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Abstract

Animal experiments indicate that after repeated pairings of palatable food receipt and cues that

predict palatable food receipt, dopamine signaling increases in response to predictive cues, but

decreases in response to food receipt. Using functional MRI and mixed effects growth curve

models with 35 females (M age = 15.5 ± 0.9; M BMI = 24.5 ± 5.4) we documented an increase in

BOLD response in the caudate (r = .42) during exposure to cues predicting impending milkshake

receipt over repeated exposures, demonstrating a direct measure of in vivo cue-reward learning in

humans. Further, we observed a simultaneous decrease in putamen (r = −.33) and ventral pallidum

(r = −.45) response during milkshake receipt that occurred over repeated exposures, putatively

reflecting food reward habitation. We then tested whether cue-reward learning and habituation

slopes predicted future weight over 2-year follow-up. Those who exhibited the greatest escalation

in ventral pallidum responsivity to cues and the greatest decrease in caudate response to milkshake

receipt showed significantly larger increases in BMI (r = .39 and −.69 respectively). Interestingly,

cue-reward learning propensity and food reward habituation were not correlated, implying that

these factors may constitute qualitatively distinct vulnerability pathways to excess weight gain.

These two individual difference factors may provide insight as to why certain people have shown

obesity onset in response to the current obesogenic environment in western cultures, whereas

others have not.
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1. INTRODUCTION

Animal experiments indicate that firing of dopamine (DA) neurons projecting to the

striatopallidal complex initially occurs in response to receipt of palatable food, but after

repeated exposures, shifts to occur in response to cues that predict impending food receipt

(Day et al., 2007; Schultz et al., 1997; Tindell et al., 2004). Theorists posit this shift during

cue-reward learning acts to either update knowledge regarding the predictive cues or

attribute reward value to the cues themselves thereby guiding behavior (Balleine et al., 2008;

Robinson & Berridge, 1993; Smith et al., 2009; Flagel et al., 2010). The incentive-

sensitization model indicates that greater striatopallidal responsivity to sensitized cues

produces food ‘wanting’ and consequent overeating, echoing the processes that maintain

habitual drug use (Robinson & Berridge, 1993). In animals that readily exhibit incentive

salience toward cues that predict food reward, the cues robustly motivate behavior (Flagel et

al., 2010; Robinson & Flagel, 2009). Cross-sectional support for the incentive-sensitization

model of obesity is evident when evaluating blood oxygen level dependent (BOLD)

response to food cues in obese versus lean individuals. Compared to their lean counterparts,

overweight and obese individuals show significantly greater activation in the striatum,

orbitofrontal cortex (OFC), and amygdala in response to images of palatable food (Bruce et

al., 2010; Martin et al 2010; Nummenmaa et al., 2012; Rothemund et al., 2007; Stice et al.,

2010; Stoeckel et al. 2008) and to cues that predict impending palatable food receipt (Ng et

al., 2011; Stice et al., 2008b). In support of this data, the degree to which lean humans are

habitually eating beyond energy needs is related to greater striatal response to cues for

impending palatable food receipt (Burger & Stice 2013). Moreover, animal studies of

incentive salience indicate critical individual differences in cue-reward learning (e.g., Flagel

et al., 2010; Robinson & Flagel 2009). Although elevated reward region responsivity to food

cues has predicted future weight gain (Chouinard et al., 2010; Demos et al., 2012; Yokum et

al., 2011), research has not tested for individual differences in cue-reward learning or

whether greater reward-cue learning predicts future weight gain, as implied by the incentive-

sensitization model. The prediction of weight gain would represent a rigorous behavioral test

of the impact of this potential neural vulnerability factor. Given that virtually all humans

consume energy-dense foods on occasion, but only 30% become obese, it vital to test

whether some individuals show elevated reward-cue learning, which may set the stage for

incentive sensitization processes that lead to overeating.

Habitation to repeated intake of one food (i.e., sensory specific satiety) is thought to impact

weight regulation (e.g., Epstein et al., 2009), however, the vast majority of animal and

human studies use acute food intake as the outcome (see Raynor & Epstein 2001 for

review). The mesolimbic neuroadaptive processes associated habitation to reward receipt

from food has not been investigated thoroughly. One positron emission tomography study

found that over repeated tastes of chocolate, preferences and striatal response food declined

in nine ‘chocolate lovers’ (Small et al., 2001). Elucidating this process is vital given

prominent theories hypothesizing that reduced sensitivity of reward circuitry increases risk

for compensatory overeating and obesity (Volkow et al., 2008; Johnson & Kenny 2010).

