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With the advent of new analysis methods in neuroimaging that involve independent component analysis (ICA) 
and dynamic causal modelling (DCM), investigations have focused on measuring both the activity and connectiv-
ity of specific brain networks. In this study we combined DCM with spatial ICA to investigate network switching 
in the brain. Using time courses determined by ICA in our dynamic causal models, we focused on the dynamics of 
switching between the default mode network (DMN), the network which is active when the brain is not engag-
ing in a specific task, and the central executive network (CEN), which is active when the brain is engaging in a 
task requiring attention. Previous work using Granger causality methods has shown that regions of the brain 
which respond to the degree of subjective salience of a stimulus, the salience network, are responsible for 
switching between the DMN and the CEN (Sridharan et al., 2008). In this work we apply DCM to ICA time courses 
representing these networks in resting state data. In order to test the repeatability of our work we applied this to 
two independent datasets. This work confirms that the salience network drives the switching between default 
mode and central executive networks and that our novel technique is repeatable.

Crown Copyright © 2014 Published by Elsevier Inc. All rights reserved.

Introduction

The development of many new analysis methods for functional neu-
roimaging data such as functional connectivity, independent compo-
nent analysis (ICA) and effective connectivity methods including
dynamic causal modelling (DCM) has lead to a lot of work focused on
brain network activity and connectivity. An important ability of the
human brain is to be able to rapidly switch between different tasks; it
is therefore of interest to study interactions between different networks
of the brain to better understand the mechanism behind switching be-
tween different tasks.

Dynamic causal modelling (DCM) as a method was introduced for
effective connectivity analyses in 2003 (Friston et al., 2003). Typically
several hypothesisedmodels are specified and Bayesianmodel selection
(BMS) is used to infer themodelwhich represents the bestfit to thedata

(Penny et al., 2004). Recent advances in methodology mean it is now
possible to compare families of DCMs (Penny et al., 2010), to use a ran-
dom effects method for model selection (Stephan et al., 2009) and to
specify nonlinear and stochastic models (Li et al., 2011; Stephan et al.,
2008). The introduction of nonlinearmodellingmeans it is nowpossible
to test for modulations of regions on connections i.e. how regions influ-
ence connection strengths between other brain regions, providing a
more realistic model of brain physiology. Stochastic modelling means
that the input into the model is not deterministic, more accurately ac-
counting for noise (Daunizeau et al., 2012) and allowing the application
of DCM to resting state data,whichwas not previously thought possible.
Stochastic DCMs also include random fluctuations in the state equations
that better accounts for spontaneous neuronal fluctuations. Conven-
tional DCM, in contrast, uses deterministic differential equations, and
as a result does not account for spontaneous neuronal fluctuations or
state noise.

Another method that has been used extensively to examine brain
networks is independent component analysis (ICA) (Bell and
Sejnowski, 1995; Comon, 1994; Hyvarinen and Oja, 2000). Whilst it is
possible to apply both spatial and temporal ICA, we are using spatial
ICA for our analysis. ICA of fMRI data separates the data into spatially in-
dependent patterns of activity and therefore can identify brain net-
works engaged in a task without the use of a predefined model. ICA
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has also been applied to resting state data (Lee et al., 2012) and has
shown differences in functional network connectivity with age
(Stevens et al., 2009) and in patients with schizophrenia (Yu et al.,
2011). Resting state networks found in this fashion have been shown
to be reproducible, with many networks having a high interclass corre-
lation coefficient in a repetition experiment (Chou et al., 2012;
Damoiseaux et al., 2006; Shehzad et al., 2009). In order to overcome dif-
ficulties in identifying components of interest and in determining the
optimum number of components in an ICA analysis, it is now possible
to spatially constrain an ICA analysis to provide the components of in-
terest (Lin et al., 2010) by supplying templates of the networks of inter-
est. This is particularly useful if the research question relates to specific
networks of the brain.

