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Abstract

Multi-variate pattern analysis (MVPA) applied to BOLD-fMRI has proven successful at decoding

complicated fMRI signal patterns associated with a variety of cognitive processes. One cognitive

process, not yet investigated, is the mental representation of “Yes/No” thoughts that precede the

actual overt response to a binary “Yes/No” question. In this study, we focus on examining: (1)

whether spatial patterns of the hemodynamic response carry sufficient information to allow

reliable decoding of “Yes/No” thoughts; and (2) whether decoding of “Yes/No” thoughts is

independent of the intention to respond honestly or dishonestly. To achieve this goal, we

conducted two separate experiments. Experiment 1, collected on a 3T scanner, examined the

whole brain to identify regions that carry sufficient information to permit significantly above-

chance prediction of “Yes/No” thoughts at the group level. In Experiment 2, collected on a 7T

scanner, we focused on the regions identified in Experiment 1 to examine the capability of

achieving high decoding accuracy at the single subject level. A set of regions—namely right

superior temporal gyrus, left supra-marginal gyrus, and left middle frontal gyrus—exhibited high

decoding power. Decoding accuracy for these regions increased with trial averaging. When 18

trials were averaged, the median accuracies were 82.5%, 77.5%, and 79.5%, respectively. When

trials were separated according to deceptive intentions (set via experimental cues), and classifiers
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were trained on honest trials, but tested on trials where subjects were asked to deceive, the median

accuracies of these regions still reached 66%, 75%, and 78.5%. These results provide evidence

that concealed “Yes/No” thoughts are encoded in the BOLD signal, retaining some level of

independence from the subject’s intentions to answer honestly or dishonestly. These findings also

suggest the theoretical possibility for more efficient brain-computer interfaces where subjects only

need to think their answers to communicate.
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Introduction

Despite Blood Oxygenation Level Dependent (BOLD) functional Magnetic Resonance

Imaging (fMRI) being an indirect, relatively low-resolution measure of neural activity

(Buxton, 2012; Fox et al., 2012; Logothetis et al., 2001), the spatiotemporal response

patterns reflected in fMRI signals contain detailed information about mental processes. In

fact, using a variety of multivariate pattern analysis (MVPA)(Norman et al., 2006),

researchers have successfully decoded the category of viewed objects from BOLD signals in

the ventral temporal cortex (Haxby et al., 2001); the subjective mnemonic status of visual

stimuli using the BOLD patterns from a distributed network of parietal and frontal regions

(Rissman et al., 2010); a sound category associated with sound-implying, silent, visual

stimuli looking solely at patterns within the auditory cortex (Meyer et al., 2010); and free

choices of abstract intentions from patterns in the medial prefrontal and parietal cortices

(Soon et al., 2013). All this evidence suggests that although fMRI signal has insufficient

temporal and spatial resolution to depict fine-scale neuronal events, spatiotemporal

hemodynamic response patterns recorded via fMRI permit successful and robust decoding of

low- to high-level representations of information (Haynes and Rees, 2006; Xu et al., 2012;

Yang et al., 2012).

In this study, we attempt to decode one type of high-level information: An individual’s

concealed true thoughts when answering questions. Previous psychological research has

established that when answering a question, a true thought is always generated and kept in

mind; even when people intend to lie (Johnson et al., 2004; Langleben et al., 2002; Spence

et al., 2001; Spence et al., 2004; Sun et al., 2013). Here, the definition of “true thought” is

subjective, in the sense that the individual’s thoughts may or may not be objectively correct

(e.g., inaccurate knowledge may lead a subject to believe New York is the capital of the U.S.

For this subject this is a “true thought”, despite Washington, DC being the objectively

correct answer). Moreover, in the context of this work, a true thought is not a verbal or

motoric response, but a piece of information that is generated by a cognitive process and

represented as signature patterns of brain activity. When one intends to lie, a true thought

can be intentionally superseded to form an overt lie (Spence et al. 2001; 2004). The

possibility of being able to reliably decode such (concealed) true thoughts directly from

mental activity could have deep implications for the legal community, as well as, for the
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development of efficient brain-computer interfaces that could open new means of

communication with locked-in patients (Monti et al., 2010; Owen et al., 2006).

Previous functional neuroimaging studies of deception have focused mainly on detecting the

neural correlates of the complex cognitive processes that convert true thoughts into lies

(Christ et al., 2009; Johnson et al., 2004; Langleben et al., 2005; Langleben et al., 2002; Sip

et al., 2010), and on segregating honest and dishonest intentions from the neuroimaging data

(Spence et al., 2001; Sun et al., 2013). Here, we take a different approach and focus on the

mental representations of the true thoughts that precede honest or dishonest overt responses.

In particular, we are interested in examining whether spatial patterns of fMRI signals

contain sufficient information to reliably detect the neural response that follows questioning;

and whether the intention to deceive affects the robustness of these patterns.

As a proof-of-principle, here we examine the theoretical possibility of decoding true

“Yes/No” thoughts to simple binary questions independently of one’s honest/dishonest

intentions when generating overt responses. Precisely, we try to address two specific

questions: 1) Whether spatial patterns of hemodynamic responses carry sufficient

information to allow reliable decoding of true “Yes/No” thoughts? 2) To what extent is

decoding of these “Yes/No” thoughts independent of the honest/dishonest intentions for

generating an explicit overt answer?

To address these questions, we adopt a two-step experimental approach, as previously

suggested by Etzel et al. (2013). First, in Experiment 1, we conduct an exploratory analysis

to identify brain regions that contain sufficient information to permit decoding of true

“Yes/No” thoughts with accuracy significantly above chance at the group-level. This first

experiment is akin to a “functional localizer” session (see (Cukur et al., 2013; Fox et al.

2009) for examples of this approach). To identify these target regions, we adopted a well-

established task-cueing paradigm (Barber and Carter, 2005; Meiran et al., 2000) and a

MVPA searchlight procedure (Hampton and O’Doherty, 2007; Haynes et al., 2007;

Kriegeskorte et al., 2006; Soon et al., 2008). In Experiment 2, using a completely

independent dataset obtained at a higher magnetic field (7T), we evaluate the capability to

achieve high decoding accuracy at the single-subject level. The decoding power is quantified

by the decoding accuracies obtained at different levels of trial averaging. If true “Yes/No”

thoughts generate consistent differentiable patterns of hemodynamic activity in any of the

target regions detected in Experiment 1, trial averaging should produce an increase in

decoding accuracy as noise decreases. Conversely, if these regions do not contain such

stable and differentiable patterns, averaging should not produce any significant changes in

decoding accuracy. Finally, in Experiment 2 we also evaluate how deceiving intentions for

overt responses affect decoding accuracy.