Supporting this theory, obese versus lean humans have fewer striatal DA D2 receptors

(Volkow et al., 2008; deWeijer et al., 2011) and show reduced striatal response to palatable

Burger and Stice Page 2

Neuroimage. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



food intake (Babbs et al., 2013; Green et al., 2011; Stice et al., 2008a,b). Additionally,

habitual consumption of sweet foods is inversely related to striatal and amygdala response

during intake of similar foods (Burger & Stice 2012; Green & Murphy 2012; Rudenga &

Small 2012). There is evidence that this vulnerability may be acquired, as habitual energy-

dense food intake that results in weight gain decreases DA D2 receptor density and DA

sensitivity in animals (Geiger et al., 2009; Johnson & Kenny 2010) and reduces striatal

response to food receipt in humans (Stice et al., 2010). In previous decision-based reward

learning tasks, the reward feedback signal in the caudate associated with monetary gain

decreased as learning progressed (Delgado et al., 2005). This indicates habituation of reward

feedback during reward-based learning. These data imply that striatal habituation can be

observed in an acute setting during a reward-learning task. Although lower reward region

responsivity to palatable food receipt has predicted future weight gain for individuals at

genetic risk for compromised DA signaling in reward circuitry (Stice et al., 2008a), research

has not tested for individual differences in propensity for striatal habituation to palatable

food receipt in humans or whether greater habituation propensity predicts weight gain. As

most humans consume energy-dense foods at least periodically, but only some become

obese, it is vital to investigate individual difference factors that may set the stage for a

blunting of reward circuitry responsivity to habitual palatable food intake that may

contribute to overeating.

To investigate in vivo individual differences in both cue-reward learning and food receipt

reward habituation, we used fMRI during repeated exposures to milkshake and tasteless

solution receipt that were paired with unconditioned cues and modeled the data to assess

change BOLD response over repeated exposures. We tested the hypotheses that 1)

striatopallidal response to cues that predicted impending palatable food receipt would

increase after repeated exposures (cue-reward learning); and 2) striatopallidal response to

palatable food receipt would decrease after repeated milkshake tastes (food reward

habituation). We also assessed BMI at baseline and at 6-month, 1-year, and 2-year follow-

ups, which allowed us to test the hypotheses that individuals who show a greater cue-reward

learning propensity and a greater food reward habituation propensity showed elevated future

increases in BMI.

2. METHODS

2.1 Participants & Procedures

Healthy adolescent girls (n = 35; M age = 15.5 ± 0.94; M BMI = 24.5 ± 5.35, range =

17.3-38.9) underwent an fMRI session while viewing cues (geometric shapes: diamond,

square, circle) that predicted impending receipt of a palatable milkshake or a tasteless

solution. The sample consisted of: 2% Asian/Pacific Islanders, 2% African Americans, 86%

European Americans, 5% Native Americans, and 5% mixed racial heritage. We excluded

those who reported binge eating or compensatory behaviors (e.g., vomiting for weight

control) in the previous three months, regular use of psychotropic medications or illicit

drugs, head injury with a loss of consciousness or current Axis I psychiatric disorder per

Diagnostic and Statistical Manual of Mental Disorders, 4th edition criteria (1994). Informed
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consent was obtained from parents and assent from adolescents. The local Institutional

Review Board approved this study.

On the day of the baseline assessment, participants were asked to consume their regular

meals but to refrain from eating or drinking for at least 4-6 hr immediately preceding their

imaging session for standardization. This deprivation period was selected to capture the

timing that most individuals experience as they approach their next meal, which is a time

when individual differences in food reward would logically impact caloric intake. Although

participants were not observed during this time, they reported a mean fasting time of 7.6 ±

4.6 hours prior to the scan time. At baseline participants completed the fMRI paradigm, as

well as a diagnostic screen and surveys. Before the baseline imaging session, participants

were familiarized with the milkshake conditioning paradigm on a laptop computer by

research staff. This included showing participants images of the shapes and explaining that

tastes of fluids would sometimes follow the visual cues. No tastants were consumed prior to

imaging session. Measures of height and weight were made at baseline and at 6 month, 1-

year and 2-year follow-ups.

