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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) is used to investigate synchronous 

activations in spatially distinct regions of the brain, which are thought to reflect functional systems 

supporting cognitive processes. Analyses are often performed using seed-based correlation 

analysis, allowing researchers to explore functional connectivity between data in a seed region and 

the rest of the brain. Using scan–rescan rs-fMRI data, we investigate how well the subject-specific 

seed-based correlation map from the second replication of the study can be predicted using data 

from the first replication. We show that one can dramatically improve prediction of subject-

specific connectivity by borrowing strength from the group correlation map computed using all 

other subjects in the study. Even more surprisingly, we found that the group correlation map 

provided a better prediction of a subject's connectivity than the individual's own data. While 

further discussion and experimentation are required to understand how this can be used in practice, 

results indicate that shrinkage-based methods that borrow strength from the population mean 

should play a role in rs-fMRI data analysis.
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Introduction

Spontaneous low-frequency fluctuations in the blood oxygenation level-dependent (BOLD) 

signal, measured using functional magnetic resonance imaging (fMRI), promise to provide 

critical information about the functional organization of the brain. Resting-state functional 

connectivity research has already revealed large-scale spatial patterns of coherent signals in 

the brain (Biswal et al., 1995; Fox et al., 2005; Greicius et al., 2003; Lowe et al., 1998). 

These resting-state networks have been shown to consist of regions co-activated during tasks 

(Smith et al., 2009), and have been consistently observed both across groups of subjects and 

in repeated scanning sessions (Damoiseaux et al., 2006; Shehzad et al., 2009).

Various methods exist for analyzing resting-state data, including independent component 

analysis (Beckmann et al., 2005; Kiviniemi et al., 2003), partial correlation (Fransson and 

Marrelec, 2008), and clustering (Cordes et al., 2002). However, perhaps the most common 

approach to explore functional connectivity within the brain is to use seed-based correlation 

analysis (Biswal et al., 1995; Fox et al., 2005; Greicius et al., 2003). Seed analysis is based 

on the a priori selection of a region from which time series data are extracted, and 

connectivity is calculated as the correlation of the time series for the a priori seed with the 

time courses for all other voxels in the brain. This technique has proven useful in revealing 

the connectivity properties of many seed areas, and has been used extensively in recent years 

(Fox et al., 2005; Greicius et al., 2003; Margulies et al., 2007) due to its efficacy and ease of 

implementation.

In the statistics literature, shrinkage estimators (Efron and Morris, 1975; James and Stein, 

1961) have been shown to improve upon many traditional estimators, in terms of mean 

squared error (MSE), by shrinking the estimators towards some fixed constant value. For 

example, shrinkage is implicit in Bayesian inference, penalized likelihood inference and 

multi-level models (Lindquist and Gelman, 2009), and is directly related to the so-called 

empirical Bayes estimators used in neuroimaging data analysis (Friston and Penny, 2003; 

Friston et al., 2002; Su et al., 2009). Charles Stein's early work on this phenomenon (Stein, 

1956) is generally considered by the statistics community to be one of the seminal results of 

the twentieth century (Efron, 2010).

In this paper, we investigate whether the use of shrinkage-based methods can improve 

estimates of resting-state functional connectivity using seed-based analysis. To illustrate our 

point, we analyze a data set consisting of scan–rescan resting-state fMRI runs from 20 

healthy adults. For each of the 40 fMRI scanning sessions (20 participants, each with 2 

replicates), using a seed-based analysis we obtain different connectivity maps and ask a 

simple question: how well can we predict the correlation map of the second replicate for 

each subject using data from the first replicate?
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A natural predictor of the connectivity of the second replicate would be to use the same 

subject's correlation map from the first scanning session. However, somewhat surprisingly, 

our results illustrate that one can dramatically improve prediction of subject-specific 

correlation maps by borrowing strength from the group correlation map, estimated using the 

first scan from all other subjects in the study. Therefore, we propose a weighted predictor of 

the subject-specific correlation map and the group correlation computed using all other 

subjects in the study. Using measurement error approaches (Carroll et al., 2006; Di et al., 

2009; Shou et al., 2013; Zipunnikov et al., 2011), the weights are voxel-specific and the 

amount of shrinkage depends upon each voxel's reliability. The greater the uncertainty, the 

less the connectivity estimate for the voxel is trusted and the more it will be pulled towards 

the group estimate. The smaller the uncertainty, the more the individual estimate is trusted 

and the less it will be pulled towards the group estimate. This process leads to estimates that 

lie closer together than those obtained using a standard analysis. Even more surprisingly, we 

find that the group correlation map is a better predictor of the connectivity patterns for an 

individual than the subject's own data.