In Experiment 1 we found a series of 8 regions—namely left para-hippocampal gyrus, left

middle frontal gyrus, left inferior frontal gyrus, right inferior frontal gyrus, left medial

frontal gyrus, left supra-marginal gyrus, right superior temporal gyrus, and left superior

temporal gyrus–which performed significantly above chance at the group level. In

Experiment 2, a subset of these regions—namely right superior temporal gyrus, left supra-

marginal gyrus, and left middle frontal gyrus–were found to provide median decoding
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accuracies of 82.5%, 77.5%, and 79.5%, respectively, when 18 trials were averaged

regardless of deceiving intentions (mixed-intentions analysis). When decoding was

attempted in a cross-intention setup (e.g., classifier was trained only with “Honest” trials,

but decoding was attempted in “Dishonest” trials), classification accuracy for these regions

still stayed at 66%, 75%, and 78.5% (median values across subjects). Overall, our results

suggest that decoding of true “Yes/No” thoughts from fMRI may be possible, yet achievable

decoding accuracies with the current approach is not yet sufficient for real world

applications.

Materials and Methods

Experiment 1

Participants—Ten right-handed college students (6 females, age range 20–29 years, mean

age = 25) participated in this experiment. All participants had normal or corrected-to-normal

vision and had no history of neurological or psychiatric disorder. After a full description of

the study, written informed consent was obtained for each participant following a protocol

approved by the Ethical Committee at Institute of Psychology, Chinese Academy of

Sciences.

Experimental Materials—We composed 160 “Yes/No” questions (binary questions)

about simple facts (e.g., “Is one minute 60 seconds?”; “Is Beijing the capital of China?”).

The questions were stated in Chinese using 5 to 12 characters. Half the questions were

expected to produce “Yes” true thoughts on average.

Experimental Paradigm—Prior to entering the scanner, all participants answered all 160

questions to the best of their knowledge by filling out a paper questionnaire. We used these

responses to ensure participants understood the questions and to have a record of what each

subject considered the true answers to the questions (based on their prior knowledge and

experiences). We used these recorded responses to label trials during the analysis. Each

question was presented twice inside the scanner.

The experimental paradigm for the functional runs in Experiment 1 was constructed on the

basis of a fast event-related task-cueing paradigm previously developed for studies about

overcoming existing response tendencies (Barber and Carter, 2005; Meiran et al., 2000). As

shown in Fig. 1, each trial starts with an intentional cue (2 seconds) that informs the subjects

whether they should answer the following question honestly or dishonestly. The word

“Honest” was used to instruct participants to answer the following question honestly, while

the word “Dishonest” was used to instruct participants to overtly respond the opposite of

what they consider true. This cue was followed by a visually presented question (4 seconds).

Participants were instructed to read the question but not to respond immediately. After a

variable delay period (2, 4, or 6 seconds), during which the question was no longer visible, a

“Please Answer” prompt appeared for 2 seconds on the screen. Participants were instructed

to respond using an MRI compatible response box at that moment. Subjects were instructed

to use the right thumb to answer “Yes” and the left thumb to answer “No”. Button

assignment remained constant for the whole duration of this experiment, but was counter-
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balanced across subjects. Recorded responses were used to eliminate invalid trials in which

participants did not complete the task successfully.

Each participant had to answer a total of 320 questions distributed across 10 functional runs

(32 trials per run). Trial types were counter-balanced so that each run contained 8 trials in

which the expected true thought was “Yes” and subjects were instructed to be honest

(“Honest-Yes”), 8 trials in which the expected true thought was “Yes” and subjects were

instructed to be dishonest (“Dishonest-Yes”), 8 trials in which the expected true thought was

“No” and subjects were instructed to be honest (“Honest-No”), and 8 trials in which the

expected true thought was “No” and subjects were instructed to be dishonest (“Dishonest-

No”). Stimuli were programmed with E-Prime (Psychology Software Tools, Inc., Pittsburgh,

PA, USA). Stimuli presentations were driven by scanner trigger signals so the onsets of the

cues, questions, and response prompts were all synchronized to the acquisitions of volumes.

Prior to the fMRI scan, the participants received a 20-minute training session to get familiar

with the task.

Data acquisition—A Siemens 3T Trio scanner (Siemens, Erlangen, Germany), equipped

with a standard head coil, was used in Experiment 1. Functional scans were obtained using a

gradient-echo EPI sequence (33 slices, TR/TE = 2000/30ms, slice thickness = 5mm, FOV =

192mm, flip angle = 90°, image matrix: 64×64, 266 volumes) covering the whole brain. A

high-resolution anatomical scan was acquired for each participant (MPRAGE; TR/TE/

TI=2530/3.39/1100ms, FA=7°, FOV=256×256mm, 128 sagittal slices, slice thickness/

gap=1.33/0mm, in-plane resolution= 1×1mm). The entire experiment lasted for

approximately 1.8 hours. The stimuli were presented via a video projector (resolution

1024×768 pixel, 60 Hz) onto a screen located behind the scanner bore. Participants viewed

the stimuli through mirror glasses.

Preprocessing/Response Estimation—The correct button-press response for each

trial was generated combining the answer provided in the pre-scan questionnaire with the

given intentional cue. Incorrect trials were excluded from further analysis (see Results).

Image preprocessing was conducted using AFNI (Cox, 1996) (http://afni.nimh.nih.gov/afni).

For functional scans, the first five volumes in each run were discarded. Pre-processing steps

included: slice time correction, head motion correction, and intensity normalization (e.g.,

signal percent change). No spatial smoothing was performed. Co-registration

transformations between high-resolution anatomical scans and functional images were

estimated. The high-resolution anatomical scans were transformed into Talairach coordinate

space (Talairach and Tournoux, 1988) using the Talairach template provided with the AFNI

software. Parameters for spatial normalization of the functional images were then obtained

by combining the co-registration and the anatomical spatial normalization transformations.

Spatial normalization was applied to the regression coefficient maps (see below).

Each functional run for each subject was subsequently input to a separate regression analysis

using a finite impulse response (FIR) model. The FIR model uses six Dirac delta functions

(each for a time bin) centered at acquisitions times (TRs) ranging from cue onset to 8s after

question onset. Each trial type (“Honest-Yes”, “Honest-No”, “Dishonest-Yes”, “Dishonest-
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No”) was modeled separately. Additionally the FIR model was also used to model the two

possible motor responses (“Yes” or “No”). This procedure estimated hemodynamic response

patterns (beta coefficient maps) for each of the six time bins following cue onset and for

each trial type. Motion parameters obtained during head motion correction were used as

additional nuisance regressors. Because each run was analyzed separately, we obtained ten

different estimations (beta coefficient maps) at each time bin for each trial type. These maps

were then transformed into Talairach space using the parameters estimated above and

resampled to 3×3×3mm3.

Searchlight Decoding—To identify brain regions carrying predictive information for

distinguishing between true “Yes” and “No” thoughts, we used a MVPA searchlight

procedure (Kriegeskorte et al., 2006) based on a Gaussian Naïve Bayesian (GNB) classifier

implemented in the Princeton MVPA toolbox (http://code.google.com/p/princeton-mvpa-

toolbox/) for MATLAB™ (MathWorks, Natick, MA). This approach allows searching for

informative voxels in an unbiased manner across the whole brain at every time bin (Soon et

al., 2008). The GNB classifier is a linear model that has been widely applied in both basic

neuroscience research (Norman et al., 2006; Mitchell et al., 2004) and clinical applications

(Coutanche et al., 2011). Several studies show that GNB is able to provide almost equal

performance to the commonly used linear support vector machine (l-SVM) (Mitchell et al.,

2004; Misaki et al., 2010); however, because of the relatively small computational cost of

GNB, we decided to use this model for the current study.

