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Abstract

Surface-based cortical registration methods that are driven by geometrical features, such as 

folding, provide sub-optimal alignment of many functional areas due to variable correlation 

between cortical folding patterns and function. This has led to the proposal of new registration 

methods using features derived from functional and diffusion imaging. However, as yet there is no 

consensus over the best set of features for optimal alignment of brain function.

In this paper we demonstrate the utility of a new Multimodal Surface Matching (MSM) algorithm 

capable of driving alignment using a wide variety of descriptors of brain architecture, function and 

connectivity. The versatility of the framework originates from adapting the discrete Markov 

Random Field (MRF) registration method to surface alignment. This has the benefit of being 

unconstrained by choice of a similarity measure and relatively insensitive to local minima. The 

method offers significant flexibility in the choice of feature set, and we demonstrate the 

advantages of this by performing registrations using univariate descriptors of surface curvature 

and myelination, multivariate feature sets derived from resting fMRI, and multimodal descriptors 

of surface curvature and myelination. We compare the results with two state of the art surface 

registration methods that use geometric features: FreeSurfer and Spherical Demons. In the future, 

the MSM technique will allow explorations into the best combinations of features and alignment 

strategies for inter-subject alignment of cortical functional areas for a wide range of neuroimaging 

datasets.
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1. Introduction

Surface registration algorithms offer advantages over volumetric approaches for alignment 

of the sheet-like cerebral cortex. These model the cortical sheet as a two-dimensional mesh 

and inflate it to a sphere, thereby simplifying the three-dimensional volumetric registration 

problem to a two-dimensional surface registration problem with a simpler geometry. This 

geometry better represents the (neurobiologically more meaningful) geodesic distances 

between points on the cortex.

Alignment of cortical surfaces is commonly driven using geometric features that describe 

measures of cortical shape (folding), such as sulcal depth or local curvature (Fischl et al., 

1999a; Yeo et al., 2010). This has allowed surface-based registrations to significantly 

improve the alignment of cortical folds relative to volumetric approaches (e.g. Ghosh et al. 

(2010)). Unfortunately, cortical folding is not consistent across subjects in many brain 

regions, for example, the cingulate sulcus is highly variable in terms of its branches and 

interruptions (Van Essen, 2005). This limits folding-based surface registration methods 

since, in regions where the number of anatomical folds differ across individuals, there 

cannot be a one-to-one matching based on folding alone. In such circumstances, pointwise 

registration algorithms such as FreeSurfer (Fischl et al., 1999b) and Spherical Demons (Yeo 

et al., 2010) are forced to obtain a match by expanding or contracting the additional 

anatomical folds in a way that is not biologically informed, which can lead to severe local 

distortions.

Alternative methods have been developed that use the variability of folds (Auzias et al., 

2013). However, a more fundamental limitation of morphologically driven alignment is that 

cortical folds do not always match the underlying cortical microarchitecture, such as 

cytoarchitecture and myeloarchitecture. These microscopic features are known to match 

brain function more closely than folding patterns alone (Amunts et al., 2007). The limitation 

of folding-driven alignment in this context was demonstrated by Fischl (Fischl et al., 2008), 

who performed FreeSurfer alignment of cytoarchitectural segmentations of postmortem 

brains. The study showed that while folding-driven alignment of some cortical areas, such as 

primary visual and motor areas was fairly accurate, other areas, such as Brodman areas 44 

and 45, or area hOC5 in extrastriate visual cortex, had poor inter-subject overlap (Fischl et 

al., 2008; Van Essen, 2012). Given that a major goal of intersubject registration is to co-

localise functional subregions across subjects, the Fischl et al. (2008) result suggests that 

alignment driven by folding patterns alone is insufficient for meeting this objective.

These observations have motivated the formulation of alternative approaches that aim to 

align brain function directly using features derived from functional MRI. In one example, 

Sabuncu et al. (2010) drove alignment of brain regions using correlations of functional 

responses to a movie-watching task. However, this restricts the approach to tasks that exhibit 

time-locked responses, and can only reliably align brain regions that the task activates 
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consistently across subjects. Therefore, Conroy and colleagues (Conroy et al., 2013) 

improved upon this result by aligning global functional connectivity matrices. Nevertheless, 

both approaches require initialisation using folding based alignment, and it is our opinion 

that further improvements could be gained by the inclusion of information from other MRI 

modalities.