These results indicate that individual subject results can be improved by shrinking their 

estimates towards the mean of the population. The proposed shrinkage approach is very easy 

to implement in practice, and simply requires the calculation of a weighted average of 

connectivity maps. Though these results are presented for standard seed-based analysis, the 

idea promises to have impact on other analyses, as well.

Methods

Estimators

Let Yij(v, t) denote the fMRI time series for subject i = 1, ,...,, I at replication j = 1, ,...,, Ji at 

voxel v and time t. While the replication experiment used in this paper is simple with Ji = 2, 

for each of the I = 20 subjects, other studies may have different experimental designs with a 

different number of replicates per subject. Let us denote the seed time course as

where S and |S| denote the collection of voxels and the total number of voxels in the seed 

region, respectively. For a given subject i, replicate j, and voxel v, the seed-based 

connectivity map is defined as the correlation between Yij(v, t) and Y (t) over t, that is
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where  and  are the averages over t of Yij(v, t) and , respectively. Thus, 

the connectivity map does not depend on time and can be calculated for each subject, 

replicate and voxel, including all voxels in the seed region.

To illustrate the fact that by “borrowing strength” between subjects we can obtain a better 

estimate of the seed-based correlation maps, we propose a series of estimators for the 

correlation map which incorporate varying amounts of information from other subjects. Our 

goal is to estimate the second replication connectivity maps for each subject i0, Wi02(v), 

based on data from the first replication, Wi1(v), for i = 1, ,..., 20, and v = 1, ,..., V.

The first, and perhaps most natural, potential estimator of the second replication 

connectivity map, Wi02(v), is to use the first replica tion connectivity map, . 

We will refer to this as the “Raw” estimator. The second potential estimator for Wi02 (v) is 

the average of the first replication connectivity maps for all subjects:

Note that this estimator is the same for all subjects and the index i0 from  could be 

dropped. We keep the index for consistency with the other estimators and refer to this as the 

“mean” estimator.

We also investigate the class of shrinkage estimators, that is, estimators that take the first 

replication subject-specific connectivity data and shrink it towards the average connectivity 

of all subjects' first replicate. As all entries we consider are correlations, we first transform 

them using Fisher's z-transformation , whose inverse is 

. More precisely, we calculate

apply shrinkage estimation to the transformed data, Vij(v), and then apply the inverse 

transformation to the shrinkage estimator. Using the same notation as with the 

untransformed data, we define  and .

The connectivity shrinkage estimator on the transformed scale is defined as

where γ(v) can take any value in [0, 1] and is a shrinkage factor at the voxel level. When 

γ(v) = 1, the subject-specific data  are considered completely unreliable and the 

estimator is reduced to the mean , whereas when γ(v) = 0, the subject-specific data 
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 are perfectly reliable and there is no shrinkage towards the population average. The 

estimator of connectivity on the original scale of the correlation is then obtained as 

. In practice, data are seldom perfectly reliable, which makes 

shrinkage towards the population mean a good alternative. A major question is how to 

estimate the shrinkage function γ(v). A very simple approach for fMRI connectivity is to use 

γ(v) = γ = 0.1 that is, very strong and equal shrinkage at all voxels towards the population 

mean. This value is close to the average reliability over all voxels (Shou et al., 2013) and 

performs well in practice. However, we would like to have an estimator of γ(v) that takes 

into account the potential differences in the reliability of connectivity maps across brain 

voxels v.

The optimal amount of shrinkage at every voxel can be calculated based on the replication 

data. In this case, we are still interested in shrinking estimators of the type , though 

γ(v) can be estimated from the replication studies for the other subjects, i ≠ i0. To avoid 

cases of data predicting itself, we use only the replication data for subjects i ≠ i0 and do not 

use Vi02 . Indeed, subject i0 only contributes their data from the first replicate, Vi through 

, and , and Vi02(v is not used. Before we describe the conceptual model, we 

provide the intuition: at every voxel, we estimate γ(v) as the reliability or intra class 

correlation coefficient (ICC) of the connectivity maps of the other 19 subjects at every voxel 

v.

More specifically, we start with the classical measurement error (ME) model (Carroll et al., 

2006)

(1)

where {Xi(v), i = 1, 2,..., I} is the true unobserved correlation at voxel v and Uij(v) is 

replication-specific error. We assume that Xi(·) and Uij(·) are mutually uncorrelated and that 

E{Xi(v)} = μX(v), E{Uij(v)} = 0 for every i, j, and v, respectively. With these assumptions, 

the Best Linear Unbiased Predictor (BLUP) of Xi0(v) using only information at the voxel v is 

 where

(2)

These variances can be estimated from the data as (Carroll et al., 2006)

Thus, an estimator of γ(v) can be obtained by replacing the parameters in Eq. (2) with their 

estimators in Eq. (3). Here  over the replicates, j, and  is the average of all 

Vij(v) over subjects, i, and visits, j. The shrinkage estimator obtained using this estimator of 
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γ will be denoted , while the original scale estimator of the connectivity is then 

. This is labeled as the pointwise shrinkage estimator.