In each of the 10 runs per subject the beta estimates resulted in four hemodynamic

responses. The responses within each run for the “Honest-Yes” and “Dishonest-Yes” were

averaged to create a mean beta-map hemodynamic response for true “Yes” thought.

Similarly the responses for “Honest-No” and “Dishonest-No” were averaged to create a

mean beta-map hemodynamic response for true “No” thought. The true “Yes” and “No”

beta maps from the 10 runs (20 maps for each time bin) were input to a searchlight analysis,

where classifiers were trained to distinguish between true “Yes” and “No” thoughts

regardless of intentions. The general procedure described below was applied separately for

each of the six time bins. A graphical description of the procedure is shown in

Supplementary Fig. S1.

Around each voxel in the gray matter (a gray matter mask was obtained from the Colin atlas

(Eickhoff et al., 2005) in AFNI with 34777 voxels), a spherical cluster with a radius of two

voxels was defined (33 voxels). Voxels outside of the gray matter mask were removed from

the spherical cluster. Within this spherical cluster, the 20 beta-maps representing true “Yes”

and true “No” were used to train and test a GNB classifier that distinguishes the true

thoughts. A 10-fold cross-validation procedure (leave-two-out) was conducted to measure

the overall performance of the classifier. In each of the 10 iterations, the local beta-maps

(within the spherical cluster) estimated from a run acted as the test dataset (two samples for

test), while those from the other nine runs were used as the training datasets (18 samples for

training). Overall performance for each voxel was calculated by averaging the ten

classification accuracies from the 10-fold cross-validation. In this way, the classification

accuracy on each voxel reflected the information carried in the local neighborhood.
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Group-level significance was examined by voxel-wise t-tests comparing the mean accuracy

maps (from the ten-fold cross-validation) against 50% (expected chance-level). The resultant

group-level t-maps were thresholded with a voxel-wise significance of p<0.005. The

multiple comparison error was corrected by applying a cluster size threshold derived from

Monte Carlo simulations (Xiong et al., 1995) as implemented in AFNI program

“AlphaSim”. The smoothness for the Monte Carlo simulation was estimated using AFNI

program “3dFWHMx” from the residual time series of the regression analysis. Smoothness

was computed separately for each run of each subject, and then these estimated values were

averaged to compute a single smoothness value (mean=5.7mm, standard

deviation=0.15mm). This resulted in a minimum cluster size threshold of 20 voxels (540

mm3) to reach a cluster level significance of p<0.05 (family-wise error, FWE).

For each time bin in the estimated hemodynamic response function, we conducted a separate

group-level statistical test. Although there is temporal correlation in BOLD signals across

time points, we decided to analyze time bins separately because: (1) several asynchronous

mental processes are required to perform the task; (2) a number of studies have shown that

time points other than the peak of the hemodynamic response can carry information about

neural activity (Yacoub et al., 2001; Heeger and Ress, 2002); and (3) different regions

respond with very different hemodynamic temporal patterns to the same task (Gonzalez-

Castillo et al., 2012). Moreover, we decided not to correct for multiple comparisons across

time to avoid incurring in an excessive number of false negatives during this initial

explorative phase of the study. Although this approach help us identify as many target

regions as possible for their further evaluation in Experiment 2, it also precludes us from

making any specific inferences about the exact timing of events.

Confirming inter-subject consistency using ROI pattern classification analysis
—To examine whether the ROIs identified by the group level t-tests were consistently

informative in individual subjects, we performed ROI-based classification analyses to

decode true “Yes/No” thoughts for individual subjects. For each ROI, we extracted a spatial

pattern representing true “Yes” thought and one representing true “No” thought from the

beta maps in each of the 10 runs. These 20 patterns were used to train a classifier to

distinguish the true “Yes/No” thoughts. The 10-fold cross-validation procedure was identical

to that used in the searchlight analyses, and an averaged decoding accuracy was obtained for

each ROI in each subject.

We performed permutation tests to determine the significance of the decoding accuracies.

Specifically, for each ROI in each subject, the “Yes/No” labels of the 20 spatial patterns

were randomly permuted before the samples were used to train and test the classifiers. This

procedure was repeated 1000 times to generate a null-distribution of the decoding accuracy.

The significance of the original decoding accuracy for the given ROI was then determined

using the null-distribution. For each of the ROIs identified in the searchlight analysis, we

reported the number of subjects exhibiting significant decoding accuracy.
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Experiment 2

Rationale—In order to verify the decoding performance of the informative brain regions

identified in Experiment 1, an independent data set was used in Experiment 2. In this second

experiment we opted for a slow event design that permitted us to average across trials

without the need to enforce any a priori assumptions about response shape inherent to most

fitting techniques. As previously mentioned, trial averaging was used to optimize the signal-

to-noise ratio of spatial patterns input to the classifier. If spatial patterns from a given region

genuinely reflect responses evoked by the “Yes/No” thoughts, then decoding accuracy

should increase towards the desirable goal of 100% as signal-to-noise ratio increases. If not,

decoding accuracy should not change with the number of averaging. We tested this working

hypothesis in all regions marked as informative in Experiment 1, as well as in a control

region not expected to carry robust predictive information (see below). We also performed a

permutation test, in which we randomized the “Yes/No” labels of the trials being averaged.

This provided a second control condition to compare against.

Participants—Seven healthy volunteers (2 females, age range 22–43 years, mean age =

29) were recruited at National Institute of Mental Health, Bethesda, MD, USA. All

participants had normal or corrected-to-normal vision and had no history of neurological or

psychiatric disorder. After a full description of the study, written informed consent was

obtained from each participant following a protocol approved by the Ethical Committee at

National Institute of Mental Health, USA.

Experimental Materials—The visual stimuli and pre-scan questionnaire for this

experiment were presented in English. One hundred and twenty-four “Yes/No” questions

about simple facts were used. Most of these questions correspond to English translations of

the questions used in Experiment 1. A small set of questions was substituted by completely

new questions to fit cultural differences. For half of the questions (62 questions) the

expected answer was “Yes”.

Experimental Paradigm—In this second experiment, the paradigm from Experiment 1

was modified to become a “slow” event-related design with constant long delay periods

(12s). Thus, the regression step is no longer needed and hemodynamic responses for each

trial type can be obtained by simple trial averaging (point-to-point averaging of the signal

after the question onset). This paradigm is shown in Fig. 2. Each trial had the following

structure: intentional cue (2s); simple-fact question (4s); delay period (8s); response prompt

(2.3s); fixation period (11.7s). The intentional cue consisted of the word “Honest” written in

a green font to instruct subjects to respond honestly, or the word “Dishonest” written in a red

font to instruct subjects to respond dishonestly. During the question period, the question

appeared in the center of the screen in white font. During the delay period, a fixation cross

appeared at the center of the screen and subjects were instructed to keep their answer in

mind. For the prompt to respond, one of two possible texts appeared in the center of the

screen: “Y N”, which instructed participants to use the button box in their left hands to

answer “Yes” and the one in their right hands to answer “No”; or “N Y”, which

corresponded to the opposite assignment of “Yes/No” to the right/left hands. Which prompt

screen appeared at the end of each trial was randomized. This randomization precluded
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subjects from keeping their responses in mind during the delay period in terms of motor

actions, as they don’t know which button signals “Yes” and which button signals “No” until

the end of the delay period. The 124 questions (62 expecting a “Yes”, and 62 expecting a

“No”) were randomly assigned into 6 runs. The intentions (“Honest/Dishonest”) and the two

types of response prompts (“Y N” and “N Y”) were assigned to the questions in a counter-

balance manner.