Sridharan et al. (2008) recently used Granger causality to examine
the relationship between different networks. One of the networks
they studied is the default mode network (DMN). This network is
consistently observed in ICA analyses of resting state data and task
deactivation studies (Beckmann et al., 2005; Raichle et al., 2001).
The DMN comprises the posterior cingulate (BA 23 and 31), posterior
parietal cortex (BA 7, 39 and 40) and the ventromedial prefrontal
cortex (Buckner et al., 2008). The central executive network (CEN)
comprises the dorsolateral prefrontal cortex and posterior parietal
cortex and is engaged when a cognitively demanding task requiring
attention is being performed (Fox et al., 2006). The third network is
the salience network (SN) which includes the ventrolateral prefron-
tal cortex (VLPFC) and anterior insula (jointly referred to as the
fronto-insular cortex; FIC) and the anterior cingulate cortex (ACC)
(Seeley et al., 2007). The salience network responds to the degree
of subjective salience, whether cognitive, homeostatic, or emotional.
The networks are displayed in Fig. 1, where the DMN is shown in red,
the SN in blue and the CEN in green. Based on this work and others, a
model has been proposed of the function of the insula, including

bottom-up detection of salient events, switching between other net-
works to facilitate access to attention and workingmemory upon de-
tection of a salient event, interaction of the anterior and posterior
insula for autonomic reactivity to salient stimuli and strong func-
tional coupling with the anterior cingulate to facilitate rapid access
to the motor system (Menon and Uddin, 2010).

Recently relationships between brain networks have been increas-
ingly studied with the advent of methods such as functional network
connectivity (Jafri et al., 2008), which examines temporal relations be-
tween components.Wewanted to explorewhether itwould bepossible
to use DCM to examine the relationship between different ICA compo-
nents from resting state data, and therefore examine the relationship
betweendifferent networks of the brain, specifically network switching.

The aim of this work is to further examine the network switching
demonstrated by Sridharan et al. (2008), and to do so by applying a
novel technique using nonlinear DCM with stochastic modelling of ICA
components from resting state data. In order to demonstrate repeatabil-
ity of our findings we also apply this analysis to an independent dataset.

Methods

Weused two different datasets for this analysis. The first datasetwas
acquired at Bangor University, and the second was from an open access
database.

Participants – data acquired in Bangor University

Participants were 20 healthy male participants, mean age 29.6 (SD
11.2) and 22 healthy female participants, mean age 35.8 (SD 12.7).
The local research ethics committee approved the study.

Fig. 1. In order to overcomedifficulties in identifying components and in determining the optimumnumber of components in an ICA analysis, it is nowpossible to spatially constrain an ICA
analysis by supplying templates of the networks of interest (Lin et al., 2010). The templates used to define the resting state networks in this analysis are displayed as such: Thedefaultmode
network (DMN) is shown in red, the salience network (SN) in blue and the central executive network (CEN) in green. We display slices at z = −22,−12, 8, 28, 48 and 68.

Fig. 2.DCM tests models of connectivity against each other to find the one that has the highest probability of explaining the data.We tested threemodels in our resting state data.Model 1
has nonlinear modulations by the default mode network (D), and these are indicated with green lines. Model 2 has nonlinear modulations by the salience network (S), and these are in-
dicated in blue lines. Model 3 has nonlinear modulations by the central executive network (C), and these are indicated with red lines.
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Participants – NITRC 1000 Functional Connectomes Project

These are freely available resting state data on the NITRC Web site
(http://fcon_1000.projects.nitrc.org/indi/pro/nki.html). On this Web
site new data are uploaded as they are acquired on a five weekly

basis. We included the data acquired during weeks 1 through 35 and
the participants aged between 20 and 30 in order to be comparable to
previous work and to find the typical result in a population of young
adults. The dataset comprised 24 male participants, mean age 23.2 (SD
2.7) and 20 female participants, mean age 24.6 (SD 3.44).

Fig. 3. Results from our constrained independent component analysis (ICA) on data from Bangor University. Component 1 (top) represents the central executive network (CEN), compo-
nent 2 (middle) the default mode network (DMN) and component 3 (bottom) the salience network (SN). The EPI data have been normalised to Montreal Neurological Institute (MNI)
space, the bottom slice is Z = −72, each subsequent slice increases Z by 6 mm up to Z = 108. The colour bars represent the t-value of the BOLD signal.

http://fcon_1000.projects.nitrc.org/indi/pro/nki.html
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Resting state sessions

For the resting state scans participants rested in the scanner
with their eyes open, they were not given any specific instruc-
tions other than to keep as still as possible. Nothing was

displayed to them during this time and other than scanner
noise there were no additional auditory stimuli. For the Bangor
dataset resting state data were collected for five minutes, whilst
with the NITRC data, resting state scans were acquired for ten
minutes.