A multimodal feature set requires a flexible registration framework. For this purpose, we 

choose to work with a discrete optimisation framework (Kolmogorov, 2006; Komodakis and 

Tziritas, 2007; Komodakis et al., 2008; Wainwright et al., 2002). A major motivation for 

this choice is the flexibility it offers in the selection of similarity measures (Glocker et al., 

2008; Kwon et al., 2011; Ou et al., 2011), as it is not currently clear how different features 

covary across subjects, nor what set of features is the most optimal for driving alignment.

Discrete optimisation for registration of volumetric MRI brain images was first proposed by 

Glocker et al. (2008), where it was shown to offer significant speed improvements over 

continuous B-spline free-form deformation approaches (Rueckert et al., 1999), whilst 

generating equally accurate results. Discrete approaches are also less sensitive to local 

minima than continuous optimisation techniques, which aids with the alignment of the 

complex folding patterns across subjects. However, one limitation of the discrete approach 

is that the choice of grid and number of labels (discrete displacement options) has a 

significant impact on the computational burden of the problem. Furthermore, the 

discretisation of the deformation places some limits on the achievable accuracy. 

Consequently, it has become common practice within discrete volumetric approaches 

(Glocker et al., 2008) to reduce the degrees of freedom by using a multi-resolution series of 

control point grids within a B-Spline deformation framework, similar to those used by 

continuous approaches (Rueckert et al., 1999; Andersson et al., 2007). As a result, the 

guarantees regarding discrete optimisation finding the globally optimal solution do not hold 

in the multi-resolution setting, although this is also the case for almost all continuous 

approaches.

One other limitation of the discrete optimisation approach is that including higher order 

regularization functions becomes very difficult (Glocker et al., 2009; Kwon et al., 2011), 

even though the similarity measure can be chosen very flexibly. However, we have found 

that the advantages of the discrete optimisation framework outweigh the disadvantages for 

our application. More detailed discussions of the relative merits of the discrete optimisation 

framework can be found in the discussion section.

In this paper we build on the discrete optimisation framework described in Glocker et al. 

(2008) to achieve surface registration. Crucially, our framework enables multiple sources of 

information (distinct features, intensities or modalities) to be used to drive registration. We 

adapt this framework in three ways. First, we describe how displacement of each surface 

vertex is represented in terms of a discrete set of possible rotations. We also propose a new 

regularization term, customised for the spherical surface, and based on penalising the 

geodesic distance between rotation matrices. In addition, we present a multivariate mutual-

information similarity measure derived from entropic graphs (Neemuchwala, 2005; Staring 
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et al., 2009), that we adapt to the discrete setting. This allows great flexibility of the 

framework with regards to choice of features.

The results here extend work presented in Robinson et al. (2013), in which the utility of the 

Multimodal Surface Matching framework for surface registration was demonstrated through 

use of simulation and preliminary analyses using neurobiological data. Here, we 

significantly expand these analyses and present results using new multivariate and 

multimodal MRI data. Our primary goal with this paper, and set of results, is to demonstrate 

that the proposed discrete optimisation framework is highly flexible and is capable of 

aligning cortical surfaces using a variety of different feature sets, in ways that improve 

functional co-localisation. To this end: Section 5.2 shows that the discrete method can 

perform folding-based alignment with similar accuracy and areal distortion as two state-of-

the-art continuous methods (FreeSurfer (Fischl et al., 1999a) and Spherical Demons (Yeo et 

al., 2010)); and Section 5.3 shows how high-quality resting-state functional MRI alignment 

is sufficiently generalisable to also improve the alignment of task activations. In this paper, 

we aim to demonstrate the broad applicability and flexibility of this method but do not wish 

to imply that any of the parameter settings used to run the software on specific datasets are 

optimal. We also do not set out to systematically explore which combination of features is 

most suited for the best registration. These issues are the focus of current and future work, 

and will be reported in future publications.

Alignment of multimodal MRI data is a highly complex problem due to the often contrasting 

nature of the different datasets. Specifically, functional regions often traverse cortical folds 

and, as yet, there is no known one-to-one matching between functional and structural 

connectivity. We believe that optimal alignment using combinations of features will require 

the learning of cost function weightings, or subsets of features regionally. This is 

particularly complex given the lack of ground truth regarding the reliability of each feature 

for defining functional boundaries. For this reason much of the focus of this paper is on 

serial alignment of multimodal MRI features. Nevertheless, section 5.4 demonstrates the 

capability of the method for simultaneous multimodal alignment using a combination of 

folding and myelin data.

2. Discrete optimisation for registration

In this section we describe the principles of discrete optimisation for registration for a 

general audience. More comprehensive overviews, with technical details, can be found in 

Glocker et al. (2008, 2011) and Wang et al. (2013).