Data acquisition—A Siemens 7T scanner equipped with a 32-channel head coil was used

in Experiment 2. Functional scans were obtained using a gradient-echo EPI sequence (54

slices, TR/TE = 2000/25ms, slice thickness = 2mm, FOV = 192 mm, flip angle = 50°, image

matrix: 96×96, 343 volumes) covering the whole brain. An additional high-resolution

anatomical scan was acquired in each participant (MPRAGE; TR/TE/TI=3000/3.88/1500ms,

FA = 6°, FOV = 256×256mm, 192 sagittal slices, slice thickness/gap = 1.00/0.50 mm, in-

plane resolution = 1×1mm). The stimuli were presented via a video projector (resolution

1024×768 pixel, 60 Hz) that projected from the head-end of the scanner onto a screen.

Participants viewed the projection through mirror glasses. The data for subject 6 were

acquired in two sessions; those for the other subjects were acquire in a single session.

Preprocessing—The correct button-press response for each trial was generated

combining the answer provided in the pre-scan questionnaire, the given intentional cue, and

the response instruction. Incorrect trials were excluded from further analysis (see Results).

The data for one subject were excluded because the subject fell asleep during the scanning

session.

High-resolution anatomical scans were corrected for coil inhomogeneity and transformed

into the Talairach space (Talairach and Tournoux, 1988). Pre-processing steps for the

functional scans included: discarding the first five volumes, slice time correction, head

motion correction, co-registration to the anatomical scan following the procedures described

in Gonzalez-Castillo et al. (2013), intensity normalization (e.g., signal percent change), drift

removal (using 4th order polynomials), and regression of six motion estimates.

Regions of interest (ROIs) showing decoding accuracy significantly above chance at the

group level in Experiment 1 were brought into each subject’s space using the inverse of the

spatial transformation matrices computed during the alignment and spatial normalization

steps. All matrices were combined into a single matrix to avoid multiple interpolation steps.

Moreover, ROI masks were dilated by 1 voxel in subject’s space to account for anatomical

variability across subjects. The union of all ROIs was regarded as an additional ROI in the

analysis. This ROI allows us to examine the performance of the classifier when combining

all ROIs into a single larger multivariate pattern, instead of treating each ROI independently.

For each trial, we extracted spatial patterns of the preprocessed signal for the time points

corresponding to 2s, 4s, and 6s after question onset. According to Experiment 1, these time

points were the most informative outside primary visual and motor. To normalize the

intensity scales of the spatial patterns for trial averaging, the median value (across all voxels

in all time points) was subtracted from each pattern and the results were then divided by the
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median absolute deviation. This scaling procedure does not affect the spatial patterns. We

used median value instead of mean value to avoid the impact of outliers.

Mixed-Intention MVPA in regions of interest—Figure 3 provides a graphical

demonstration of the following procedure. All trials were categorized into two classes

according to the true thoughts (“Yes” vs. “No”), and no distinction was made between trials

with “Honest” or “Dishonest” intentions in generating overt responses (mixed-intention

scenario). GNB classifiers were trained and tested using the response patterns generated by

averaging an increasing number (Navg = 1–18) of randomly selected trials. When averaging,

trials of the same type (e.g., true “Yes”) were randomly chosen without replacement. We

conducted classification following a leave-two-trials-out cross-validation scheme (see Fig. 3

for a demonstration with Navg = 2). For each ROI and Navg level, all the spatial patterns

from the training trials were pooled together to train a classifier, with the three spatial

patterns in each trial used as three samples in the training. The classifier was then used to

predict the label for each spatial pattern in the test set. To generate a final prediction (“Yes”

vs. “No”) for each trial (containing 3 patterns, one for each time point), an equal weight

voting system was used to make a second-level decision, so that the label with the higher

number of occurrences (e.g., 2 or 3) was assigned as the final prediction (see Fig. 3). Given

the fixed number of experimental trials, the number of training samples decreased with the

increase of Navg. The number of training samples ranged between 142 (for Navg=1) and 18

(for Navg=18). At all averaging levels, there were always 6 test samples (due to leave-two-

trial-out cross-validation). Since the trials were randomly selected when averaging, we

repeated the averaging and decoding procedure 50 times and obtained averaged accuracies

and their 95% confidence intervals (computed across the 50 averaged accuracies so that the

sample size is the same across Navg = 2–18).

To summarize the decoding power of each ROI, we computed an area under curve (AUC)

index for each ROI as:

where ACCNavg is the decoding accuracy obtained at the trial averaging level Navg, and 50%

is the theoretical chance level of the decoding accuracy. This index represents the amount of

total accuracy gain with increasing Navg. The higher AUC value for a given ROI, the higher

the likelihood that such ROI contains an activity pattern that help reliably differentiate

between true “Yes” and true “No” thoughts. ROIs were ranked according to this AUC index

for presentation and discussion purposes.

Additionally, we performed two control analyses. These control analyses were performed

under the null-hypothesis that the spatial pattern of a region does not carry information

about the true “Yes/No” thoughts. For the first control condition, we performed the same

analysis described above but using activity patterns from a primary visual cortex region of

size equal to the smallest ROI discovered in Experiment 1. The AUC index for this control

region was also computed and compared with the other ROIs. The second control analysis
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was conducted by randomizing class labels of the training response patterns. We did this for

30 permutations (each contained 50 repetitions with random trial averaging) for each

combination of ROI and Navg level. This second control computation provides a null-

distribution of accuracy under the hypothesis that there is no information for distinguishing

true “Yes/No” thoughts in the spatial patterns.

Cross-intention MVPA in regions of interest—To investigate whether decoding

performance of true “Yes/No” thoughts is modulated by intention to respond honestly or

dishonestly, trials were first split into “Honest” and “Dishonest” trials according to the

response intentions, and then a cross-intention MVPA was conducted. The rationale

underlying this analysis is that if a classifier trained using “Honest” trials can accurately

classify the “Yes/No” labels of the “Dishonest” trials, and verse visa, the spatial patterns

representing the “Yes/No” thoughts should be highly similar across intentions. Specifically,

the GNB classifiers were trained with only one type of trial (e.g., only “Honest” trials) to

predict the true thought labels (“Yes” vs. “No”) for the other type of trial (e.g., only

“Dishonest” trials). The same procedure described in the above section was employed. The

accuracy of the classifiers was then determined by predicting the “Yes” vs. “No” labels of

the “Dishonest” trials. The roles of the “Honest” and “Dishonest” trials were then switched,

forming a two-fold cross-validation. The two resulting accuracies were averaged to obtain

the final cross-intention decoding accuracy. Similar to the mixed-intention analysis, we

computed the AUC index for each ROI to quantify the accuracy gain derived from trial

averaging. To examine whether training classifiers with “Honest” trials and training

classifiers with “Dishonest” trials could procedure similar decoding performance, we also

studied the decoding accuracy for each of the two cross-validation iterations separately. The

two control analyses described above were also conducted in this cross-intention decoding

scenario.