An inspection of the brain map of the γ(v) estimators using pointwise estimation (web 

appendix) reveals large voxel-to-voxel variability, as there is no information borrowed from 

neighboring voxels. One way to resolve this is to think about the model (1) as a joint model 

over a neighborhood of each voxel. Here we use a cube of size m3, where m = 6. With such 

a choice, the model becomes the multilevel functional principal component (MFPCA) model 

introduced by Di et al. (2009) and Zipunnikov et al. (2011) where γ(·) is viewed as a 

function over the entire neighborhood. In this joint model γ(v) is equal to

(3)

where KX(u, v) is the covariance operator of Xi(·) and KU(u, v) is the covariance operator of 

Uij(·). To estimate γ(v), we apply the algorithm described in Di et al. (2009) cube by cube. 

More specifically, we first obtain the method of moments estimators for KX(u, v) and KU(u, 

v) as two covariance matrices for voxels within a cube. After conducting a bivariate 

smoothing on the covariance matrices, γ(v) is estimated as the ratio between the diagonal 

elements of KX(u, v) versus the diagonal elements of KX(u, v) plus KU(u, v). The shrinkage 

estimator obtained using this estimator of γ will be denoted , while the original scale 

estimator of the connectivity is then . This is labeled as the local 

shrinkage estimator.

We note that, by definition, γ(v) ∈ [0, 1], while the method of moment estimators of γ(v) can 

fall outside of this range, especially in situations when reliability is very small, as is the case 

in our rs-fMRI study. Thus, all estimators of γ(v) that were negative were set to 0 and all 

those that exceeded 1 were set to 1, while all other estimators were left unchanged. This had 

a large effect on the MSE, as many voxels had very low replication-to-replication reliability. 

While the justification for each estimator is more or less complicated, all estimators are very 

simple to calculate in practice. In the next section we will show that for the Kirby21 data 

(Landman et al., 2011), the proposed methods are significantly better than using the first 

replication data for the same subject. This is surprising and raises a host of interesting 

questions related to how to best estimate resting-state correlation maps.

Experimental data

We reanalyze the “Multi-Modal MRI Reproducibility Resource” (www.nitrc.org) data set, 

which is publicly known as “Kirby21” (Landman et al., 2011). The data set contains scan–

rescan multi-parametric magnetic resonance images (MRI) from 21 healthy adults. For the 

purposes of this experiment, we use the two 7-min resting-state scans that were acquired 

from each participant using a single-shot, partially parallel (SENSE) gradient-recalled echo 

planar sequence with an ascending slice order (TR/TE, 2000/30 ms; FA, 75; SENSE 

acceleration factor, 2; 3-mm axial slices with a 1-mm slice gap) and an 8-channel head coil. 
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Participants are instructed to relax and fixate on a centrally presented cross while remaining 

as still as possible. The two resting-state scans are separated by a short break during which 

the participant exits the scanner; the T1-weighted anatomical images are also acquired to be 

used as a template for spatial registration of the functional images.

Image processing is performed using SPM8 (Wellcome Department of Imaging 

Neuroscience) and custom MATLAB scripts. Anatomical images are registered to the first 

functional volume and normalized to MNI space using unified segmentation/normalization 

(SPM8). Functional data are adjusted for slice time acquisition as well as participant motion 

and are transformed to MNI space. Nuisance covariates from white matter and CSF are 

estimated using a CompCor Behzadi et al. (2007) and regressed from the data along with the 

motion realignment estimates, their derivatives (computed by backward differences), global 

mean signal, and linear trends. Data are then spatially smoothed (6-mm kernel) and 

temporally filtered using a 0.01–0.10 pass-band filter. Data from one participant are 

excluded from analysis due to a misalignment of the first and second resting-state scans.

To assess the reliability of functional connectivity estimates (and as a proxy, our ability to 

predict a future subject-specific connectivity map from a previous rs-fMRI scan), we choose 

to focus on the precentral gyrus, a key component of the motor control network. This is one 

of the most consistently identified and well-characterized functional networks in the brain. 