Registration aims to find a spatial transformation that maps one image M (moving image) to 

another F (fixed or reference image), in a way that aligns quantities of interest. Discrete 

optimisation can be applied in registration using a discrete Markov Random Field (MRF) 

labelling where these labels2 represent discrete displacements of each point in the moving 

image. That is, there are a fixed, finite number of possible displacements for each point, as 

2not to be confused with segmentation or ROI indices, as used in FreeSurfer and other packages
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opposed to the continuous optimisation approach that allows an infinite number of possible 

displacement vectors.

The moving image is deformed by warping a grid of points, P (Figure 1A), which can 

represent the native voxel grid or a lower-resolution control point grid. The optimal 

deformation of each vertex P is determined using a first order Markov Random Field (MRF) 

model:

(1)

where the optimal combination of label assignments (deformations) balances a data cost 

term cp, which measures how well the image features are aligned, with a regularization 

potential V, which encourages a smooth deformation by penalising neighbouring points p 

and q from undergoing very different displacements (as represented by the labels lp, lq 

respectively). Here λ is a weighting parameter and E is the set of all neighbouring point pairs 

(edges).

Labels describe a finite set of potential displacements about each point. For example, in the 

volumetric framework (only used here to explain key concepts), one label might describe the 

translation of a point by 5 mm along the x axis whereas another might translate a point 10 

mm along y. Therefore, each control point p is surrounded by a set of candidate label points, 

and each label point has a particular label value (e.g. the label point highlighted as optimal 

in Figure 1B might be called label 25, so that lp = 25 if that label is selected at point p). 

Control points are conditionally independent of all points given their neighbours, and are 

free to select different label values (Figure 1B) subject to the influence of the regularization 

potential V (lp, lq). In general all labels are updated (not shown in the figure) and so each 

point is assigned a deformation vector dlp (Figure 1C). Thus, by selecting labels for each 

vertex p, a non-linear deformation for the whole grid is defined.

The data cost for each control point, and each label lp, is calculated by:

(2)

where ρ is a function that quantifies differences between features; dlp is a Euclidean 

transformation defined by the control point label value lp; M (xi) is the feature (vector) at 

vertex i within the moving image; F(xi + T0(xi)+ dlp) is the feature (vector) from the fixed 

image, corresponding to the location of xi in the moving image, and with T0(xi) representing 

any initial transformation, such as those generated from previous iterations3, and Np is a 

local image patch centred at the control point. This subdivides the higher resolution image 

data into zones of influence for different control points using, for example, linear weighting 

terms (Glocker et al., 2008).

3Note that this is a forward mapping implementation, and that a backward mapping implementation could equally well be formulated.
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Finally, to reduce the computational burden it is common to use a multi-resolution approach 

(Figure 1A), as in many other registration methods (Rueckert et al., 1999; Andersson et al., 

2007). This approach reduces the number of discrete labels needed at each stage, with the 

deformations up-sampled using B-spline interpolation between resolution steps, allowing 

high-resolution registrations to be achieved despite the limitation of having only discrete 

vectors.

3. The spherical registration framework

In this section we explain our novel adaptation of the generic discrete optimization 

framework (described above) to a spherical geometry. This begins by generating a series of 

control point grids from regular subdivisions of an icosahedron (Figure 2A); typically, 

subdivisions of order 2 to 5 are used (with 161, 642, 2542 or 10242 vertices), giving mean 

vertex distances (MV D) of 26.7mm, 13.8mm, 6.9mm or 3.5mm, for a sphere of radius 

100mm. Deformations are upsampled from the control grid to the moving mesh M with Thin 

Plate Spline interpolation (Bookstein, 1989), using Radial Basis Functions to create a 

smooth spatial mapping for every point in M given the displacement of surrounding control 

points. This provides an additional level of regularization.

Human cortical surface meshes, as initially generated using FreeSurfer, contain on the order 

of 140,000 vertices per hemisphere, with vertex spacings of approximately 1mm. The MSM 

framework downsamples the high-resolution surfaces MH and FH onto regular icosahedral 

meshes, M and F. The degree of downsampling varies across control point grid resolutions. 

In general, image data is maintained at least two icospheric subdivisions higher than control 

point grids, and image patches (Np in Equation 4) are defined as circles whose radii are 

determined by the maximum separation between the current control point p and its 

neighbouring control points. We find, subdividing to a regular mesh of 10,242 (3.5mm 

spacing, subdivision 5) or 40,962 (1.7mm, subdivision 6) vertices provides useful speed-ups 

of the calculations (Equation 4) without appreciably degrading the accuracy of the 

alignment.

3.1. Definition of the label set

The key conceptual difference between the application of discrete optimisation in spherical 

(as opposed to volumetric) registration comes from the definition of the label set.