Results

Experiment 1: Explore brain regions encoding “Yes/No” thoughts

The pre-scan inquiries showed that the true thoughts from all subjects agreed with the

designed answers to the questions. On average, the responses in 94.9% (SD = 6.1%) of the

trials agreed with those derived by combining the answers from the questionnaire and the

given intentions. Invalid trials with incorrect responses were excluded from further analyses.

Figure 4 shows which regions contain information that produces decoding accuracies

significantly above chance and at which time points the information can be decoded at the

group level. The group mean decoding accuracies within these regions and the coordinates

of the peak voxels are shown in Table 1. At the question onset, no region showed above-

chance decoding accuracy. Two seconds after question onset, a region within the left para-

hippocampal gyrus was identified (Fig. 4A). Six regions with accuracy significantly above

chance, including the left middle frontal gyrus, left inferior frontal gyrus and its counterpart

on the opposite hemisphere, left medial frontal gyrus, left supra-marginal gyrus, and right

superior temporal gyrus, were identified at 4s after question onset (Fig. 4B). One of these

regions, the left middle frontal gyrus, still contained sufficient information to produce
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accuracy significantly above chance at 6s after question onset. Additionally, a medial

portion of the left superior temporal gyrus also appeared in the searchlight results for this

moment in time (Fig. 4C). Finally, at 8s after question onset, a series of motor and visual

areas appeared to convey information about the “Yes/No” thoughts, most likely as a result of

contamination from the actual overt response period. To test the credibility of the searchlight

procedure, we applied the same analysis at the onset of the cue. As expected, no region was

found informative in decoding the true thoughts at this early time point. We also conducted

t-tests to examine the univariate difference between the “Yes” and “No” thoughts, but failed

to detect clusters showing significant difference between the two conditions.

In addition to the group-level test, we conducted ROI analyses to evaluate whether the ROIs

identified in the searchlight analysis are informative for decoding the true “Yes/No”

thoughts in most individual subjects. Here we report the number of subjects for whom the

individual classification accuracy is significantly above chance level (p<0.05): left para-

hippocampal gyrus (2s): 8/10; left middle frontal gyrus (4s): 10/10; left inferior frontal gyrus

(4s): 10/10; right inferior frontal gyrus (4s): 8/10; left medial frontal gyrus (4s): 10/10; left

supra-marginal gyrus (4s): 7/10; right superior temporal gyrus (4s): 5/10; left middle frontal

gyrus (6s): 8/10; and left superior temporal gyrus (6s): 8/10. These observations support the

findings from the group-level test.

Experiment 2: Mixed-Intention Decoding Accuracy at the Single-Subject Level

The pre-scan inquiries showed that the true thoughts from all subjects agreed with the

designed answers to the questions. Combining the designed answers to the questions, the

given intentions, and the response rules indicating which button signals “Yes”, we derived

the expected response for each trial. The trials whose responses did not agree with the

expectations were excluded from further analyses. The ratio of valid trials was 88.2%–

99.3% for the six subjects.

Figure. 5A shows AUC values (both individual subject and median values) for the different

ROIs. The AUC value indicates the amount of total accuracy gain with the increasing

number of averaged trials. The ROIs, including the union of all ROIs defined in Experiment

1 and the control region, were sorted according to median AUC values across all subjects.

The union of all ROIs ranked first, suggesting that combining the information from all ROIs

yields the highest decoding power. The right superior temporal gyrus (r-STG), the left supra-

marginal gyrus (l-SMG), and the left middle frontal gyrus (l-MFG, including the two ROIs

identified at 4s and 6s after question onset in Experiment 1) were ranked second to fifth. The

two ROIs in the l-MFG showed the highest inter-subject consistency in AUC index. As

expected, the control region was ranked last.

Figure 6 shows the mean and 95% confidence intervals of decoding accuracy as a function

of Navg for all ROIs in all subjects. Rows in the matrix correspond to subjects and columns

represent all ROIs in the analysis. The ROIs were ordered according to the AUC rank in Fig.

5A. The right most column (blue lines) show results for left primary visual cortex, a region

not identified as informative for time bins 2s–6s in Experiment 1. Grey areas show 95%

confidence intervals of decoding accuracy in a permutation analysis where labels were
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randomized during classifier training. The precise accuracies, with significance levels, for

Navg=1 and Navg=18 are reported in Supplementary Table 1.

Considerable cross-subject variability in decoding accuracy was observed in most ROIs.

While most subjects showed decoding accuracy increasing with Navg for all (subject 1) or

most regions (subjects 3–6), subject 2 showed increases only for a limited set of regions.

The top-ranked ROIs in the AUC index (Fig. 5A), r-STG, l-SMG, l-MFG (4s), and l-MFG

(6s), showed significant increases in decoding accuracy with increasing Navg. These

tendencies were highly consistent across subjects. The median accuracy values for these

ROIs were 82.5%, 77.5%, 78.5%, and 79.5%, respectively when Navg=18. In particular, the

two l-MFG ROIs exhibited increasing accuracy as a function of Navg for all subjects. The

single-trial (Navg=1) decoding accuracies for the l-MFG ranged 56% to 65%

(Supplementary Table 1), and were significantly above chance for all subjects (p<0.01,

determined using a null-distribution generated by pooling results from the permutation

tests). When Navg = 18, the decoding accuracy for the l-MFG reached at least 76% in all

subjects (significantly above chance, p<10−5), and raised above 90% for two subjects (see

Supplementary Table 1). In contrast, the permutation analyses produced decoding accuracies

around chance (50%) in all regions for all subjects and Navg levels. Meanwhile, no

increasing trend in decoding accuracy was observed in the left visual cortex control region.

When combining all nine ROIs (the union ROI), the decoding accuracy with Navg = 18

ranged from 71%–92% across subjects, except subject 2 (60%). These high accuracies

obtained with Navg=18 indicate that, for these data, increasing the signal-to-ratio for

individual trials has a greater impact on decoding performance than increasing the total

number of training trials. A few regions in subject 2 exhibited decreasing performance far

below chance level as Navg increased. This phenomenon has previously been observed in

linear classifications systems and defined as “anti-learning phenomenon“ (Kowalczyk and

Chapelle, 2005).

Experiment 2: Cross-Intention Decoding Accuracy at the Single-Subject Level

Similar to the mixed-intention analysis, we computed AUC for all ROIs and all subjects for

the cross-intention condition. Results for this analysis are shown in Fig. 5B. For consistency,

the ROIs are sorted according to the mixed-intentions AUC (Fig. 5.A). For this cross-

intention scenario, the union of all ROIs still showed the highest median AUC value.

Echoing the mix-intention analyses, the r-STG, l-SMG, and l-MFG showed relatively high

median AUC values. Particularly, one l-MFG ROI (the one identified at 4s after question

onset in Experiment 1) exhibited comparable median AUC to the union of all ROIs.