2.2 Body Mass

The body mass index (BMI; kg/m2) was used to reflect height-adjusted weight. After

removal of shoes and coats, height was measured to the nearest millimeter using a

stadiometer and weight was assessed to the nearest 0.1 kg using a digital scale. Two

measures of height and weight were obtained and averaged. Height and weight measures

allowed us to calculate BMI at each assessment.

2.3 fMRI acquisition and paradigm

Scanning was performed by a Siemens Allegra 3 Tesla head-only MRI scanner. A standard

birdcage coil was used to acquire data from the entire brain. A thermo foam vacuum pillow

and additional padding was used to restrict head motion. Functional scans used a T2-

weighted gradient single-shot echo planar imaging (EPI) sequence (TE=30 ms, TR=2000

ms, flip angle=80°) with an in plane resolution of 3.0 × 3.0mm2 (64×64 matrix; 192 ×

192mm2 field of view). To cover the whole brain, thirty-two 4-mm slices (interleaved

acquisition, no skip) were acquired along the AC-PC transverse, oblique plane as

determined by the midsagittal section. Structural scans were collected using an inversion

recovery T1 weighted sequence (MP-RAGE) in the same orientation as the functional

sequences to provide detailed anatomic images aligned to functional scans. High-resolution

structural MRI sequences (FOV = 256 × 256mm2, 256×256 matrix, thickness = 1.0 mm,

slice number ≈160) were also acquired.

The milkshake conditioning paradigm was designed to examine blood oxygen level

dependent (BOLD) response when receiving milkshake or the tasteless solution or in

response to cues signaling impending receipt of these two beverages. The milkshake (270

kcals, 13.5g fat, 28g sugar per 150mL) was prepared with 60g of vanilla Häagen-Dazs® ice

cream, 80mL of 2% milk, and 15mL of Hershey’s® chocolate syrup. The tasteless solution

was designed to mimic the natural taste and osmolality of saliva, consisted of 25 mM KCl

and 2.5 mM NaHCO3. Three black shapes (diamond, square, circle) were presented that
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signaled the impending delivery of 0.5 mL of a chocolate milkshake, a tasteless solution, or

no fluid. Pairing of cues with stimuli was randomly determined across participants. On 50%

of the milkshake and tasteless solution trials, the taste was not delivered as expected to allow

the investigation of the BOLD response to the cue that was not confounded with response to

the actual receipt of the taste (unconfounded trials) and to possibly increase incentive

salience attribution (Anselme et al., 2012). The events of interest in this paradigm were: (a)

receipt of milkshake (milkshake receipt), (b) milkshake cue followed by no milkshake taste

(unconfounded milkshake cue), (c) receipt of tasteless solution (tasteless solution receipt),

and (d) tasteless solution cue followed by no tasteless solution (unconfounded tasteless

solution cue). Cues were presented with a digital projector/reverse screen display system at

the back end of the MRI scanner bore, which was visible via a mirror mounted on the head

coil. Tanstants were delivered using programmable syringe pumps (Braintree Scientific

BS-8000, Braintree, MA) and a customized manifold attached to the head coil that fit into

the participants’ mouths and delivered the taste to a consistent tongue segment. All stimuli

operated through MATLAB (Mathworks, Inc., Sherborn, MA) to ensure consistent volume,

rate, and timing. A timeline of the paradigm can be seen in Figure 1. Cues were presented in

a jittered time span for 5–12 s (M = 7 s). 4–11 s (M = 7 s) after onset of the cue, taste

delivery occurred for duration of 5 s. The taste cue remained on the screen for 8.5 s after the

taste delivery onset (3.5 s after the taste stopped). Participants were instructed to swallow

when the cue disappeared. The next cue appeared for a jittered time span of 1–5 s after the

previous cue went off. The use of jitter timing decreased the predictability of the stimuli and

insured stimuli were presented at various time points relative to the slice acquisition. Each

run consisted of four trials of each condition (milkshake receipt, tasteless solution receipt

and cues predicting milkshake receipt and tasteless solution receipt). Trials were presented

in a randomized order. Participants underwent four runs, resulting in a total 16 trials of each

event of interest.