In the volumetric setting it is very common to have the same label represent the same 

deformation for each of the control points within a given iteration. Hence if two 

neighbouring control points p and q were deformed by labels lp and lq, and lp = lq =‘16’, 

then both points would deform in exactly the same way for that iteration. However, with 

spherical geometry such consistent, global deformations are difficult to define.

For example, an equivalent Euclidean deformation at each point on the sphere would result 

in control points deforming to a location no longer on the spherical surface. If instead an 

equivalent rotational deformation was used, then points at the poles would never deform as 

much as points on the equator of the sphere. Therefore, we define labels using a set of 

evenly spaced points surrounding each control point (Figure 2B). To obtain evenly spaced 
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samples on the surface we use an icosahedral subdivision that is 2 orders of resolution 

higher than the control point grid. Each point is represented by a label value (e.g. lp = ‘16’ 

for the optimal label shown in the Figure 2C).

To ensure that a similar set (with fixed number) of deformations exist for all p ∈ P, a single 

set of sampling grid vertices, surrounding the point p, is used as a template for the label 

point set. This template set is then copied and moved so that each control point has an 

equivalent set, with the central sampling point aligned to each control point. This solves the 

problem that a regular icosahedron has varying numbers (5 or 6) of faces adjacent to each 

vertex. Using the same sampling grid ensures the same numbers of labels for each control 

point (which is a minimal requirement for solving the MRF problem using optimisation 

methods such as the Fast-Primal Dual (Fast-PD) method (Komodakis and Tziritas, 2007; 

Komodakis et al., 2008)), but unlike volumetric methods does not enforce equivalence 

between the deformations prescribed for each label (especially at the poles – see Appendix 

A).

Deformations, Rlp, are defined in terms of rotations between the control point vertex and 

each label point, and are internally represented by rotation matrices. These matrices are 

calculated using the Rodrigues rotation formula:

(3)

where the axis k = xp×xlp/|xp×xlp| and angle θ = arcsin(|xp×xlp|/|xp||xlp|) of rotation are 

defined from the positions of the control point, xp and label point, xlp, with respect to the 

centre of the spherical grid; I is the identity matrix and [k]× is the skew-symmetric matrix:

Under this formulation the data cost term is now calculated as:

(4)

where RT0represents an initial transformation, as denoted by T0(xi) in equation 2.

The maximum sampling distance, and thus biggest possible control point deformation in 

each iteration, is set to 0.4 times the mean vertex spacing of the control points. This 

discourages disruption of topological relationships that would occur if the mesh were 

allowed to fold over onto itself. Such a constraint has been shown to enforce 

diffeomorphisms within the framework of regular volumetric spline-based interpolation 

(Rueckert et al., 2006), although for irregularly spaced control points on a spherical surface 

this is not yet proven. After each iteration the deformation is projected to the moving mesh 

M via Thin Plate Spline (TPS) interpolation, and control points are reset to their initial 

positions. As this interpolation and projection is performed in a piecewise fashion (where 
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subsets of vertices in the higher resolution mesh are each transformed by a separate TPS) an 

unfolding step, to prevent non-diffeomorphic behaviour, is implemented here. This 

procedure replicates that performed in Spherical Demons (source code publicly available4). 

In this way deformations are composed and stored at the level of the moving mesh.

The constraint on the deformation space means that optimal alignment is not usually reached 

within one iteration. Therefore, the algorithm iterates over several cycles at each resolution, 

however, unless the label set is changed between cycles no further improvement of the 

registration is achieved (Glocker et al., 2008). So, the label set alternates between using the 

vertices and the barycentres of the sampling grid as label points (which is different from the 

approach in (Glocker et al., 2008)). In general, there are between 10 and 30 labels per 

control point, depending on control grid resolution and choice of label set. Spacing between 

labels at the highest label grid resolution (163,842 vertices) is approximately 0.5mm. This is 

given by the mean distance between each barycentre and neighbouring vertex.

3.2. Regularization

Regularization is implemented using pairwise edge potentials (between neighbouring 

points). Volumetric methods typically penalise Euclidean distances between Cartesian 

deformation vectors applied to neighbouring control points p and q, using potentials of the 

form: V (lp, lq) = |dlp −dlq|. However, our spherical method represents deformations as 

rotations and so it penalises differences between the proposed rotation matrices based on 

geodesic distances on the sphere:

(5)

where ||.||F represents the Frobenius norm. This is proportional to the angle θpq between the 

start and end points of the two consecutive rotations (Huynh, 2009; Moakher, 2002) (since 

the rotation is related to its axis angle representation through an exponential map, logR = 

([k]×θ), and the Frobenius norm of the skew symmetric matrix is , where |k| is the 

Euclidean norm of k).