Regarding the inter-subject consistency, the two l-MFG ROIs again showed high

consistency across all subjects. The r-STG and the l-SMG showed larger inter-subject

variability in decoding accuracy than the l-MFG ROIs.

Figure 7 presents the decoding accuracy curves as a function of Navg from the cross-

intention decoding attempts. The figure is organized in a manner similar to Fig. 6. Both

control conditions (permutation analysis and the visual cortex control region) produced

chance-level decoding accuracies that remained steady with different levels of trial

averaging. Similar to the mixed-intention scenario, the cross-intention decoding accuracies
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exhibited considerable inter-subject variability. Due to the potentially larger variability in

trials used in training (“Honest” trials) and test (“Dishonest” trials), as well as a smaller

number of samples in classifier training, the cross-intention decoding accuracies were lower

than those in the mixed-intention scenario. The mean decoding accuracies at Navg = 1 and

Navg = 18 for all ROIs and their union are presented in Supplementary Table 2. The single-

trial decoding accuracy failed to achieve a significance level of p<0.01 for most ROIs in

most subjects.

However, the top-ranked ROIs still showed decoding accuracy that increased with Navg. The

median accuracy values for the r-STG, l-SMG, l-MFG (4s), and l-MFG (6s) ROIs were

66%, 75%, 72%, and 78%, respectively when Navg=18. In particular, the two l-MFG ROIs

exhibited consistency across all subjects, and achieved decoding accuracy of 68%–91% for

all subjects when Navg = 18. These results suggest that the representations of the true

“Yes/No” thoughts in the spatial activity patterns of the l-MFG are relatively robust across

intention to respond truthfully or deceivingly (according to the intentional cue). The union

of all ROIs gave accuracies greater than 74% in four of the six subjects (see Supplementary

Table 2).

Figure 8 presents a summary of median decoding accuracy (when Navg = 18), which

separates classification accuracies from the two predictions in the cross-intention decoding.

In one true yes/no prediction, the classifier was trained only using the “Honest” trials and

tested using the “Dishonest” trials; in the other prediction the roles of the “Honest” trials and

“Dishonest” trials were switched. The grey band on Fig. 8 represents the 99.99% confidence

interval derived from the permutation tests. The accuracies for individual subjects are

presented in Supplementary Table 3. Figure 8 indicates that the inter-subject median

accuracy values for all ROIs were very similar whether the classifier was trained on the

“Honest” or “Dishonest” trials. This similarity was also observed in all ROIs and all subjects

(Supplementary Table 3). These observations indicate that the accuracies obtained in the

cross-intention decoding when averaging across conditions in Figure 7 were due to a high

classification accuracy in only one trial type. Thus, for the ROIs showing consistently high

accuracies in the cross-intention decoding, the results presented here provide additional

evidence that the intentions do not influence the spatial patterns representing true thoughts in

these ROIs. This summary also shows that the median classification accuracies in both

cross-intentional predictions in the r-STG, l-SMG, and l-MFG ROIs were significantly

above chance level at Navg = 18.

Discussion

This work aims to examine the possibility of decoding true “Yes/No” thoughts elicited in

response to binary common-knowledge questions using fMRI and MVPA at the single-

subject level. It also evaluates the impact of honest/dishonest intentions in making explicit

responses on the decoding of the true thoughts. A searchlight analysis (Experiment 1) first

revealed several distributed cortical regions whose hemodynamic patterns produced

decoding accuracy significantly above chance at the group level, and revealed that these

spatial patterns were most informative at 2s–6s after the beginning of the trials. Nonetheless,

the exploratory nature of Experiment 1 does not allow drawing solid conclusions about
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which brain regions carry accurate information to decode true thoughts. With the a priori

information found in Experiment 1, Experiment 2 further examined these cortical regions on

an independent dataset acquired on a 7T scanner. This second experiment not only aimed to

verify the findings from Experiment 1, but also evaluated the influence of the honest/

dishonest intentions on the decoding of the true thoughts. Finally in this second experiment

we also evaluated if trial averaging could help enhance decoding accuracy towards the goal

of 100% at the single-subject level.

Our results revealed that a few regions, namely r-STG, l-SMG, and l-MFG, were able to

produce significant above-chance decoding accuracies for the true “Yes/No” thoughts

(median accuracy around 80% when Navg=18). More importantly, our results also reveal

that accuracy can be greatly enhanced with trial averaging (Fig. 5A and Fig. 6). This

indicates that the spatial activity patterns in these ROIs contain robust response differences

between the true “Yes” and “No” thoughts.

When classification accuracy was computed using a cross-intention approach (training

conducted with “Honest” and testing with “Dishonest” trials, and vice-versa), the r-STG, l-

SMG, and l-MFG ROIs still exhibited accuracy that improved with trial averaging,

achieving median values around 75% (Navg=18). These observations further suggest that the

encodings of true thoughts in these regions have some degree of independence from the

subjects’ intentions to respond truthfully or deceivably, and that decoding performance can

be enhanced with trial averaging. Further analyses are necessary to fully evaluate the actual

level of independence regarding intentions, and how this independence may vary across

subjects or type of questions. In the following sections, we focus the discussion on the r-

STG, l-SMG, and l-MFG regions that showed high decoding power in both mixed-intention

and cross-intention analyses (see Fig. 5 and Fig. 8).

Encoding of “Yes/No” thoughts in the l-MFG

The left dorsolateral prefrontal cortex (l-DLPFC), which encompasses the l-MFG region

found in the present study, is known to be actively involved in perceptual decision-making

about both simple (Kim and Shadlen, 1999) and complex objects (Heekeren et al., 2004).

Perceptual decision-making models suggest that the l-DLPFC serves to generate decisions

by comparing the inputs from different selectively-tuned, lower-level perceptual regions.

Recent studies have demonstrated that this integrative role goes beyond simple perceptual

decisions, and that the l-DLPFC is also involved in more cognitively demanding decisions—

such as house/face discriminations (Heekeren et al., 2004) or delayed face recognition

(Druzgal and D’Esposito, 2001)—and that its integrative role is independent of response and

stimulus modality (Heekeren et al., 2006; Pleger et al., 2006). In the present work, we show

that BOLD response patterns within the l-DLPFC can be used to detect true “Yes/No”

thoughts. This suggests that the integrative capabilities of the l-DLPFC are more general

than previously discussed, and that this region also plays an important role in integrating

input, such as merging visually posed question with prior experiences and knowledge that

the subjects possess.

Furthermore, our current observation that encoding of “Yes/No” thoughts in the l-MFG is

somehow independent of intentional cues extends the findings from prior deception studies.

Yang et al. Page 15

Neuroimage. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



The prefrontal cortex has been suggested to play a key role in deception, as reflected by its

widespread activity during deceptive behavior (Christ et al., 2009). Researchers suggested

that the prefrontal cortex may play a key role in suppressing true thoughts and permitting

deception (Abe, 2009; Abe et al., 2008). Our current results provide understanding at a

finer-scale; a portion of the l-DLPFC is not fully affected by intentional suppression, and

that it encodes the initial “truthful” thoughts even when subjects are instructed to overtly

deceive. Thus, this observation implies that different regions in the DLPFC may play

different roles in deception, inviting investigation of DLPFC function at a finer scale. The

psychological theory of deception proposed by Spence et al. (2004) defined deception as the

process of constructing a lie while also withholding the truth. Our observations provide

brain imaging evidence in support of this theory in that the true thoughts can be robustly

decoded from brain activity under both honest and dishonest intentions when providing

explicit answers. Thus, the existing true thought proposed in the theory is represented in the

brain activity, parallel to the mental processes producing lies.