Fig. 4. Results from our constrained independent component analysis (ICA) on data from the NITRC 1000 Functional Connectomes Project. Component 1 (top) represents the central ex-
ecutive network (CEN), component 2 (middle) the default mode network (DMN) and component 3 (bottom) the salience network (SN). The EPI data have been normalised to Montreal
Neurological Institute (MNI) space, the bottom slice is Z = −72, each subsequent slice increases Z by 6 mm up to Z = 108. The colour bars represent the t-value of the bold signal.
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Fig. 5. Comparison of the CEN component between the two datasets. The left image displays Bangor N NITRC and the right image displays Bangor b NITRC. All images are
thresholded at p b 0.05 (FWE) with an extent threshold of 50, so all clusters are significant at p b 0.0001 (FWE). The EPI data have been normalised to Montreal Neurological
Institute (MNI) space, the bottom slice is Z = −72, each subsequent slice increases Z by 6 mm up to Z = 108. The colour bars represent the t-value of the BOLD signal.

Fig. 6. Comparison of the DMN component between the two datasets. The left image displays Bangor b NITRC and the right image displays Bangor b NITRC. All images are
thresholded at p b 0.05 (FWE) with an extent threshold of 50, so all clusters are significant at p b 0.0001 (FWE). The EPI data have been normalised to Montreal Neurological
Institute (MNI) space, the bottom slice is Z = −72, each subsequent slice increases Z by 6 mm up to Z = 108. The colour bars represent the t-value of the bold signal.
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Magnetic resonance imaging – data acquired in Bangor University

Images were acquired using a single-shot echo-planar pulse se-
quence on a 3 T Phillips Achieva scanner (Eindhoven, Netherlands).
Each three-dimensional volume comprised 35 contiguous axial slices
in an ascending order (TR/TE = 2000/30 ms, 3.0 mm by 3.0 mm in-
plane resolution, slice thickness 3.0 mm). A high-resolution T1-
weighted structural image was also collected for each participant to as-
sist with registration to standard stereotactic space (TR/TE = 14/4 ms,
1.0 mm by 1.0 mm in-plane resolution, slice thickness 1.0 mm).

During the resting state condition, 150 volumes were acquired. No
volumeswere discarded before analysis, as the Philips scanner automat-
ically excluded T1 magnetisation equilibrium volumes.

Magnetic resonance imaging–NITRC 1000 Functional Connectomes Project

Images were acquired using a single-shot echo-planar pulse se-
quence on a 3 T Siemens Magnetom Trio Tim scanner. Each three-
dimensional volume comprised 38 axial slices in an interleaved order
(TR/TE = 2500/30 ms, 3.0 mm by 3.0 mm in-plane resolution, slice
thickness 3.0 mm). A high-resolution T1-weighted structural image
was also collected for each participants to assist with registration to
standard stereotactic space (TR/TE = 8.2/3.5 ms, 1.0 mm by 1.0 mm
in-plane resolution, slice thickness 1.0 mm).

During the resting state condition, 260 volumes were acquired. In
order to exclude T1 magnetisation equilibrium effects the first 10 time
points were excluded. For consistency between datasets we retained
the following 150 time points for analysis.

Image analysis

The preprocessing was carried out using Statistical Parametric Map-
ping (SPM8) (http://www.fil.ion.ucl.ac.uk/spm). Data were slice timing

corrected and realigned to the first volume. The anatomical image was
coregistered to the mean functional image and then segmented using
the ‘New Segment’method into greymatter, white matter and cerebro-
spinal fluid (CSF). Functional data were then normalised to standard
space and smoothed using DARTEL (Ashburner, 2007). A group-
specific structural template was created for both datasets to perform
this analysis. For functional connectivity analyses of resting state data
it is important to regress out motion and physiological parameters,
however this is not necessary for ICA since it mixes the spatial informa-
tion andmakes it more difficult for the ICA to separate artifact from sig-
nal. The nature of the ICA analysis means that any noise will be placed
into separate components and it is therefore not necessary to perform
this step beforehand. We therefore use the data preprocessed in the
usual way for fMRI.