Given the potential influence of region of interest (ROI) selection on functional connectivity 

estimates, we also analyze connectivity estimates for 11 additional ROIs distributed 

throughout the brain. All ROIs are selected using the “Type II Eve Atlas,” which is based on 

the manual segmentation of a high-resolution, T1-weighted anatomical image (Oishi et al., 

2009). The same unified segmentation/ normalization approach used on the anatomical 

images for the Kirby21 data is used to transform the Eve template to MNI space, and the 

resulting transformation is applied to the various ROIs by neighbor interpolation.

Results

Results for the precentral gyrus

Due to an absence of a gold standard, we use a jackknife approach (Quenouille, 1949; 

Quenouille, 1956; Tukey, 1958) to evaluate the various estimators. More precisely, we use 

the correlation maps from the first replication of subject i0 and the two replicates from the 

remaining 19 subjects to predict the second replicate correlation map Wi02 (v) of subject i0. 

Prediction performance is evaluated using the mean square repeated for each subject i0 = 1, 

2, ···, 20 and the MSEs are shown in Table 1. Simply using the first replicate connectivity to 

predict second replicate connectivity is labeled as “Raw” (column 2 in the table). This 

corresponds to estimator . The sample average of the first replicates from all 20 

subjects is called “Mean” (column 3 in the table) which corresponds to (v). Both 

shrinkage estimators (columns 4 and 5) show sizeable improvement in MSEs for almost all 

subjects with two exceptions for the pointwise shrinkage estimator and one for the local 

shrinkage estimator. On average, the reduction in MSE (or, equivalently, improvement in 

prediction) was approximately 30% for the local estimator, , and 27.5% for the 
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pointwise estimator, . Percent improvement was calculated as the percent MSE 

reduction (indicated by positive percentages) or increase (indicated by negative percent-

ages) over the MSE of the “Raw” estimator, . Surprisingly, by simply 

incorporating the information from the first replicates of the other 19 subjects, 

reduces the average MSE by 25%, improving prediction in 18 subjects out of the 20 

subjects.

To illustrate this improvement, we display results for one subject in Fig. 1. We choose the 

subject labeled ‘2’ in Table 1 because the improvement in MSE for its local shrinkage 

estimator, , was 29%, which is almost identical with the average MSE improvement 

over all subjects. Each row in the image corresponds to a different slice. The first two 

columns represent the estimated precentral gyrus seed brain connectivity for the first 

replicate and second replicate, respectively. The problem we considered was to predict the 

second column from the first. The third column displays the local shrinkage estimator of the 

brain connectivity map at the second replication. The much smoother appearance of the 

shrinkage estimators is due to the strong shrinkage of the images towards the visit one mean 

for the remaining 19 subjects, which is much smoother than the replication-specific maps. 

For this subject, the average shrinkage coefficient over all voxels in the brain is 0.15, though 

it differed quite substantially across the brain. From a statistical perspective, this is a classic 

example of bias and variance trade-off, where reduction in variance is more important for 

low reliability cases. The fourth column indicates the precentral gyrus seed used to calculate 

voxel-wise connectivity with the rest of the brain. The local shrinkage estimator of the 

connectivity map is spatially smoother, has less extreme values and more closely resembles 

the seed region.

An important question is to quantify the effect of the sample size on the improvement in 

shrinkage towards the mean correlation map. To address this issue we repeat the same 

analysis using a smaller number of subjects. More specifically, we examine a series of a 

different sample sizes n = 3, 5, 10, 15 and 20, where 20 is the maximum number of subjects 

available in the Kirby21 dataset. Given a sample size n, for each subject i0, we sample sets 

of n-1 subjects, which form a new population of data. We apply the same estimators used for 

the entire data set and compare their performance. For each estimator, we calculate the MSE 

over all voxels in the brain. For n = 3 and n = 20 we enumerate all possible combinations, 

whereas for n = 5, 10 and 15, we randomly sample without replacement 20 combinations of 

the subjects to make up the population data for every subject i0.

Fig. 2 displays the boxplots of MSE as a function of estimator (shown as different colors) 

and sample size (indicated on the x-axis). Here, smaller MSE indicates better performance 

of the estimator. The “Raw” estimator (shown in red) does not change with the sample size, 

because it does not depend upon the other subjects. The “Mean” estimator (the one that 

averages the visit 1 correlation maps from the subject i0 with the visit 1 data of the other n-1 

subjects) is shown in purple. It performs better than the other estimators when n = 3 and n = 

5, and improves with increased n, though improvements are quite minor after n = 10. While 

the “Pointwise” and “Local” shrinkage estimators (shown in blue and orange) do not 
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perform as well as the “Mean” estimator for n = 3 and 5, they improve rapidly and become 

slightly better for n = 10, 15 and 20. This is probably due to the fact that the shrinkage 

parameter, γ(v), is not easy to estimate in very small samples.