Encoding of “Yes/No” thoughts in the l-MFG

The l-SMG showed increasing decoding accuracy with trial averaging in five of the six

subjects in Experiment 2 (Fig. 5 and Fig. 6). The accuracy for the other subject was

influenced by “anti-learning phenomenon,” and, in theory, is correctable (see Supplementary

Discussion). The l-SMG is known to play an important role in language processing (Jobard

et al., 2003; Price, 2010; Simon et al., 2002), particularly in verbal working memory

(Henson et al., 2000; Paulesu et al., 1993). It coordinates with Broca’s area to conform to an

articulatory loop that allows us to keep words ‘in our heads’ (Paulesu et al., 1993).

Consistent decoding accuracy of the l-SMG in the mixed-intention condition suggests that

some components of the verbal working memory, as represented in the l-SMG, may be

involved in maintaining responses in mind during the delay periods. The fact that decoding

accuracy for the l-SMG was significantly greater than chance and increased with trial

averaging in the cross-intention scenario presents a more striking result; it suggests that the

true thoughts—which are necessary to construct a deceptive answer according to Spence et

al. deception theory (Spence et al., 2004)—are also encoded in this parietal region. This

further suggests that one still keeps in mind the true thoughts throughout the entire mental

process for telling a lie. However, our results did not show that all key regions involved in

working memory contained information about true thoughts. Further investigation is needed

to better understand the role of different working memory regions on the maintenance of the

true thoughts.

Encoding of “Yes/No” thoughts in the r-STG

The r-STG showed similar performance to the l-SMG. This region showed increasing

decoding accuracy with trial averaging in five of the six subjects in the mixed-intention

decoding scenario and exhibited larger inter-subject variability in the cross-intention

decoding scenario. Previous studies have found that faces familiar to the subjects can evoke

activation in this region (Gobbini and Haxby 2006, 2007). More recently, a comprehensive

study combining fMRI and electrical physiology techniques investigated the spatial and

temporal neural processing of deception on face familiarity (Sun et al., 2013). The authors

suggested that r-STG is involved in early retrieval of truth, and that this early retrieval of
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truth is necessary in the deception process. Our observation that the true thought can be

decoded in the activity of r-STG supports and provides further evidence for this theory.

Nonetheless, further investigation is needed to clarify whether the r-STG is involved in

visual processing of the “Yes/No” symbols in the task or the processing of higher-level

information in our paradigm.

Decoding accuracy in other regions

Five additional regions showed accuracy significantly above chance at the group level in

Experiment 1 (Fig. 4A–C). The decoding accuracy and behavior with trial averaging was

considerably more variable across subjects. This higher inter-subject variability most likely

reflects differences in cognitive strategy across subjects. Nonetheless, as shown in Fig. 5,

when using spatial activity patterns within all these ROIs to decode true thoughts, the

performance in most subjects was higher than that obtained only using an individual ROI.

These findings suggest that these regions may also contribute to the decoding of true

thoughts, although their contribution may be dependent on individual strategies.

Potential applications and limitations

The possibility of decoding true “Yes/No” thoughts on an individual subject basis with high

accuracy may be attractive for those interested in clinical and legal applications. Clinically,

it may provide an efficient way to communicate with locked-in patients and help diagnose

different levels of consciousness. Recent research (Meiran et al., 2000; Naci et al., 2013;

Owen et al., 2006) has shown that it is possible to use covert mental tasks with well-

differentiated fMRI activation patterns, such as motor imaginary, mental spatial navigation,

and selective attention, to attempt simple communication (i.e., “Yes/No” questions) with

some members of this population. Our current results suggest that it may be possible in

principle to bypass this intermediate “translation” step—i.e. motor imagery=“Yes”; spatial

navigation=“No”—and ask subjects to simply keep “Yes” or “No” answers in their mind,

which may greatly increase the efficiency, robustness, and ease of implementation of this

technique. In the legal setting, our results may have some implications for deception

detection. Most fMRI deception studies focus on understanding and detecting the act of

deception (Johnson et al., 2004; Langleben et al., 2005; Phan et al., 2005; Sip et al., 2008).

Here, guided by the detection theory of Spence et al. (Spence et al., 2004), we have focused

our efforts on detecting where and when in the brain subjects may encode the true thoughts

that are intrinsic and necessary to construct a lie. Our results suggest that a few brain regions

may contribute to encoding this concealed truth; and that it might be possible, in principle,

to use fMRI to directly decode truthful thoughts.

Given the legal and ethical implications associated with these two applications, caution must

be exercised when interpreting the present results. Our findings can only be considered a

proof-of-principle, and should not be interpreted as a usable technique for real-world

applications. First, although we report decoding accuracies significantly above chance, we

do not report perfect decoding accuracy (100%). Consequently our data do not suggest that

decoding of truthful thoughts can be yet performed with the levels of robustness, efficiency,

and accuracy that applications, such as the ones outlined above, may require. High decoding

accuracy was only achieved after averaging several trials. Single-trial decoding failed to
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achieve satisfactory accuracy even when there were more samples for the classifier. Thus,

our study does not show that a single-instance of decoding can produce an accurate

estimation of true thoughts at signal-to-noise levels such as those present in our data.

Second, our experimental setup presents important constraints that render it significantly

different from real-world situations. These differences include motivation, stress levels of

the subjects, and the types of questions considered.

Finally, several regions showed promising increases in decoding accuracy with trial

averaging, suggesting that improvements in hardware and experimental design could

translate, in the near future, into higher accuracies with fewer trials. From our results, it is

not possible to infer whether decoding accuracy for data with higher quality will reach levels

in the vicinity of 100%, or if saturation at a lower accuracy may occur.

Future Directions

There are still many questions to be answered beyond the current study. First, a general

question in brain decoding is whether the information is best represented in individual

voxels, fine-grained multi-voxel patterns, or general macroscopic patterns. The answer to

this particular question is required to gain further understanding on how true thoughts are

encoded in neural activity. Although we failed to detect any significant univariate

differences between “Yes” and “No” thoughts in Experiment 1, a rigorous comparison

between univariate and multivariate approaches need to be conducted. Furthermore,

comparing decoding results with different levels of smoothing on the data can provide

insights on how much information about the true thoughts is actually represented within

fine-grained local voxel activity patterns. An even more interesting question is whether the

neural encoding of the true thoughts is consistent across subjects. Cross-subject decoding

may serve as a powerful tool to examine this question.