Independent component analysis

Independent component analysis was carried out using the Group
ICA of fMRI Toolbox (GIFT, http://mialab.mrn.org/software/gift/).
Constrained ICA was applied for this analysis in order to identify
the networks of interest. This means that templates are supplied
and the constrained ICA method identifies independent compo-
nents within the data that provide a close match to the supplied
templates. Constrained ICA is a semiblind ICA method, which
means that prior information is incorporated into the estimation
process (Lin et al., 2010). This also resolves some ambiguity asso-
ciated with blind ICA and overcomes the problem of deciding
how many components to define. The semiblind ICA algorithm
assumes M source signals, and has spatial information for L
sources of interest. Only the L sources from the mixtures will be
extracted in a predefined order. Reference signals r1,…,rL are con-
structed from the spatial information about the L sources of inter-
est, and a closeness measure between extracted signal and

Fig. 7. Comparison of the SN component between the two datasets. The left image displays Bangor b NITRC and the right image displays Bangor b NITRC. All images are thresholded at p
b 0.05 (FWE) with an extent threshold of 50, so all clusters are significant at p b 0.0001 (FWE). The EPI data have been normalised to Montreal Neurological Institute (MNI) space, the
bottom slice is Z = −72, each subsequent slice increases Z by 6 mm up to Z = 108. The colour bars represent the t-value of the bold signal.

http://www.fil.ion.ucl.ac.uk/spm
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reference signal is defined to constrain the learning of the mixing
matrix.

The GIFT toolbox supplies Resting State Network Templates, which
are templates of components found from resting state data. Templates
for the DMN, SN and CEN were constructed from these templates for
use in the constrained ICA. Constrained ICA was then applied to our
data using these templates. The time courses from the ICA analysis
were used for performing the DCM analysis. Using ICA to extract repre-
sentative networks has beendonepreviously and been found to provide
better representations of networks than taking the average or first
eigenvariate of a large template (Craddock et al., 2012; Shirer et al.,
2012; Smith et al., 2011; Yu et al., 2012).

We chose to use constrained ICAwith these templates in order to ob-
tain the best possible independent component to represent our net-
works, avoid issues with deciding on the number of components and
bias in the analysis from having to decide on which component to use.

In our case we have three sources of interest, one for each compo-
nent/network we are interested in, therefore L is three. For our analysis
the closeness measure was set to 0.08, which is the default and mini-
mum value for this parameter.

Dynamic causal modelling

DCM12 analysis was performed using SPM12b (http://www.fil.ion.
ucl.ac.uk/spm). Three models were specified for each participant, all
with fully connected intrinsic models and no input entering the system.
The first model specified nonlinear modulation of the DMN on both the
bidirectional connections between the SN and the CEN. The second
model specified nonlinearmodulation of the SN on both the bidirection-
al connections between the DMN and the CEN. The third model speci-
fied nonlinear modulation of the CEN on both the bidirectional
connections between the DMN and the SN. The models are illustrated
in Fig. 2. These models test whether it is the DMN driving switching be-
tween the SN and CEN, the SN driving the switching between DMN and
CEN or the CEN driving switching between DMN and SN. Stochastic

Table 1
Results of comparing the CEN component extracted for the Bangor dataset and the NITRC
dataset. We present the clusters that were found in this table. Results are thresholded at
p b 0.05 (FWE) with an extent threshold of 50, so all clusters are significant at
p b 0.0001 (FWE). This table lists the results for the comparisons Bangor N NITRC and
also Bangor b NITRC.

Cluster Maxima Label Number of voxels in cluster

Bangor N NITRC
−39−60 36 Left angular gyrus 219

Left middle occipital gyrus
Left inferior parietal lobe

21−3 18 Right caudate 106
Right thalamus
Right putamen

Bangor b NITRC
−27 15 54 Left middle frontal gyrus 4366

Right middle frontal gyrus
Left superior frontal gyrus
Right superior frontal gyrus
Left precentral gyrus
Left supplementary motor area
Right supplementary motor area
Left medial frontal gyrus
Right medial frontal gyrus
Left inferior frontal gyrus
Left paracentral lobule
Right precentral gyrus
Right inferior frontal gyrus