2.4 fMRI preprocessing

All fMRI data were preprocessed and analyzed using SPM8 software (Wellcome

Department of Imaging Neuroscience, London, England) in MATLAB. Prior to

preprocessing in SPM all fMRI data where manually reoriented to the AC-PC transverse

oblique plane, as determined by the midsagittal section and then skull stripped using the

brain extraction tool (BET) in FSL (FMRIB, Oxford, UK). The images were slice time

acquisition corrected to the slice obtained at 50% of the TR as to better account for the

timing differences during acquisition (Sladky et al., 2011). All images were motion

corrected, realigned to the mean, normalized to the standard Montreal Neurological Institute

(MNI) template brain implemented in SPM8 (ICBM152) at a voxel size of 3mm3 for

functional images and 1mm3 for structural images. Data were spatially smoothed with a

6mm full width at half maximum kernel and were high-pass filtered with a cutoff of 128 s to

remove low frequency fluctuation in the BOLD signal.

Motion parameters were included as covariates of no interest. Any participant that showed

excessive head movement (>2 mm) was excluded from that analysis. One participants’ fMRI

data were not analyzed because they showed excessive head movement during 3 of the 4
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runs of the paradigm. Two other participants had one run excluded, but data from their runs

that met motion criteria were analyzed.

Statistical analyses

Condition-specific effects at each voxel were estimated using general linear models. Vectors

of the onsets for each event of interest were compiled and entered into the design matrix so

that event-related responses could be modeled by the canonical hemodynamic response

function (HRF), consisting of a mixture of two gamma functions that emulate the early peak

at 5 s and the subsequent undershoot. Temporal derivatives of the HRF were also included

to obtain a better model of the data (Henson et al., 2002).

Data were extracted from individual-level contrasts (cue predicting milkshake receipt > cue

predicting tasteless solution receipt) to reflect response to an arbitrary cue predicting

milkshake receipt and (milkshake receipt > tasteless solution receipt) to reflect response to

milkshake receipt. A minimum of four data points is necessary to determine whether a linear

term adequately captures general increases or decreases over time or whether it is necessary

to fit higher order terms (Singer & Willett, 2003), thus we statistically smoothed the data to

four segments across the paradigm. Specifically, BOLD response based on the above

contrasts were averaged from the 1st- 4th events, 5th- 8th events, 9th-12th events and 13th-16th

events, resulting in data from four separate learning segments during the paradigm.

Averaging across every four events of the scan allowed us to assess change over repeated

exposures while maintaining some aggregate BOLD signal at each point thereby minimizing

effects of possible signal spikes to an individual stimulus. Parameter estimates from the four

learning segments (e.g., 1-4th events, 5th-8th events, etc…) were individually extracted from

the anatomical regions of interest (ROIs) including the caudate, putamen, and ventral

pallidum using the masks from the WFUPickAtlas (Maldjian et al., 2003) for both contrasts

of interests [(cue predicting milkshake receipt > cue predicting tasteless solution receipt) and

(milkshake receipt > tasteless solution receipt)]. This resulted in the average activity from

each of the ROIs at four learning segments for both response to the cue and response to

receipt. These ROIs were selected based on previous animal and human data indicating that

they are central in encoding reward and show pronounced neuroadpatatiion during reward-

based conditioning processes, in theory contributing to the sensitization to cues (e.g,

Balleine et al., 2008; Day et al., 2007; Flagel et al., 2010; Schultz et al., 1997; Smith et al.,

2009; Tindell et al., 2004; Robinson & Berridge 1993).

Model Building—Extracted fMRI data from each of the ROIs was used in random

intercept, mixed effects growth analyses (SAS Inc. ver. 9.3, Cary, NC; Singer 1998) to

model group-level cue-reward learning and receipt habituation over the scan session. These

models offer a flexible and powerful technique for modeling change in continuous variables

and use maximum likelihood estimation to accommodate missing data (Singer 1998). In all

mixed effects growth models intercepts were treated as random and slopes were treated as

fixed. Typically there is reduced sensitivity if all effects are modeled as random.

Accordingly, we modeled slopes as fixed effects due to the relatively small sample.