To understand this more intuitively, consider two adjacent control points p and q that select 

the same labels, i.e., lp=lq. The position of the sampling points (xp, xlp) relative to each 

control point will therefore be the same or very close, and thus the rotational matrices, Rlp 

and Rlq, will be quite similar (see Appendix A), the combined rotation (forward and back), 

(Rlp)TRlq will be close to the identity, and the geodesic distance near zero. On the other 

hand, if the two control points choose different labels (lp ≠ lq), the rotations involved will be 

less similar, and the combined rotation (forward and back) will not be so close to the 

identity, with the penalty term proportional to the squared angular distance of the combined 

rotation (Rlp)TRlq.

This basic formulation only allows regularization of a single iteration of the optimisation 

framework, since the control point grid is reset after every iteration, and so it effectively 

4https://sites.google.com/site/yeoyeo02/software/sphericaldemonsrelease
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excludes the contribution of the deformations from previous iterations. Therefore, in order to 

additionally penalise incremental changes in the configurations of neighbourhoods over 

successive iterations, it is necessary to approximate the full deformation of each control 

point from the deformation of the moving mesh, M.

To obtain this approximation, the initial position of M relative to the control point is used to 

identify a small set of vertices in M that surround p. The mean position of these vertices x̄pm 

at a later iteration is then used to define the end point of a rotation Rp starting at xp and 

ending at x̄pm. Rp can then be defined using equation 3, with k = xp × x̄pm/|xp × x̄pm| and θ = 

arcsin(|xp × x̄pm|/|xp||x̄pm|).

The full deformation for each control point p is now defined as the combination of this 

estimated rotation Rp, followed by the proposed deformation for this iteration Rlp, and thus 

the full regularization penalty term is estimated as:

(6)

This combined distance is non metric as the penalty need not be same for points assigned the 

same label: V (lp, lq) ≠ 0 if lp = lq. It is therefore necessary to select a discrete optimisation 

method (such as Fast-PD) that can be applied with non-metric regularization penalties.

3.3. Optimisation

Optimisation of the cost function can take many forms (see overview in (Sotiras et al., 

2013)) including combinatorial (Boykov et al., 2001; Komodakis and Tziritas, 2007; 

Komodakis et al., 2008) or message passing (Felzenszwalb and Huttenlocher, 2004; 

Kolmogorov, 2006; Shekhovtsov et al., 2008; Wainwright et al., 2002; Veksler, 2005) 

solutions. All methods for MRF labelling have the advantage that optimisation is 

independent of the choice of the form of the function cp(lp). In addition, these methods avoid 

calculation of first or second derivatives of the cost function, and they are less sensitive to 

local minima, since, provided the search range of the label space is large enough, these local 

minima can be overstepped (Glocker et al., 2011).

In our MSM framework, optimisation is performed using the Fast-Primal Dual (Fast-PD) 

method of Komodakis (Komodakis and Tziritas, 2007; Komodakis et al., 2008). Fast-PD 

formulates the MRF as a linear program and uses an efficient, adapted max-flow algorithm 

to solve it. The main advantages of Fast-PD over similar combinatorial algorithms are that it 

is much faster and it can be used with MRFs that have non-metric regularization potentials, 

as required here.

3.4. Multi-modal and Multi-variate Similarity Functions

The flexibility of the discrete framework is such that a wide range of similarity functions can 

be used for the cp in equation 4. To this end, we have implemented normalised cross 

correlation (CC), normalised sum of square differences (NSSD) and normalised mutual 

information (NMI) in our MSM framework. To better equip the method for alignment of 

multimodal MRI data, we also incorporated a more general multivariate similarity measure 
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known as α-Mutual Information (α-MI) (Neemuchwala, 2005; Staring et al., 2009). This 

avoids costly estimations of high dimensional histograms for comparing feature vectors by 

instead comparing lengths of entropic graphs.

Graphs are used in this method as a way to calculate feature similarities. The form of graph 

used for this is a similarity graph G(P, Nk), where the nodes of the graph P represent the 

vertices of the fixed and moving meshes, and edges connect each node p ∈ P to the k nodes 

that have the most similar feature vectors e.g. min|zp − zk| for the Euclidean distance 

between feature vectors zp and zk ∈ Z.