−33−78 39 Left middle occipital gyrus 4647
Right angular gyrus
Right middle temporal gyrus
Left middle temporal gyrus
Right middle occipital gyrus
Left inferior parietal lobe
Left cerebellum crus 1
Left superior parietal lobe
Right inferior parietal lobe
Right supramarginal gyrus
Left inferior temporal gyrus
Right superior parietal
Left superior occipital gyrus
Left precuneus
Left cerebellum crus 2
Right superior occipital gyrus
Left inferior occipital gyrus
Right inferior temporal gyrus
Right superior temporal gyrus
Right precuneus

−30−39−12 Left fusiform gyrus 63
Left parahippocampal gyrus

Table 2
Results of comparing the DMN component extracted for the Bangor dataset and the
NITRC dataset. We present the clusters that were found in this table. Results are
thresholded at p b 0.05 (FWE) with an extent threshold of 50, so all clusters are
significant at p b 0.0001 (FWE). This table lists the results for the comparisons
Bangor N NITRC and also Bangor b NITRC.

Cluster maxima Label Number of voxels in cluster

Bangor N NITRC
69−39 24 Right supramarginal gyrus 60

Right postcentral gyrus
Right superior temporal gyrus

−63−57 3 Left middle temporal gyrus 67
Left inferior temporal gyrus

33−51−36 Right cerebellum crus 1 212
Right cerebellum
Right fusiform gyrus

6 −57 24 Right precuneus 50
Left precuneus
Right posterior cingulate
Left posterior cingulate

9 −87−36 Right cerebellum crus 2 55
Right cerebellum
Right cerebellum crus 1

Bangor b NITRC
−6 −51 39 Left superior frontal gyrus 2899

Right superior frontal gyrus
Left medial frontal gyrus
Left middle frontal gyrus
Right medial frontal gyrus
Right middle frontal gyrus
Right supplementary motor area
Left supplementary motor area
Right inferior frontal gyrus
Right insula

9 −63 15 Right calcarine fissure 5625
Left middle occipital gyrus
Left calcarine fissure
Left lingual gyrus
Right lingual gyrus
Left cuneus
Right angular gyrus
Right cuneus
Right middle occipital gyrus
Right superior occipital gyrus
Left superior occipital gyrus
Right precuneus
Right middle temporal gyrus
Left precuneus
Right superior parietal lobe
Left fusiform gyrus
Left parahippocampal gyrus
Right inferior parietal lobe

60 3 −18 Right middle temporal gyrus 175
Right middle temporal pole
Right superior temporal gyrus
Right superior temporal pole

−60−6 −15 Left middle temporal gyrus 65
Left superior temporal gyrus

http://www.fil.ion.ucl.ac.uk/spm
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DCM was used to estimate the models, which employs non-linear sto-
chastic differential equations.

Results

Independent component analysis

The results of the constrained ICA analysis for the Bangor University
data are displayed in Fig. 3. Component 1 (top left) is the CEN, compo-
nent 2 (top right) the DMN and component 3 (bottom left) the SN. In
order to test how well our extracted components represent the net-
workswe correlated our binarymasks used in the constrained ICA anal-
ysis with the extracted component to test howmany voxels correspond
in the mask and result. Performing a correlation with the CEN mask
used in the analysis there is a 32.6% correlation with the derived CEN
component. There is a 54.6% correlation between the DMN mask and
the derived DMN component. The SN derived component has a 52.9%
correlation with the SN mask.

The results of the constrained ICA analysis for the NITRC 1000 Func-
tional Connectomes Project data are displayed in Fig. 4. Component 1
(top left) is the CEN, component 2 (top right) the DMN and component
3 (bottom left) the SN. The constrained ICA analysis provided a 45.0%
correlation between the derived CEN component and the CEN mask.
There is a 58.7% correlation between the derived DMN component
and the DMNmask. The derived SN component has a 49.8% correlation
with the SN mask.

Differences in the components between the two datasets are
displayed in Figs. 5–7, all p b 0.05 (FWE), extent threshold of 50. The re-
sults are also documented in Tables 1–3. In this test we are comparing
the components we found in both groups using an independent sam-
ples t-test for differences. In our case the null hypothesis is no difference
between the components for both datasets.

When comparing the CEN component there are two clusters where
the Bangor dataset displays greater activity than the NITRC dataset.
There is one cluster in the parietal lobe and the angular gyrus, the
other is in the caudate, thalamus and putamen. The NITRC dataset dis-
plays greater activity than the Bangor dataset in three clusters when
comparing the CEN component. The results include some of the frontal,
temporal parietal and occipital lobes.