Results for 11 additional brain regions

The precentral gyrus was initially selected because it was the first ROI used to investigate 

functional connectivity (Biswal et al., 1995) and is commonly evaluated in many studies, 

such as, in comparing typically developing children and children with autism (Nebel et al., 

2014). However, the methods and results are not restricted by the choice of ROI. To 

investigate the generalizability of these improvements, we conduct similar analyses on 

multiple seed regions (Faria et al., 2012). More precisely, we investigate several regions in 

the visual cortex including the cuneus, superior occipital gyrus (SOG), middle occipital 

gyrus (MOG) and inferior occipital gyrus (IOG). We have also investigated the middle 

frontal gyrus (MFG) and the cingulate. These seed choices belong to a range of functional 

networks, and are spatially distributed throughout the brain, covering posterior, middle and 

frontal regions. Table 2 displays the MSEs using the five estimation methods averaged over 

20 subjects when predicting the second-visit correlation map from one of the 12 seed 

regions; we have repeated the precentral gyrus results for ease of interpretation. Thus, the 

effects of estimators that we described for the precentral gyrus results are far from being 

specific to this area. If anything, the improvements in estimation are smaller in the 

precentral gyrus with much larger improvements in the right and left SOG (~ 50%) and right 

and left MOG (im45%). The improvements in the cuneus and the precentral gyrus were 

among the smallest observed (range ~ 25 to ~ 30%). The relative estimation accuracy and 

ordering of estimator performance is also consistent with the findings for the precentral 

gyrus seed analysis.

Conclusions

One of the most counter-intuitive results in the field of statistics is the so-called “Stein 

phenomenon” (Stein, 1956), which states that if one is interested in estimating more than 3 

means, then the simple Maximum Likelihood Estimate (MLE) (labeled “Raw” for the 

purpose of this paper) can be uniformly outperformed by another estimator. Even more 

importantly, it was shown that taking the individual means and shrinking them (James and 

Stein, 1961) towards their common mean provides a better estimate, in terms of overall 

mean square error, than the simple MLE of each individual observation. Stein's foundational 

contribution forms the basis of many different practical approaches to estimation including 

smoothing, shrinkage, mixed-effects models, massive prediction problems, and even 

predicting batting averages for baseball players (Efron and Morris, 1975). The amount of 

shrinkage needed in any specific application varies, however some degree of shrinkage is 

guaranteed to improve prediction.

This paper shows another facet of this surprising result, this time with an application to brain 

connectivity. When data show large replication-to-replication variability, one can 

dramatically improve prediction of subject-specific connectivity by “borrowing strength” 

from the mean of other subjects. Of course, this borrowing needs to be done carefully and 
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reasonably, and may not work in high reliability cases or when the measurement error 

mechanism is unknown or hard to describe. Even more surprisingly, we have found that the 

simple group mean of all the other subjects in the study provides a better predictor of the 

connectivity patterns of an individual subject than actually collecting another fMRI on that 

subject. Clearly, much discussion and experimentation are required to understand how this 

can be used in practice or to better inform experimental designs for estimating connectivity 

at the subject level.

Using the Kirby21 replication data, we obtained the connectivity maps for each of 20 

subjects (one subject was excluded) using a seed-based correlation analysis. A natural 

predictor of the estimated connectivity of the second replicate connectivity is the first 

replicate of the same subject. Here we show that for the precentral gyrus the average of the 

first replicate connectivity of all subjects is a better predictor of the second replicate subject-

specific connectivity in 18 out of the 20 subjects by an average of 25% in terms of mean 

square error. We also introduced a shrinkage estimator of the second replicate subject-

specific connectivity as a voxel-specific weighted average of the subject-specific first 

replication connectivity and the first replication average connectivity of all subjects. This 

predictor is better in 19 out of the 20 subjects by an average of 30% in terms of MSE. 

Similar results were obtained for the other 11 seed regions (Table 2). One of the main 

reasons for these findings is no doubt the low reproducibility of subject-specific connectivity 

maps; see, for example, Shou et al. (2013) who found the reliability of the seed-based whole 

brain connectivity maps to be in the range of 10–30%.

It is worth discussing the practical relevance of the findings in this paper. First, the results 

discussed here will be relevant in all contexts when subject-level inference or analysis is 

necessary. When analyzing subject-level rs-fMRI data, there is an implicit assumption that 

the connectivity estimates we obtain represent a stable characteristic of some underlying 

process that can be replicated. In a study without replication, it appears that one could 

improve the reliability of subject-specific connectivity measures by calculating subject-

specific connectivity maps and then simply shrinking them 80% towards the population 

connectivity map. This would be especially relevant when one is interested in clustering, 

segmentation, or inference at the subject-level, which is crucial to the development of 

reliable imaging biomarkers of disease. These shrunken estimators will probably also have 

better within-subject prediction properties for future rs-fMRI replicates than the subject's 

previous scans alone.

