit the data better, but

penalizes more complex models, it thus quantifies a trade-off between the competing goals

of improving fit to the data and avoiding extraneous predictors that fit to noise. Related

information theoretic techniques include correction for small sample sizes (AICc) (Sugiura,

1978) or penalize larger models in a different way (Schwarz, 1978). These techniques

provide a relative ordering of models but do not assess the goodness of fit to the data in an

absolute sense or whether the correlations generalize to unseen data. The latter can only be

truly tested with unseen validation data, but cross-validation within the sample can offer

some insight to the ability of a model to predict left out data.

Fig. 1 outlines the process we used to generate and test candidatV models. We generated

candidate models using sparse L1 regularized linear regression implemented in the sccan

tool (Kandel et al., 2013). We ran the regression 10 times on the full data set, varying

sparsity to allow i predictors in X to be non-zero, where 1 ≤ i ≤ 10. We also performed the

same regressions using Xt and Xf, so that we could compare multi-modality models to

models with the same number of predictors drawn from a single modality.
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We used cross-validation to test the 10 candidate models from the sparse regression. Each

candidate model Mi uses a specific set of i predictors and is tested separately. We used the

bestglm package in R to perform Monte-Carlo cross-validation. One quarter of the data (18

subjects) are chosen at random and assigned to a test data set, the remaining data (51

subjects) are used as training data. Ordinary least squares linear regression is performed on

the training data using the predictors in Mi. The model fit to the training data is then used to

predict the test data, and the errors are recorded. This procedure was repeated for 5000

random partitions of the data into training and testing sets. We used the same procedure to

do cross-validation on the models that were restricted to using only gray matter (cortical

thickness) or only white matter (FA) predictors.

Results

Regression models of category-guided and letter-guided verbal fluency

The cross-validation mean squared errors (CVMSE) are shown in the top row of Fig. 3.

Models that use predictors from both modalities have lower CVMSE than those that are

restricted to a single modality. The models with minimum CVMSE had 4 predictors for

category fluency and 3 predictors for letter fluency. The predictor regions in these models

are shown in Figs. 4 and 5.

The large-scale network identified by cross-validation for category fluency shown in Fig. 4

implicated regions of left temporal cortex, including posterior–lateral middle and inferior

temporal gyri. Comparable regions in right temporal lobe were also implicated. In addition

to these gray matter regions, a white matter region including the left inferior longitudinal

fasciculus and the left frontal-occipital fasciculus was implicated. The model with 5

predictors has very similar cross-validation performance, the regions are shown in

supplementary Fig. S1. This model uses the same regions as the 4-predictor model plus an

additional region of the left temporal lobe, anterior to the light pink region in Fig. 4.

The network identified for letter fluency is shown in Fig. 5. This model included a region in

left temporal cortex also found in the category fluency task, covering middle and inferior left

temporal cortex. However, for letter fluency, a different set of frontal regions was also

selected, including superior frontal gyrus/SMA, and right inferior frontal cortex. The same

white matter region as for the animal fluency task was also selected.

Different candidate models would be selected using selection criteria other than CVMSE.

Cross-validation is our preferred approach because it estimates over-fitting empirically

rather than imposing a fixed penalty for extra parameters. For comparison, we show the

AICc scores for the candidate models on the bottom row of Fig. 3. These plots show similar

trends, suggesting that three or four predictors would yield the best model, and showing that

the multi-modality models outperform single-modality models as they do in the cross-

validation experiments. However, the optimal models according to AICc differ by one

predictor from the cross-validation experiments. Ranked by AICc, the model with 3

predictors is optimal for category (animals) fluency and the model with 4 predictors is

optimal for letter (FAS) fluency. An additional ranking of the models by the adjusted R2

metric is shown in supplementary Fig. S2. Adjusted R2 selects a larger model (8 predictors)
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for category fluency, but agrees with AICc for letter fluency. The eigenanatomy regions

selected by AICc and R2 are shown in supplementary Figs. S4, S3 and S5.

Figs. 6 and 7 show the predicted scores from the selected sparse regression model plotted

against actual scores. Regression statistics relating to these plots are listed in Table 2. The

R2 is higher for the category than for letter fluency, indicating better correlation between the

model predictions and the observed category scores. Part of this difference is due to a single

data point – letter fluency was underestimated in one subject with bvFTD by more than three

times the residual standard error (RSE). Removal of this point increases the R2 from 0.43 to

0.53. AIthough the models are not sufficient for prediction of individual scores, the results

suggest that we have accomplished our goal of identifying gray matter and white matter

structures that play an important role in verbal fluency performance.

Performance of selected models across FTD phenotypes

For category-guided naming fluency, Fig. 6 suggests that the anatomic model underlying

svPPA performance overlaps less with the model associated with naPPA and bvFTD

performance. This would be consistent with the degraded lexical-semantic representations

that are relatively unique to svPPA. By comparison, for the anatomic model underlying

performance on the letter fluency task, there appears to be greater overlap in the distribution

of all three groups. This would be consistent with the claim that the lexical representation

component of letter fluency is less prominent.