Following (Singer & Willet 2003), we: a) examined empirical growth plots; b) fit an

unconditional means model; c) fit an unconditional linear growth model; and d) fit
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unconditional non-linear models. We then compared the latter two models for model quality

using Akaike Information Criterion (AIC) to determine whether linear or higher-order

polynomial models fit the data better. AIC is a measure of goodness of fit relative to model

complexity (Burnham & Anderson, 2002). Relative to higher-level polynomial models,

linear growth models consistently showed a lower AIC (indicating better model quality) or

the AIC change was less than 2 (indicating not a significant change in model quality;

Burnham & Anderson, 2002), suggesting that linear terms optimally captured change in

BOLD response during conditioning. Therefore, we presented results using linear growth

models. The same process was used to build and test growth models predicting future weight

change. Individual slopes were calculated that reflected BOLD response to cues and BOLD

response to receipt over the repeated events. These slopes were then used to predict BMI

change over 2-year follow-up in mixed effects growth models, controlling for baseline BMI,

to assess whether propensity for cue-reward learning and food reward habituation predicted

weight gain. Again, slopes were treated as fixed and intercepts were treated as random.

Using the aforementioned model building techniques, again, a linear term provided the

optimal fit to the BMI change data.

Data is presented in mean ± standard deviation unless otherwise noted and a two-sided P < .

05 was considered significant. Skewness and kurtosis of data were assessed to insure

normality, and potentially overly influential data points were checked to insure effects

remained significant if those points were removed (e.g., Fig 3A,3B). Subsequent results

remain significant when statistically controlling for hours eaten prior to the scan and when

excluding those individuals with a BMI > 25. The number of hours since eaten and baseline

BMI did not significantly correlate with cue-reward learning and food reward habituation.

Collectively this suggests that time since last eaten and/or overweight status during the scan

assessment at baseline are not significantly driving the observed effects.

3. RESULTS

3.1 Cue-reward learning and food reward habituation

We observed a positive relation between the number of exposures and caudate response to

the cue predicting milkshake receipt > cue predicting tasteless solution receipt (r = 0.42;

F(1,101)=6.2; P = 0.014; Fig. 2A,3A) suggesting cue-reward learning in this region across the

sample. Similar activity in the ventral pallidum was also observed, but was only a trend (r =

0.27; F(1,101)=2.6; P = 0.10; Fig. 1C). There was no significant effect in the putamen (r =

0.08; P = 0.64; Fig. 2B).

When testing for a relation between the number of exposures and response to milkshake

receipt > tasteless solution receipt, we found significant inverse relations in the putamen (r =

−0.33; F(1,101)= 3.9; P = 0.04; Fig. 2B,3B), and ventral pallidum (r = −0.45; F(1,101)= 7.1; P

= 0.009; Fig. 2C,3B), suggesting food reward habituation in these regions. There was no

significant effect in the caudate (r = 0.26; P = 0.13; Fig. 2A).
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3.2 Propensity for neuroadaptation as a risk factor for weight gain

Using individual slopes of cue-reward learning to predict BMI change we found that

propensity for cue-reward learning, (i.e., greater positive slope during cue exposure) in the

ventral pallidum predicted greater increases in BMI over 2-year follow-up (r = 0.39; F(1,88)=

5.3; P = 0.02; Fig. 4A). However, no significant relation was observed between weight gain

and cue-reward learning in the caudate (r = 0.08; P = 0.64) or putamen (r = 0.08; P = 0.64),

though these effects were in the same direction. We also observed that greater food reward

habituation (i.e., greater negative slope during receipt) in the caudate predicted greater future

increases in BMI (r = −0.69; F(1,88)= 16.7; P < 0.001; Fig. 4B). Although the relation

between weight gain and habituation in the putamen (r = −0.22; P = 0.20), and the ventral

palldium (r = −0.08; P = 0.62) were in the same direction, neither were statistically

significant.

3.3 Relation between cue-reward learning and receipt habituation

Propensity for cue-reward learning did not significantly correlate with food reward

habituation in the three brain regions assessed (caudate: r = −0.05; P = 0.79; putamen: r =

0.02; P = 0.91; ventral pallidum: r = 0.09; P = 0.57). Further, we examined specifically the

two regions that predicted weight gain; cue response in the ventral palldium and receipt

response in the caudate were not significantly correlated (r = 0.15; P = 0.38). Collectively,

this provides evidence of the orthogonality of the observed findings, suggesting these are

individual difference factors.