Another important application of the results is that one could calculate the sample size 

necessary to produce a reliable seed-voxel connectivity map at the subject level. Such 

questions and calculations may prove crucial if and when fMRI will be used for clinical 

purposes including surgery planning. Irrespective of the number of replications at the subject 

level, it appears that shrinking connectivity maps towards their population average may help 

systematically improve prediction and reliability. However, if one is interested in population 

level parameter estimation or testing, then shrinking will probably not help analyses or 

increase power. For example, while the estimation of subject-specific connectivity maps will 

improve, the population average of or the group differences between connectivity maps will 

not change by first shrinking the connectivity maps and then averaging them. The intuition 
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is that “the average of averages is the average.” Similarly, if one is interested in prediction 

of health outcomes using fMRI data, then the performance of predictors will probably not 

improve, though the estimated associations may exhibit smoother spatial patterns.

Further, the results suggest that, at least with regard to seed-based correlation analysis, the 

unique subject-specific measurement of functional connectivity beyond the population mean 

may, in fact, be largely due to noise or some other session-dependent source of variability. If 

this result is true, this could have profound impact on the manner in which seed-based 

functional connectivity studies are interpreted and future experiments designed.

In sum, this paper illustrates that one can dramatically improve prediction of subject-specific 

connectivity by borrowing strength from the population of subjects. This clearly illustrates 

that shrinkage estimators, that allow individual subject data to be shrunk towards the 

population mean, should play a critical role in future rs-fMRI data analyses.
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The research was supported in part by NIH grants RO1 NS085211 and RO1 NS048527 from the National Institute 
of Neurological Disorders and Stroke, RO1 MH095836, RO1 MH085328 and RO1 MH078160 from the National 
Institute of Mental Health, RO1 EB016061 and P41 EB015909 from the National Institute of Biomedical Imaging 
and Bioengineering. Haochang Shou is supported by Johns Hopkins-National Institutes of Mental Health joint 
training program. This work represents the opinions of the researchers and not necessarily those of the granting 
organizations.

References

Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using 
independent component analysis. Phil. Trans. R. Soc. B Biol. Sci. 2005; 360(1457):1001–1013.

Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for 
BOLD and perfusion based fMRI. NeuroImage. 2007; 37(1):90–101. [PubMed: 17560126] 

Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of 
resting human brain using echo-planar MRI. Magn. Reson. Med. 1995; 34(4):537–541. [PubMed: 
8524021] 

Carroll, RJ.; Ruppert, D.; Stefanski, LA.; Crainiceanu, CM. Measurement Error in Nonlinear Models: 
A Modern Perspective. Chapman & Hall/CRC; New York: 2006. 

Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K. Hierarchical clustering to measure 
connectivity in fMRI resting-state data. Magn. Reson. Imaging. 2002; 20(4):305–317. [PubMed: 
12165349] 

Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF. 
Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 2006; 103(37):
13848–13853. [PubMed: 16945915] 

Di CZ, Crainiceanu CM, Caffo BS, Punjabi NM. Multilevel functional principal component analysis. 
Ann. Appl. Stat. 2009; 3(1):458–488. [PubMed: 20221415] 

Efron, B. Large-scale inference: empirical Bayes methods for estimation, testing, and prediction. Vol. 
1. Cambridge University Press; 2010. 

Efron B, Morris C. Data analysis using Stein's estimator and its generalizations. J. Am. Stat. Assoc. 
1975; 70(350):311–319.

Shou et al. Page 11

Neuroimage. Author manuscript; available in PMC 2014 December 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Faria AV, Joel SE, Zhang Y, Oishi K, van Zjil PC, Miller MI, Pekar JJ, Mori S. Atlas-based analysis 
of resting-state functional connectivity: evaluation for reproducibility and multi-modal anatomy-
function correlation studies. NeuroImage. 2012; 61(3):613–621. [PubMed: 22498656] 

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is 
intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 
2005; 102(27):9673–9678. [PubMed: 15976020] 

Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default 
mode network: evidence from a partial correlation network analysis. NeuroImage. 2008; 42(3):
1178–1184. [PubMed: 18598773] 

Friston KJ, Penny W. Posterior probability maps and SPMs. NeuroImage. 2003; 19(3):1240–1249. 
[PubMed: 12880849] 

Friston KJ, Penny W, Phillips C, Kiebel S, Hinton G, Ashburner J. Classical and Bayesian inference in 
neuroimaging: theory. NeuroImage. 2002; 16(2):465–483. [PubMed: 12030832] 