Entropic graphs have path lengths Lγ(Z) (length functionals) that are quasi additive; e.g. 

minimum spanning tree (MST) or k-nearest neighbour (kNN) graph (Hero et al., 2002; 

Neemuchwala, 2005). The path length of the kNN graph is calculated by summing the edge 

weights e(.) of all edges in the neighbourhood Nk,p of each node p, for all nodes:

(7)

Edge weights are calculated from the Euclidean distances between feature vectors zp and zk 

(ek,p = zp − zk) and γ is a user defined scaling exponent.

Similar to the use of path length in brain network theory (Sporns, 2006), short length 

functionals are indicative of graphs with more ordered structure and thus lower entropy. As 

such a direct relationship can be drawn to information theoretic measures of α or Rényi 

entropy (Hero and Michel, 1999). This allows an approximation for graph-based mutual 

information to be derived as (Neemuchwala, 2005):

(8)

where, Zf, Zm, and Zfm represent the set of feature vectors for each kNN graph, D is the 

number of features, γ = D(1−α), and α (0 < α < 1) relates to α-entropy, with higher values 

giving more weight to high probability events.

The quantities  and  represent kNN components of length functionals for each of 

the fixed, moving and joint distributions respectively (Staring et al., 2009):

(9)

(10)
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(11)

where  and  are the separate neighbourhood clusters for each graph, and 

vector  is a concatenation of the feature vectors  and .

This measure essentially estimates the divergence between the joint feature distribution 

p(zfm) and the marginals p(zf) and p(zm). Mutual information is maximised when clusters 

representing similar structures in the fixed and moving datasets are made to align. In such 

instances the nearest neighbours of the joint distribution should coincide with those in the 

marginals, and all distances will be minimised.

4. Implementation details

In summary, the minimal requirement for running the MSM algorithm is a pair of cortical 

surface meshes, inflated to the sphere (we have used FreeSurfer extracted surfaces but this is 

not a restriction), and a set of features for the surface. Features in this context can mean any 

combination of surface features for example: 1) cortical folding alone; 2) multivariate 

features of structural or functional connectivity targets (and their weights); 3) multimodal 

combinations of surface folding and myelination; 4) all of the above.

Registration runs over several control point grid resolution levels (CPres), where at each 

level the data associated with the fixed and moving meshes are typically downsampled (to a 

resolution DPres) using Gaussian interpolation (smoothing kernel σ). Labels are defined 

through a sampling scheme, which uses a regular icosahedral grid, several (usually 2) orders 

of resolution higher than the control grid to define end points of local deformations. The 

sampling grid resolution (SPres), and thus deformation scale, may also update at each level. 

The parameters: CPres, DPres, SPres, σ, as well as the choice of similarity function ρ 

(equation 4) can be tuned by the user and input to the algorithm in the form of a 

configuration file (settings used to generate results in this paper can be found in the 

supplementary material). The code runs on Linux and MacOS, and the software will be 

made available in a forthcoming release of the FMRIB Software Library (Jenkinson et al., 

2012).

5. Experimental methods

The aim of the experiments presented here is to demonstrate the flexibility of the MSM 

method and its wide range of applications. Although some comparisons with existing 

software are performed for structural alignment, it is not our intention to focus on these 

comparisons. Instead we want to highlight how this method creates new opportunities, by 

using new combinations of data to drive registration, and demonstrating initially promising 

results in these cases. We believe that this is a step towards finding biologically-meaningful 

alignments that relate structural and functional brain architecture. Therefore, these 

experiments should be considered as merely a sample from a broad set of potential 

applications.
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5.1. Data Collection

We have validated MSM using data from the WU-Minn Human Connectome Project (HCP) 

(http://humanconnectome.org). The HCP is collecting and sharing neuroimaging data from a 

large group of healthy adults (ages 22 – 35, target number of 1,200 participants). HCP 

datasets are collected from participants during a 2 day visit that includes extensive 

behavioural testing plus four MRI imaging modalities (structural, diffusion, resting-state 

fMRI, and task-fMRI) (Van Essen et al., 2013). The data used in the following analyses 

were derived from structural and functional scans (resting state and task) collected from 196 

subjects. A subset of 25 subjects was used for analysing univariate and multimodal 

alignments.

Scanning protocols for the structural image scans include 0.7mm isotropic acquisitions 

collected on a Siemens 3T Skyra platform, using a 32-channel head coil and MPRAGE 

(T1w) and SPACE (T2w) sequences (Glasser et al., 2013). Functional images were acquired 

using multiband (factor 8) 2mm Gradient-Echo EPI sequences (Moeller et al., 2010). Four 

resting state fMRI (rfMRI) scans were acquired (two successive 15 minutes scans in each of 

two sessions) (Smith et al., 2013a). Seven task-fMRI (tfMRI) experiments were conducted, 

including: working memory, gambling, motor, language, social cognition, relational, and 

emotional tasks; tfMRI scans were acquired after the rfMRI scans in each of two hour-long 

sessions on separate days (Barch et al., 2013). Additional details regarding specific 

acquisition parameters and task protocols are available in Barch et al. (2013) and Smith et al. 