4. DISCUSSION

Results indicated that during exposure to repeated pairings of palatable food receipt and cues

that predict impending receipt of the food, caudate response to cues increased, while

putamen and ventral pallidum response to food receipt decreased. The adaptive response to

cues seen here, extend findings from animal experiments that indicate phasic DA release

shows a similar dynamic pattern through the course of Pavlovian conditioning. Specifically,

animal models indicate that DA signaling in response to neutral stimuli that predict rewards

is shown to increase over repeated exposure, in theory becoming attractive and desirable

incentive stimuli, while DA signaling in response to reward receipt concurrently declines

(Day et al., 2007; Schultz et al., 1997; Tindell et al., 2004). Further, the present findings

extend results from computational models, i.e., temporal difference or prediction error

models, which reveal similar adaptive responses in the striatum over the course of repeated

exposures within the context of Pavlovian conditioning (McClure et al 2003; O’Doherty et

al., 2006; Suri & Schultz 2001). Results showing decreased putamen and ventral pallidum

response to food receipt over repeated exposures also converge with findings from animal

experiments that demonstrated that intragastric infusions of fat resulted in decreased DA

signaling over a 60 min period (Ferreira et al., 2012). The present study enhances this

knowledge base by directly examining adaptive BOLD response to food intake and

associated predictive cues and tests whether individual differences in these responses

predicts behavioral data over long-term follow-up.
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We found that propensity for cue-reward learning in the ventral pallidum predicted future

weight gain. The ventral pallidum has been implicated in conveying distinct signaling for

‘wanting’ (incentive-salience) and ‘liking’ (hedonic pleasure) of stimuli to downstream

brain regions, and is thought to influence decision-making responses to rewarding stimuli

(Smith et al., 2004). Converging with the present data, animal models demonstrate that an

individual propensity for the attribution of incentive salience to reward cues increases the

motivational properties of the cues and thus influences behavior (Flagel et al., 2010;

Robinson & Flagel 2009). This increased incentive salience of cues is thought to induce

cravings and create impulse control deficits during cue exposure (Flagel et al. 2010).

Therefore, we suggest that individuals with a propensity for adaption in ventral pallidum

during cue-reward learning may attribute greater incentive salience to food reward-related

cues, placing them at risk for the observed weight gain as they may be more susceptible to

environmental food stimuli. This work elucidates the adaptive processes that may give rise

to the consistent hyper-responsivity to food cues seen in overweight and hyperphagic

individuals (Burger & Stice 2013; Martin et al 2010; Rothemund et al., 2007; Stoeckel et al.

2008).

We also found that greater food reward habituation in the caudate predicted future weight

gain. There are several potential interpretations of this finding. First, the data could indicate

that an initial heightened reward response to palatable food receipt may trigger opponent-

process mechanisms that attenuate subsequent responses resulting in the rapid decline in

activity over the repeated exposures (Solomon & Corbit 1974). In support, heightened

caudate responsivity to the initial tastes of milkshake accounted for a substantial proportion

of the variance in future weight gain (r = 0.30) in the present data, suggesting the initial

elevated response may contribute to greater caloric intake. In theory, repeated challenges to

the reward system (i.e., overeating palatable energy dense foods) may breach the ability of

the subsequent neuroadaptive processes, resulting in a chronic downregulation of reward

circuitry (Koob & Le Moal, 2005). Thus, future research should attempt to determine

whether the increased weight gain is a function of a greater initial response to receipt or the

rapid decline in response over repeated exposure or a combination of the two patterns.

Second, the rapid habituation in the caudate may prompt overeating in an effort to achieve

the degree of hedonic pleasure previously experienced (Volkow et al., 2008), as dorsal

striatum response has been shown to be positively related to hedonic ratings of food stimuli

(Small et al., 2003). Although, the relation between a reduced striatal response and obesity

may also be related to the thesis that overeating may produces an insensitivity to negative

outcomes resulting in compulsive-like eating (Johnson & Kenny, 2010).