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network 
analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 2003; 100(1):253–258. [PubMed: 
12506194] 

James W, Stein C. Estimation with quadratic loss. Proceedings of the Third Berkeley Symposium on 
Mathematics. Statistics and Probability. 1961; 1

Kiviniemi V, Kantola J-H, Jauhiainen J, Hyvärinen A, Tervonen O. Independent component analysis 
of nondeterministic fMRI signal sources. NeuroImage. 2003; 19(2):253–260. [PubMed: 
12814576] 

Landman BA, Huang AJ, Gifford A, Vikram DS, Lim IA, Farrell JA, Bogovic JA, Hua J, Chen M, 
Jarso S, Smith SA, Joel S, Mori S, Pekar JJ, Barker PB, Prince JL, van Zijl PC. Multi-parametric 
neuroimaging reproducibility: a 3-T resource study. NeuroImage. 2011; 54(4):2854–2866. 
[PubMed: 21094686] 

Lindquist MA, Gelman A. Correlations and multiple comparisons in functional imaging: a statistical 
perspective (Commentary on Vul et al., 2009). Perspect. Psychol. Sci. 2009; 4(3):310–313.

Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging 
using resting-state fluctuations. NeuroImage. 1998; 7(2):119–132. [PubMed: 9558644] 

Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Mapping the 
functional connectivity of anterior cingulate cortex. NeuroImage. 2007; 37(2):579–588. [PubMed: 
17604651] 

Nebel MB, Joel SE, Muschelli J, Barber AD, Caffo BS, Pekar JJ, Mostofsky SH. Disruption of 
functional organization within the primary motor cortex in children with autism. Hum. Brain 
Mapp. 2014; 35(2):567–580. [PubMed: 23118015] 

Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, 
Lyketsos CG, Woods R, Toga AW, Pike GB, Rosa-Neto P, Evans A, Mazziotta J, Mori S. Atlas-
based whole brain white matter analysis using large deformation diffeomorphic metric mapping: 
application to normal elderly and Alzheimer's disease participants. NeuroImage. 2009; 46:486–
499. [PubMed: 19385016] 

Quenouille MH. Problems in plane sampling. Ann. Math. Stat. 1949; 20(3):333–476.

Quenouille MH. Notes on bias in estimation. Biometrika. 1956; 43(3–4):353–360.

Shehzad Z, Kelly AMC, Reiss PT, Gee DG, Gotimer K, Uddin LQ, Lee SH, Margulies DS, Roy AK, 
Biswal BB, et al. The resting brain: unconstrained yet reliable. Cereb. Cortex. 2009; 19(10):2209–
2229. [PubMed: 19221144] 

Shou H, Eloyan A, Lee S, Zipunnikov V, Caffo BS, Lindquist M, Crainiceanu CM. The image intra-
class correlation coefficient (I2C2) for replication studies. Cogn. Affect. Behav. Neurosci. 2013; 
13(4):714–724. [PubMed: 24022791] 

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, 
Laird AR, Beckmann CF. Correspondence of the brain's functional architecture during activation 
and rest. Proc. Natl. Acad. Sci. 2009; 106(31):13040–13045. [PubMed: 19620724] 

Stein C. Inadmissibility of the usual estimator for the mean of a multivariate distribution. Proceedings 
of the Third Berkeley Symposium on Mathematics, Statistics and Probability. 1956; 1

Shou et al. Page 12

Neuroimage. Author manuscript; available in PMC 2014 December 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Su SC, Caffo B, Garrett-Mayer E, Bassett S. Modified test statistics by inter-voxel variance shrinkage 
with an application to fMRI. Biostatistics. 2009; 10(2):219–227. [PubMed: 18723853] 

Tukey JW. Bias and confidence in not quite large samples. Ann. Math. Stat. 1958; 29:614.

Zipunnikov V, Caffo BS, Yousem DM, Davatzikos C, Schwartz BS, Crainiceanu CM. Multilevel 
functional principal component analysis for high-dimensional data. J. Comput. Graph. Stat. 2011; 
20(4):852–873.