Five clusters display greater activity in the Bangor dataset than the
NITRC dataset when comparing the DMN component. The first clusters
cover mostly the temporal lobe with some cerebellum. In four clusters
there is greater activity in the NITRC dataset than the Bangor dataset
when comparing the DMN component. The results cover parts of the
frontal parietal and occipital lobes.

The Bangor dataset displays greater activity than the NITRC dataset
in two clusters when comparing the SN component. These results
cover parts of the frontal and temporal lobes. There are four clusters
where the NITRC dataset displays greater activity than the Bangor
dataset when comparing the SN component. The clusters cover mostly
the frontal lobe with some parietal, temporal and occipital lobe
differences.

For further details of these results see Tables 1, 2 and 3.

Dynamic causal modelling

The results of the BMS analysis for the Bangor University data are
displayed in Fig. 8. This figure displays the results of the BMS at the in-
dividual model level. The figures show the expected posterior model
probability and the exceedance probability, which is the probability
that a model is more likely than any other model in model space. Re-
cently the protected exceedance probability has been introduced as a
summary statistic (Rigoux et al., 2014). This quantifies the probability
that any onemodel ismore frequent than the others, above and beyond
chance. Thewinningmodel from the BMS analysis ismodel 2, themodel
with nonlinear modulations by the salience network. The exceedance

probabilities for the threemodels are 0.2162, 0.5138 and 0.2700 respec-
tively. The protected exceedance probabilities are 0.3121, 0.3749 and
0.3130 respectively.

The results of the BMS analysis for the NITRC 1000 Functional
Connectomes Project data are displayed in Fig. 9. The winning model
from the BMS analysis is the model with nonlinear modulations by
the salience network. The exceedance probabilities for each model are
0.0282, 0.9385 and 0.0333 respectively. The protected exceedance
probabilities are 0.0684, 0.9252 and 0.0064 respectively.

The results of Bayesian parameter averaging for both datasets are
displayed in Table 4. The intrinsic connections all have a posterior prob-
ability larger than 0.95 for both datasets. The posterior probabilities for
the nonlinearmodulations are not as high, however they are larger than
0.7. The results of an independent samples t-test are also presented
here. Using a threshold of p b 0.001 there are significant differences in
the intrinsic connectivity between the DMN and the CEN, however
there are no significant differences in the nonlinear modulations.

Discussion

This work has confirmed the finding of Sridharan et al. (2008) that
the SN is key for switching between the CEN and the DMN. We have

Table 3
Results of comparing the SN component extracted for the Bangor dataset and the NITRC
dataset. We present the clusters that were found in this table. Results are thresholded at
p b 0.05 (FWE) with an extent threshold of 50, so all clusters are significant at
p b 0.0001 (FWE). This table lists the results for the comparisons Bangor N NITRC and
also Bangor b NITRC.

Cluster maxima Label Number of voxels in cluster

Bangor N NITRC
−51−48 33 Left supramarginal gyrus 134

Left angular gyrus
Left inferior parietal lobe
Left middle temporal gyrus
Left superior temporal gyrus

48 39−18 Right inferior frontal gyrus 62
Right middle frontal gyrus

Bangor b NITRC
6 −3 63 Right supplementary motor area 6170

Left middle frontal gyrus
Left supplementary motor area
Left superior frontal gyrus
Right superior frontal gyrus
Right supramarginal gyrus
Left precentral gyrus
Right middle frontal gyrus
Right postcentral gyrus
Left precuneus
Left postcentral gyrus
Right precentral gyrus
Right superior temporal gyrus
Left paracentral lobe
Right precuneus
Left medial frontal gyrus
Left middle cingulate
Right paracentral lobe
Right superior parietal lobe
Left superior parietal lobe

−57−54 24 Left middle temporal gyrus 345
Left inferior parietal lobe
Left superior temporal gyrus
Left angular gyrus
Left supramarginal gyrus
Left middle occipital gyrus

−57 6 6 Left inferior frontal gyrus 121
Left superior temporal pole
Left superior temporal gyrus
Left precentral gyrus
Left postcentral gyrus

33 18 6 Right insula 78
Right putamen
Right inferior frontal gyrus



obtained this result using resting state data; Sridharan and colleagues
saw this effect with resting state data and also with task data. The nov-
elty of our work is in demonstrating the same effect using a different
modelling technique, DCM as opposed to Granger causality, further val-
idating the role of the SN in switching between CEN and DMN. Our
novel approach, to extract the ICA time courses to represent the entire
network, rather than look at regions of interest from the networks,
also allowed for independent verification, and shows that the result is
not dependent on initial seed-point or ROI selection.