Conclusions

The present study shows it is possible to decode true “Yes/No” thoughts in response to

binary questions in the presence of cues to answer honestly or dishonestly at the single-

subject level. The l-MFG, r-STG, and l-SMG showed consistent above-chance decoding

accuracy. The decoding accuracy can be enhanced with trial averaging. The decoding of true

thoughts in these regions shows independence from the intention to overtly deceive.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Research Highlights

• True thoughts precede the overt responses to questions and are decoded from

fMRI

• The left middle frontal gyrus showed 76%–93% accuracy for true “Yes/No”

decoding

• The decoding accuracy of this region increases with trial averaging

• Brain activity patterns encoding true thoughts are similar in different intentions

Yang et al. Page 22

Neuroimage. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
One trial of experimental paradigm for Experiment 1. At the beginning of each trial, an

instruction cue is displayed for 2s, asking subjects to be either honest or dishonest when

answering the following question. Then a question on simple facts is presented for 4s. The

question is a binary question expecting either “Yes” or “No” answer. After a random delay

period of 2–6s, an instruction is displayed asking subjects to report the final answer with

MRI compatible button boxes. The mental processes that accompany task performance are

summarized below the paradigm. With this task, subjects generate a true thought to the

question, process it according to the instructed “Honest” or “Dishonest” intention, and report

the final answer when prompted to make motor response.
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Figure 2.
One trial of experimental paradigm for experiment 2. At the beginning of each trial, an

instruction cue is displayed for 2s, asking subjects to be either honest or dishonest when

answering the following question. Then a question on simple facts is presented for 4s. The

question is a binary question expecting either “Yes” or “No” answer. After a delay period of

8s, an instruction is displayed asking subjects to report the final answer with MRI

compatible button boxes. Two possible instructions may appear: “Y N” or “N Y”. The first

type of instruction indicates the button box on the subject’s left hand signals “Yes”, and the

left signals “No”. The second type of instruction indicates the opposite. The subjects do not

know which button to press. The red and green arrows show all possible combinations

across the stimuli types and indicate the expected response for all combinations. The mental

processes that accompany task performance are summarized below the paradigm. With this

task, subjects generate a mental responses to the question, process it according to the

instructed “Honest” or “Dishonest” intention, and keep it in mind until the response

instructions appear to make motor responses.
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Figure 3.
Illustration of the averaging and voting system used to compute decoding accuracies at the

single-subject level in Experiment 2. The left most column (“ORIGINAL”) shows

individual patterns of hemodynamic responses for “Yes” (blue) and “No” (red) trials for a

given ROI as cubes. Patterns for the 3 time-points of interest (2s, 4s, and 6s after question

onset) are depicted. The second column (“AVERAGING”) shows an exemplary permutation

of how individual patterns are averaged for Navg = 2. The number of available trials for

classification is reduced as a result of the averaging. To the right of the figure we can see

how the leave-two-out cross-validation scheme proceeds. All averaged trials with the

exception on one “No” trial and one “Yes” trial are used for classifier training. The excluded

trials comprise the test set for this iteration. The right most part of the figure shows how the

voting system works. In this particular case, when we test the classifier with the “Yes” test

trial, the classifier decided “Yes” for time-points 2s and 6s, but “No” for 4s. Because “Yes”

is the label with the higher number of occurrences, the final prediction for this trial becomes

“Yes”. A similar scenario is shown for the “No” test trial which has two “No” labels for

time-points 4s and 6s that translate into a “No” for the final prediction.
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Figure 4.
Group-level searchlight maps showing regions with decoding accuracy significantly above

chance level. The colors indicate t statistics with a degree of freedom of 9. Each panel shows

significant regions identified at different times (Panel A: 2s, B: 4s, C: 6s, and D: 8s) after

question onset. (A) 2s after question onset: left para-hippocampal gyrus; (B) 4s after

question onset: left middle frontal gyrus, left inferior frontal gyrus, right inferior frontal

gyrus, left medial frontal gyrus, left supra-marginal gyrus, and right superior temporal gyrus;

(C) 6s after question onset: left middle frontal gyrus and left superior temporal gyrus; (D) 8s

after question onset: bilateral posterior parietal cortex and bilateral ventral occipital cortex.

The maps are threshold at t>3.7, corresponding to voxel-wise significance of 0.005. The size

of all clusters is larger than 20 voxels (540mm3), yielding a family-wise error (FWE) of

p<0.05.
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Figure 5.
Group-level summary of decoding power for all ROIs in mixed-intention decoding (A) and

cross-intention decoding (B). The ROIs are ranked according to the “area under curve”

(AUC) in the mixed-intention decoding scenario (A). The AUC indicates the total gain of

decoding accuracy with increasing levels of trial averaging (Navg). The bars indicate median

value of AUC across six subjects. The AUC value for individual subjects are marked using

different symbols. In the mixed intention decoding (A), the union of all ROIs (pink bar) has

the highest median AUC, followed by the right superior temporal gyrus, the left supra-

marginal gyrus, and the two ROIs at the left middle frontal gyrus (identified at 4s and 6s

after the question onset in Experiment 1 respectively). As expected, the control region (blue

bar) shows the lowest median AUC value that is close to zero. The two ROIs at the left

middle front gyrus exhibit high AUC values for all subjects. In the cross-intention decoding

scenario (B), the union of all ROIs (pink bar) still shows the highest median AUC. The left

middle frontal gyrus (4s) shows comparable median AUC to the union of all ROIs. The

individual AUC values are consistently high in this ROI.
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Figure 6.
Single-subject decoding accuracy results for the mixed-intention scenario as a function of

number of averaged trials (Navg). Each row corresponds to a different subject. Each column

corresponds to a different ROI. The ROIs are ordered according to the median AUC rank

presented in Figure 5A. Red lines represent accuracy results for regions identified as

informative in Experiment 1. Purple lines are used to indicate the performance of the union

of all ROIs. Gray lines represent results from a permutation control analysis where labels

were randomized during classifier training. Blue lines represent results for an additional

control region located in the left visual cortex. Each line shows average values in bold and

95% confidence intervals across 50 repetitions of random trial averaging as shaded regions.

The ROIs at the left middle frontal gyrus show consist trend across all subjects.
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Figure 7.
Single-subject decoding accuracy results for the cross-intention scenario as a function of

number of averaged trials (Navg). Each row corresponds to a different subject. Each column

shows results for a different ROI. The ROIs are ordered according to the median AUC rank

presented in Figure 5A. Red lines represent accuracy results for regions identified as

informative in Experiment 1. Purple lines are used to indicate the performance of the union

of all ROIs. Gray lines represent results from a permutation control analysis where labels

were randomized during classifier training. Blue lines represent results for an additional

control region located in the left visual cortex. Each line shows average values in bold and

95% confidence intervals across 50 repetitions of random trial-averaging as shaded regions.

The ROIs at the left middle frontal gyrus show consist trend across all subjects.
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Figure 8.
Inter-subject median of decoding accuracy from the two predictions in the cross-intention

analysis. “H” indicates the inter-subject median of accuracies (when Navg = 18) obtained

when the classifiers were trained only with “Honest” trials to predict the true thoughts in

“Dishonest” trials. “D” indicates the median accuracy (when Navg = 18) obtained when the

classifiers were trained only with the “Dishonest” trials to predict the true thoughts in the

“Honest” trials. For all ROIs, the median values in “H” and “D” predictions high agree,

indicating that the cross-intention accuracies shown in Figure 7 are not biased by a single

prediction scheme (“H” or “D”).
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