(2013a), as well as on the HCP website5.

Generation of surface meshes and associated shape features were carried out using HCP 

Structural Pipelines (Glasser et al., 2013). This includes refinements to the standard 

FreeSurfer protocol (Fischl, 2012) in order to accurately extract cortical surfaces using both 

T1w and T2w images. Each hemisphere’s surface was mapped to a sphere by projecting 

points along the average convexity or concavity of a region. Metric distortions are 

minimised (but not eliminated) during inflation by seeking to maintain the geodesic 

distances between neighbouring points along the anatomical surface (Fischl et al., 1999a). 

For this reason we do not enforce further distortion correction terms within the registration 

framework.

For cortical shape features, we used FreeSurfer’s ‘sulc’ measure (‘average convexity’, which 

is similar but not identical to measures of sulcal depth) and mean curvature (which provides 

a finer-grained indicator of gyral and sulcal folds). We also used cortical myelin maps, 

based on the ratio of T1w to T2w images as an architectonic marker that correlates with 

many functionally distinct areas in individual subjects (Glasser and Van Essen, 2011).

In addition to the subjects’ native meshes, a standard 32K reference mesh (FS LR 32k) was 

used for analysis of fMRI data (Glasser et al., 2013). The 32K mesh is a low (2mm) 

resolution reference surface, with equal vertex spacing on the sphere, that has left and right 

hemisphere correspondence (Van Essen et al., 2012). Alignment of the data to this reference 

surface was initially performed using FreeSurfer registration to the FreeSurfer population 

5http://www.humanconnectome.org/documentation/Q1/imaging-protocols.html
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average target (fsaverage), followed by a standard transformation of fsaverage to the target 

surface, that accounts for the assignment of left-right correspondences (Van Essen et al., 

2012). After careful application of fMRI distortion correction, and following the HCP 

Functional Pipelines (Glasser et al., 2013), fMRI data was projected from the volume to the 

32K surface using ribbon-constrained volume to surface mapping. This was followed by 

resampling of the subject’s native mesh to the reference surface using adaptive barycentric 

interpolation.

Functional data was smoothed on the surface using a 2mm FWHM geodesic Gaussian 

smoothing kernel, and patterns of activation (responses to each of the tasks) were modelled 

using FSL’s FEAT (Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009), 

separately for each of the 86 different contrasts, over 7 different experiments. Resting-state 

fMRI features were derived by first performing Independent Component Analysis (ICA) 

(Smith et al., 2013a). This reduced the order of the connectivity features from 91,282 (the 

standard grayordinates space, Glasser et al. (2013)) to 26 ICA components. ICA was run on 

the group-wise concatenated time series data following dimensionality reduction using a 

specially adapted principle component analysis known as MIGP (Melodic’s Incremental 

Group-PCA, Smith et al. (2013a)). Following this, a set of matched components (spatial 

maps and associated timecourses) were generated across subjects through the process of 

Dual Regression (Beckmann and Smith, 2004); first regressing group maps onto subjects’ 

timeseries data to produce a set of component timecourses, and then regressing these to 

obtain a set of 26 corresponding spatial maps for each individual. Dual regression was 

performed for the full Q3 release of 196 subjects available from the HCP. The analysis here 

forms a subset of work scheduled to be released in a future publication.

5.2. Univariate alignment

We first evaluated the performance of the MSM algorithm relative to FreeSurfer (Fischl et 

al., 1999a) and Spherical Demons (Yeo et al., 2010) using three univariate feature sets: sulc 

(average convexity), curvature and cortical myelin maps. In each case, registration is driven 

to population averages, where the sulc and curvature population averages are taken directly 

from FreeSurfer, and the myelin average is generated through several rounds of MSM 

alignment of myelin data, where the initial template is formed by averaging myelin data 

following alignment of sulc features, and then the template is iteratively refined by several 

rounds of myelin driven MSM.