Shou et al. Page 13

Neuroimage. Author manuscript; available in PMC 2014 December 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1. 
First column: correlation map estimated using the first replication of subject 2; second 

column: correlation map estimated using the second replication of subject 2. Third column: 

predicted correlation map using the local shrinkage estimator. Blue indicates negative 

correlation, while red and yellow indicate positive correlations. Fourth column: the mask for 

the precentral gyrus used as the seed region.
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Fig. 2. 
The boxplots of MSE for 4 different prediction methods under various sample sizes. The x-

axis indicates sample size ranging from 3 to 20 and the y-axis indicates the MSE averaged 

across all voxels in the brain for each prediction. The length of the bar represents the 

interquartile range of the estimation accuracy (MSE) across multiple sets of the image data 

with a fixed sample size and under a particular prediction method. The dashed lines connect 

the median values of the MSEs when the sample size increases. ‘Raw’ is the naive estimator 

with the visit 1 data from the same subject. ‘Mean’ corresponds to the mean of all visit 1 

correlation maps in the population with a particular sample size. ‘Pointwise’ and ‘Local’ are 

two shrinkage estimators.
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Table 1

MSEs averaged among all voxels in the brain for multiple estimators that predict correlation maps for each 

subject. “Raw” corresponds to the estimator based on the first visit connectivity map, . “Mean” is the 

estimator obtained as the average of all first replicates from the 20 subjects, . “Pointwise” and 

“Local” are the shrinkage estimators  and , respectively. “Red. %” is the reduction of MSE 

relative to the MSE for the Raw estimator.

Raw Mean Pointwise Local

Subject MSE MSE Red.% MSE Red. % MSE Red.%

1 0.035 0.023 35.28 0.022 37.32 0.022 38.33

2 0.044 0.031 27.97 0.032 27.68 0.031 28.85

3 0.062 0.049 20.99 0.047 23.31 0.046 25.70

4 0.051 0.045 11.73 0.043 15.01 0.042 17.56

5 0.031 0.039 –27.94 0.036 –17.65 0.032 – 4.85

6 0.054 0.047 12.05 0.046 15.13 0.044 17.55

7 0.059 0.031 47.04 0.031 46.47 0.032 45.95

8 0.049 0.041 15.39 0.040 17.17 0.039 19.59

9 0.037 0.026 28.78 0.026 29.26 0.026 30.30

10 0.041 0.025 39.12 0.025 40.02 0.024 40.98

11 0.070 0.027 62.19 0.028 60.40 0.030 57.76

12 0.045 0.033 27.52 0.032 28.83 0.031 32.18

13 0.049 0.022 55.35 0.022 54.41 0.023 52.36

14 0.036 0.034 5.65 0.033 9.25 0.031 13.34

15 0.062 0.030 50.96 0.031 49.74 0.033 47.40

16 0.063 0.036 43.29 0.035 44.14 0.036 43.43

17 0.030 0.035 – 16.83 0.032 – 8.66 0.029 1.04

18 0.037 0.025 30.62 0.026 30.05 0.025 31.10

19 0.044 0.030 32.10 0.029 34.00 0.028 36.42

20 0.031 0.029 9.39 0.027 14.89 0.026 19.00

Average 0.047 0.033 25.53 0.032 27.54 0.032 29.70
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Table 2

MSEs averaged over all voxels in the brain and 20 subjects for multiple estimators that predict correlation 

maps generated based on 12 seed regions. The superior occipital gyrus (SOG), middle occipital gyrus (MOG) 

and inferior occipital gyrus (IOG) and cuneus are all part of the visual system and are in the occipital 

lobecortex. The middle frontal gyrus (MFG) is in the frontal lobe, while the cingulate spans regions from the 

frontal and parietal lobes. For the five estimation methods, “Raw” corresponds to the estimator based on the 

first visit connectivity map, . “Mean” is the average of all first replicates from the 20 subjects, 

 “pointwise” and “Local” are the shrinkage estimators  and , respectively. 

‘Reduction %’ shows the reduction of MSE relative to the MSE for the ‘Raw’ estimator. The values are 

multiplied by 100 to show the percentage of improvement.

Seed Raw Mean Pointwise Local

MSE MSE Reduction % MSE Reduction % MSE Reduction %

Left SOG 0.070 0.037 47.96 0.036 49.85 0.035 50.30

Right SOG 0.074 0.036 50.95 0.035 52.76 0.035 53.13

LeftMOG 0.065 0.034 45.91 0.033 48.11 0.033 48.71

Right MOG 0.068 0.036 45.80 0.035 47.36 0.034 48.05

LeftIOG 0.072 0.040 43.48 0.038 45.59 0.038 46.30

Right IOG 0.070 0.039 42.55 0.038 43.76 0.038 44.50

Cuneus 0.052 0.037 25.03 0.036 26.77 0.035 28.36

LeftMFG 0.073 0.040 45.42 0.039 47.34 0.039 47.70

Right MFG 0.076 0.041 46.74 0.040 48.48 0.040 48.87

Left cingulate 0.068 0.039 43.02 0.037 45.74 0.037 46.19

Right cingulate 0.072 0.042 43.40 0.039 46.35 0.039 46.77

Precentral gyrus 0.046 0.033 24.10 0.033 24.53 0.032 26.99
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