The observed relations between future weight gain and both cue-reward learning and

habituation propensity were strong (r’s 0.30-0.69). These effects are larger than the

predictive relations for other established risk factors for future weight gain, such as parental

obesity (r’s 0.18-0.21; Salbe et al., 2002; Whitaker et al., 1997). It should also be noted that

individual differences in the average BOLD response to milkshake cue > tasteless solution

cue and to milkshake receipt > tasteless solution receipt across all 16 events in these ROIs

did not show significant relations to future increases in BMI in this sample. This illustrates
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the utility of capturing individual differences in adaptive processes of reward-cue learning

and food reward habituation.

Thirty percent of Americans have a healthy weight (Flegal et al., 2012), yet nearly all have

consumed highly palatable, energy-dense foods at least an intermittent basis. Therefore

gaining a better understanding of individual difference factors provide insight as to why

most humans have consumed energy-dense foods, but only some initiate habitual intake of

these foods and gain excess weight. In the present study, we observed no relation between

individuals showing the greatest cue-reward learning and those showing the greatest receipt

habituation, indicating those individuals that show the greatest cue-reward learning where

not the same individuals that show the greatest habituation. The orthogonality of the data

suggests two qualitatively distinct vulnerability pathways to weight gain and do not support

the notion that a within-subject discrepancy between anticipated and experienced reward

increases risk for weight gain. In theory, these independent processes may maintain

overeating, yet both learning processes are evident during initial exposures to energy-dense

foods.

In sum, these data are the first to directly demonstrate individual differences in cue-reward

learning and food reward habituation, and that a propensity for these two processes predicts

future increases in BMI. These data provide insight into documenting mechanisms that may

give rise to the elevated incentive sensitization and reduced striatal responsivity that

putatively promote habitual overeating. Future studies should consider applying these

techniques to better understand the role of additional brain regions that may encode

habituation and novelty (e.g., Yamaguchi et al., 2004), as well as explore the relation to

additional behavioral, and self-report measures (e.g., subjective hunger, disinhibitied eating).

The present results provide evidence of possible underlying mechanisms by which aberrant

reward responses referenced in prominent obesity theories may be initially established.

Individual differences in these adaptive processes may explain why some humans are able to

maintain a healthy weight despite consuming some energy-dense foods and living in a food

promoting environment, whereas other individual’s initial consumption of these foods may

contribute to habitual overeating and excess weight gain.
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Research Highlights

• Differences in cue-reward learning and habituation may relate to food intake

• Individual differences in these phenomena haven’t been studied in vivo in

humans

• Propensity for cue-reward learning in the pallidum predicted future weight gain

• Propensity for food reward habituation in the caudate predicted future weight

gain

• These processes appeared to be orthogonal, suggesting independent risk factors
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Figure 1.
Sample timeline of presentation of geometric shapes (cues) and delivery of milkshake and

tasteless solution. Cues followed a similar time course (presented for 5-12 s) with no taste

delivery. Presentation of stimuli and assignment of geometric cue were randomized.
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Figure 2.
Changes in responsivity to cues that signal impending palatable food receipt and palatable

food receipt over repeated exposure in one fMRI session. A) Positive relation between

number of exposures and caudate response to the cue predicting milkshake receipt > cue

predicting tasteless solution receipt (grey curve, solid line; P = 0.014). B) Inverse relation

between number of exposures and putamen response to milkshake receipt > tasteless

solution receipt (black curve, dashed line; P = 0.04) and C) Inverse relation between number

of exposures and ventral pallidum response to milkshake receipt > tasteless solution receipt

(black curve, dashed line; P = 0.009).
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Figure 3.
Mean BOLD response to A) cues that signal impending palatable food receipt and B)

palatable food receipt over repeated exposures in one fMRI session. As shown with changes

in BOLD response over 4 learning periods (16 total events) in specified region of interest.

The color bar represents the T-value of activity over the scan showing: A) increases in

caudate responsivity to cue predicting milkshake receipt > cue predicting tasteless solution

receipt, and B) decreases in putamen (middle row) and ventral pallidum (bottom row)

responsivity to milkshake receipt > tasteless solution receipt.
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Figure 4.
(A) Greater cue-reward learning in the ventral pallidum predicted increases in BMI over 2-

year follow-up (P = 0.02). (B) Greater food reward habituation in the caudate predicted

increases in BMI over 2-year follow-up (P < 0.001).
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