Discussion

In this study we provide proof-of-concept evidence that DD-ROIs and linear regression can

provide insight into the structural brain networks that support verbal fluency. First, we used

eigenanatomy to reduce the dimensionality in an unsupervised manner from almost a million

voxels to 64 DD-ROIs chosen to capture the variance of the data set in both cortical

thickness and white matter FA. Next, we applied sparse regression and cross-validation to

find a subset of DD-ROIs whose weighted average thickness or FA formed the best model

of category-guided and letter-guided fluency. The selected models for both tasks include

white matter and gray matter predictors, suggesting an important role for the combined

contribution of both white matter imaging and gray matter imaging in the underlying

networks. Specifically, we observed that category fluency was related to left temporal

cortex, including posterior-lateral middle and inferior temporal gyri, along with white matter

in left inferior longitudinal fasciculus and the left frontal-occipital fasciculus. Letter fluency

was related to similar temporal cortex regions and white matter regions as category fluency

but additionally included superior frontal gyrus. In the sections below we discuss our results

and approach in greater detail.

Dimensionality reduction using eigenanatomy

We used eigenanatomy for data reduction and this approach provided us with DD-ROIs

chosen to capture the variation in the data set. By reducing dimensionality, we were able to

minimize multiple comparisons problems inherent in voxelwise statistical tests and apply

cross-validation to select regression models. The eigenanatomy algorithm computes
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unsigned DD-ROIs, which we use to compute regional weighted averages of cortical

thickness or FA. This approach retains the interpretability of classical regions of interest,

while allowing DD-ROIs to be generated automatically for a specific data set and across

multiple modalities.

Multimodal data fusion using model selection

The fusion of gray matter and white matter in cognitive neuroscience models is essential to

understand large-scale neural networks that account for behavior. In this study we

demonstrated that the combination of gray matter and white matter outperformed either

modality alone in accounting for verbal fluency performance. This approach builds on

previous work that emphasized only gray matter components of the brain networks that

contribute to verbal fluency deficits in FTD (Libon et al., 2009a). Libon et al. demonstrated

that left temporal cortex contributed to both letter fluency and category fluency but that

additional frontal cortex was related to letter fluency, to support the additional executive

demands associated with mental search strategy. Moreover, Libon et al. demonstrated

differences between category fluency and letter fluency, where the former appears to depend

more on lexical representations while the latter appears to involve executive resources more

heavily. This kind of difference should distinguish patients with svPPA from those with

other FTD phenotypes, and indeed we found that patients with svPPA were somewhat

segregated from the other groups in the brain network contributing to semantically-guided

category naming performance.

At a broad level, converging evidence from both patient and functional imaging work

provides a coherent picture regarding the brain networks involved in category fluency tasks.

As noted previously, depending on the category being accessed, these tasks can rely on a

combination of lexical, phonological, and semantic information, as well as executive search

processes involved in retrieving the relevant information. Anatomically, there is good

agreement that lexical information relies heavily on posterior portions of left middle

temporal gyrus (Grossman et al., 2004). Visual semantic information is represented in part

in fusiform gyrus and other ventral temporal structures (Martin, 2007) with additional

reliance on heteromodal regions (Binder and Desai, 2011; Bonner et al., 2013). These

regions devoted to language content are complemented by regions of frontal cortex more

heavily involved in retrieval and search strategy. Some of these frontal regions appear to

play a more domain-general role in cognitive processes (Duncan, 2010; Woolgar et al.,

2011).

The regression algorithm and model selection procedures were unaware of which predictors

came from which modality but they consistently returned predictors from both modalities in

models of both letter fluency and category fluency. These models outperformed single-

modality models in the cross-validation experiments, suggesting that the use of two

modalities is not redundant and both gray matter and white matter features contribute to the

prediction of verbal performance.
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Potential caveats and alternative approaches

Several issues must be kept in mind when considering our observations. The potential

number of predictors is large, necessitating dimensionality reduction and sparse modeling.

Even with dimensionality reduction through methods like eigenanatomy, we still have a

relatively large number of potential predictors, nearly equaling the number of subjects. The

model selection in this work was limited in scope: we used a fixed eigenanatomy

decomposition and sparse regression to generate candidate models with 1 to 10 predictors,

and then used within-sample cross-validation to choose between the candidate models. The

definition of the DD-ROIs themselves may also influence the results. We decided to use 32

regions for both gray matter eigenanatomy and white matter eigenanatomy, which yielded

64 DD-ROIs in total. The optimal number of DD-ROIs is not obvious a priori, and may not

be the same for gray matter and white matter, however the choice to use an equal number

allowed us to compare gray matter and white matter models with the same number of

potential predictors and similar spatial extent of each, which would be difficult to

accomplish with currently available anatomical label sets.