We chose to use a constrained ICA analysis in order to obtain the best
representation of each network we were interested in studying. This
overcomes issues with deciding on the number of components for the
ICA decomposition and potential bias in having to choose components.
Using this method if two groups are to be compared then the ICA can be
performed separately for each group without bias and this will capture
variability in the networks between different groups. We chose to use

Fig. 8. Results of Bayesian Model Selection for the data from Bangor University showing
that model 2, the model with salience network modulating connections between the de-
fault mode network and the central executive network, fitted the data best compared to
models 1 and 3. (Model 1: the default mode networkmodulates the connections between
the Salience Network and the Central Executive Network. Model 3 the central executive
networkmodulates the connections between the default mode network and salience net-
work.) These results suggest that DCM can be used on resting state data to investigate net-
work modulations.

Fig. 9. Results of Bayesian Model Selection for the data from the NITRC 1000 Functional
Connectomes Project. Model 2, the model with salience network modulating connections
between the default mode network and the central executive network, was again the best
fit to the data, outperforming both of the other model. (Model 1: the default mode net-
work modulates the connections between the salience network and the central executive
network. Model 3 where the central executive network modulates the connections be-
tween the default mode network and salience network.) Combined with the results in
Fig. 5, these results confirm that DCM can be used on resting state data to investigate net-
work modulations.
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nonlinear DCM in order to study the network switching. We chose this
approach because it is possible to directly test for the effect of a network
on the connectivity on other networks, demonstrating that the network
is responsible for changing the connectivity and therefore network
switching. We also made use of stochastic DCM in order to allow us to
analyse resting state data. Nonlinear DCM provides the advantage that
it is possible to study non-stationarities in resting state connectivity
without assumptions regarding window length, as in a sliding window
correlation analysis.

Anatomical connectivity within and outside the salience network
has been studied previously (Craig, 2002; Critchley et al., 2004;
Mesulam, 1998; Mesulam and Mufson, 1982; Mufson and
Mesulam, 1982). The ACC and the insula, the components of the
SN, have known reciprocal connectivity with one another. They are
also reciprocally connected with motor and sensory areas of the
brain. This makes these regions ideally placed to receive the inputs
required to initiate switching between the DMN and the CEN.
These regions have also shown to be co-activated in different cogni-
tively demanding tasks (Dosenbach et al., 2006). Previous work has
also shown that the integrity of white matter from the SN disrupts
DMN activation/deactivation (Bonnelle et al., 2012). The importance
in understanding these connections comes from previous work sug-
gesting that weak salience detection and mapping of goal-relevant
external stimuli and internal mental events from, and into, the SN
play a major role in psychopathology (Menon, 2011), and impaired
insula, DMN and CEN activity has been linked to psychosis in schizo-
phrenia (Manoliu et al., 2013). Manoliu et al. demonstrated in-
creased functional connectivity between the DMN and CEN in
schizophrenia that is related to hallucination severity. In addition
the time-lagged connectivity between SN and DMN/CEN was re-
duced and decreased activity of the salience network was found to
be associated with hallucinations and increased functional connec-
tivity between the DMN and CEN.

Sridharan and colleagues highlighted the role of a particular class of
neurons present in the salience network that facilitates the network
switching process. These neurons are the von Economo neurons,
(VENs) which are only found within the salience network (Watson
et al., 2006). It has been proposed that “the function of the VENs may
be to provide a rapid relay to other parts of the brain of a simple signal
derived from information processed within FI and ACC” (Allman et al.,
2005). FI is the fronto-insular cortex, comprising the ventro-lateral pre-
frontal cortex and anterior insula. Sridharan et al. (2008) propose that
these neurons constitute the neuronal basis of controlling signals gener-
ated by the salience network. Anatomical and neuronal evidence con-
verges to suggest that the brain regions comprising the salience
network are ideally positioned for facilitating this network switching.
The relationship, demonstrated by Sridharan and colleagues, between
the networks is weaker in children, together with weaker structural
connectivity. This demonstrates that functional and structural

maturation of these pathways is a critical component of the process by
which brain networks mature (Uddin et al., 2011).