In this work we used eigenanatomy to perform unsupervised feature selection, blind to the

subsequent regression against cognition, in order to minimize over-fitting. However,

independent validation with unseen data is required to test the generalizability of the

selected regions and the associated regression models. Related future work with independent

training and testing data would be to optimize the eigenanatomy decomposition itself for

prediction of cognition, and to compare our approach of eigenanatomy plus sparse

regression with alternative dimensionality reduction and model selection techniques. Even

without modifying the eigenanatomy procedure, we could explore a larger space of

candidate models, beyond the 10 models we tested for each fluency task. For example,

McMillan et al. (2014) trained and tested a classification model of AD vs FTD pathology.

They used a fixed eigenanatomy decomposition and tested a large number of candidate

regression models, which were then validated on unseen data.

Model selection is also complicated by correlation between predictors across distinct regions

that naturally form structural networks or that are affected in similar ways by pathology.

While the eigenanatomy DD-ROIs are spatially distinct, the resulting projections (i.e., the

weighted-average thickness or FA over the DD-ROI) can be correlated. The correlation

matrix between the first 10 thickness and FA projections is shown in Fig. 8.

In order to discourage over-fitting to the data, we selected models containing relatively few

brain regions. While these are efficient from a regression perspective in that they minimize

cross-validation error, they will not form a complete description of the structural brain

networks supporting verbal fluency. Our choice of sparsity constraints will tend to exclude

predictors based on DD-ROIs where the FA or cortical thickness is highly correlated with

predictors already in the model, since correlated predictors may not improve the regression

model substantially even if the underlying anatomy is equally relevant to the integrity of the

structural network.

The DD-ROIs provided by an eigenanatomy decomposition are optimized to explain

variance in the data and not to fit a particular regression model. This allowed us to use a
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common set of DD-ROIs to explore models of different fluency tasks. Training a prediction

model on the brain data without a separate dimensionality reduction, for example by using

partial least squares (Krishnan et al., 2011) or a penalized regression approach (Kandel et

al., 2013), has potential to build more predictive models, if carefully trained and tested to

avoid over-fitting.

In this work, the multimodal data fusion was done implicitly by combining independently

derived eigenanatomy projections from both modalities into a single sparse regression

model. It is not necessary in principle to separate the gray matter and white matter data sets

in this way, an approach such as Sparse Canonical Correlation Analysis could be used to

define DD-ROIs containing both modalities (Avants et al., 2010). Separating the DD-ROIs

by modality allowed us to test the relative performance of models containing gray matter,

white matter, and multimodal predictors.

Conclusions

We have shown that, using eigenanatomy, it is possible to reduce gray matter and white

matter neuroimaging data into DD-ROIs and to fuse both modalities to best account for

verbal fluency performance. Using a small number of predictors, we are able to model

category and letter fluency with R2 of around 0.5 in our data set. The sparse regression

models include white matter and gray matter predictors, suggesting an important role for

both white matter imaging and gray matter imaging in understanding verbal fluency.

Together, these techniques provide a promising framework within which to explore

multimodal fusion of neuroimaging data and the linking of these data with cognitive

performance.
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Fig. 1.
Outline of the model selection algorithm. The eigenanatomy projections are combined into a

single matrix, yielding 64 potential predictors of cognition in the sparse regression. We

produce models with different numbers of predictors by varying the sparseness parameter;

these are then tested independently via cross-validation. The same procedure is used to test

models from each modality separately, in that case we have 32 potential predictors for the

sparse regression step.
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Fig. 2.
Surface rendering of the 32 eigenanatomy regions for gray matter (top row) and white

matter (bottom row).
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Fig. 3.
Top row: mean squared error for Monte Carlo cross-validation of the sparse regression

models, with 18 subjects left out Points are the average mean squared error over 5000 folds,

vertical bars are 95% confidence intervals on the mean values. Bottom row: AICc scores for

the same regression models. The legend follows that of the top row.
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Fig. 4.
Four eigenanatomy regions used in the sparse regression model of category fluency with

minimum cross-validation error. Gray matter predictors are pink, white matter predictors are

blue.
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Fig. 5.
Three eigenanatomy regions used in the sparse regression model of letter fluency with

minimum cross-validation error. Gray matter predictors are pink, white matter predictors are

blue.
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Fig. 6.
Category fluency score vs predicted score from the regression model with 4 predictors, R2 =

0.59. The dashed line indicates y = x.
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Fig. 7.
Letter fluency score vs predicted score from the regression model with 3 predictors, R2 =

0.43. The dashed line indicates y = x.
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Fig. 8.
Matrix of the absolute value of the correlations between the first 10 thickness and FA

projections. There is a higher correlation between pairs of thickness projections (median

0.28) than between pairs of FA projections (median 0.25), or projections from mixed

modalities (median 0.14).
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