This work has demonstrated a novel application of DCM using data
from an ICA analysis. The analysis presented here could have applica-
tions for many different psychiatric and neurological patient groups
where network switching may be impaired. The technique of using
ICA time courses may be used in many different contexts to investigate
the relationships between different networks of the brain. Analyses
such as these would complement the functional network connectivity
work previouslymentioned, aswell as otherwork done comparing con-
nectivity during rest and task conditions (Arbabshirani et al., 2012) in
healthy participants and in patients with schizophrenia (Arbabshirani
and Calhoun, 2011;White et al., 2010). Using DCM to examine the rela-
tionship between the time series will provide further information re-
garding how these networks interact and switch when a different task
is being completed and a different network needs to be recruited.

Differences in the ICA networks between the two datasets are poten-
tially due to the age of the participants. The NITRC dataset comprised
healthy young adults, whereas the Bangor dataset comprised some
older participants. It has been demonstrated that ageing results in re-
duced functional connectivitywithin networks but increased connectiv-
ity between networks (Geerligs et al., 2012). It would be of interest to
apply this analysis to data from an older population in order to see the
effect on the connectivity between the networks and how the network
switching is affected. It is worth noting, however, that despite these dif-
ferences in the cohorts of both groups and the ICA differences, that the
results of the BMS are consistent for both datasets. The intrinsic connec-
tivity parameters displayed some significant differences between both
datasets however there were no significant differences in the nonlinear
modulations.

As mentioned previously these networks are observed when resting
state data are decomposed, thereforewe believe that these data are use-
ful for studying phenomena such as this. However if a specific network
is of interest it would also be useful to have a task that engages that net-
work. An interesting extension of this work would be to perform this
analysis on data where a task that engages the salience network is
being performed, typically a visual or auditory oddball task. It would
then be possible to incorporate bilinear modulations in order to assess
the effect of task on the connectivity between these three networks.

In conclusion, we have shown using a novel technique of DCM anal-
ysis applied to ICA defined networks it is possible to investigate connec-
tivity and modulation within these networks. In particular, we have
independently validated the previous finding that the salience network
is involved in the neural process behind switching between DMN and
the CEN. We therefore suggest that the techniques discussed in this
papermay havewidespread use in examining the relationship between
different networks of the brain, in a user independent manner, in both
healthy individuals and patients with neurological and psychiatric
disease.

Table 4
Bayesian parameter average values for the optimummodel for both the Bangor dataset and the NITRC dataset. The optimummodel found by BMS is themodel with full intrinsic connec-
tivity and nonlinear modulations of the SN on the connectivity between the DMN and CEN. We list both the intrinsic connectivity values and the nonlinear modulations. We also include
the results of an independent samples t-test for differences between the datasets and the p-value for the t-test.

Bangor dataset NITRC dataset

Parameter – intrinsic connections Connection strength (posterior probability) Connection strength (posterior probability) t-test (p-value)
DMN → SN 0.0287 (1.0000) −0.0064 (1.0000) −3.3889 (0.0037)
DMN → CEN 0.0418 (1.0000) 0.0409 (1.0000) −5.1049 (b0.0001)
SN → DMN 0.0277 (1.0000) 0.0012 (0.9667) −3.1431 (0.0018)
SN → CEN −0.0004 (0.9978) −0.0159 (1.0000) 3.0698 (0.0818)
CEN → DMN 0.0423 (1.0000) 0.0461 (1.0000) −5.4845 (b0.0001)
CEN → SN −0.0163 (1.0000) −0.0097 (1.0000) 1.8232 (0.0045)

Parameter – nonlinear modulations Connection strength (posterior probability) Connection strength (posterior probability)
SN → (DMN → CEN) −0.0448 (0.7517) 0.0779 (0.8036) −0.9509 (0.8504)
SN → (CEN → DMN) 0.0877 (0.9124) 0.0561 (0.7287) 0.1912 (0.3444)
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