We run two levels of regularization for MSM: one “high” and one “low”, being roughly one 

order of magnitude different in the λ values used in equation 1 (see supplementary material 

for exact parameter settings). Two levels of regularization were chosen because we found in 

our preliminary investigations that although lower levels of regularization performed better 

for aligning geometric features, higher levels of regularization appeared to perform better at 

aligning functional data, whilst also producing smaller deformations that subjectively 

appeared more biologically plausible. Therefore, although we explicitly do not aim to find 

the “optimal” parameters in this initial work, we will use these two regularization levels in 

most of the experiments, to demonstrate the important effects of regularization. For clarity, 

we refer to each registration based on the algorithm (FS, SD, MSMhi, or MSMlo) and the 

Robinson et al. Page 13

Neuroimage. Author manuscript; available in PMC 2015 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modality used (sulc, curv, or myelin), combined appropriately (FS-sulc; SD-curv; MSMhi-

sulc, MSMlo-sulc, etc). Here univariate registration refers to registration run with univariate 

features.

FreeSurfer aligns surfaces by calculating a dense displacement field over all vertices on the 

high resolution surface mesh (140,000 vertices) from the correlations of source and target 

feature sets. The dense displacement field and gradient descent optimisation strategy 

contribute to FreeSurfer being a relatively slow algorithm (in the order of hours).

The Spherical Demons method computes a fast diffeomorphic solution to the registration 

problem. It is more flexible with regards to choice of features, and uses the Gauss-Newton 

method for fast optimisation. This requires SSD (sum of squared differences) similarity 

estimates to be used, which assume the feature distributions differ in intensity only by 

Gaussian noise. In our experiments the standard Spherical Demons software was run in 

Matlab using non-default parameters that were optimised for these datasets. Specifically the 

algorithm is modified to relax regularization by reducing the number of smoothing iterations 

in the second step of the demons algorithm, whilst simultaneously increasing the step size 

used in the optimisation. In addition, the number of iterations of the algorithm was 

increased. Further details can be found in the supplementary material. The run-time of the 

algorithm was less than 4 minutes.

In this comparison between the different registration methods the first registration (for each 

method) was always driven from each subject’s native surface to the Conte69 population 

average (Van Essen et al., 2012) template using ‘sulc’ features (average convexity). This 

approach provides the closest correlate to FreeSurfer registration (Fischl et al., 1999a), as 

FreeSurfer allows only for sulc-driven registration, on the basis that these features display 

the lowest population variance among available geometric features. For Spherical Demons 

and MSM, registration was also evaluated using curvature and (separately) myelin features 

to their respective atlases, using the method-specific sulc alignment as initialisation. That is, 

Spherical Demons is first run on the sulc-data and then this result is used to initialise 

Spherical Demons when it is driven by the curvature data. When driven by myelin data the 

initialisation is still based on the sulc result, and does not use the curvature result. The same 

strategy is used for MSM, but the regularization is only varied for the sulc-driven 

initialisation, so that MSMhi and MSMlo only differ in the regularization used in the sulc-

driven stage. The curvature stage uses the same regularization setting for both MSMhi and 

MSMlo, and only the initialisation is different. This is also true for the myelin stage, which 

only differs in the sulc-driven initialisation. See the supplementary material for full 

information about the parameter settings used in the different stages. In each instance MSM 

was run over three resolution levels (four for the myelin data) with five iterations per level 

and cross correlation as a similarity measure.

5.3. Resting State fMRI driven alignment

The resting state alignment was initialized using MSM-sulc (with high regularization to 

reduce distortions in the initial alignment), followed by MSM-myelin to align regions of 

cortex such as MT+ using the myelin contrast. Resting-state-driven registration then 

proceeds from the MSM-myelin initialization, and the final result is denoted MSM-RSN.
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Feature vectors for rfMRI alignment were formed by concatenation of each subject’s 26 

component ICA decomposition. The group ICA spatial maps were used as target. A 

limitation of the group ICA approach is that dual regressed individual subject spatial maps 

depend on the quality of the alignment of the data prior to ICA, and so three iterations of the 

registration were run in which dual regression (but not group ICA) was repeated after each 

step to improve the convergence.

The aim of this experiment was to evaluate the benefit of using functional connectivity 

features to drive the registration and see if it improves the alignment for other data sets. 

Therefore, the resulting transformations were used to project task activation maps into 

common alignment. Improvements were assessed through comparing the group mean 

activation maps (obtained using mixed effects FLAME (Woolrich et al., 2009)) both 

qualitatively and quantitatively, via cluster mass. This was done for each contrast within the 

set of 7 task experiments; a total of 86 contrasts. For comparison the following registration 

methods were also used to project the task data: FreeSurfer, MSMlo-sulc, MSMhi-sulc, and 

MSM-myelin. Including these methods allows the benefits of driving the registration using 

RSN data to be clearly separated from what is possible from sulc-driven alignment or 

myelin-driven alignment.

Cluster mass is calculated by the following formula: , where xi is a 

vertex coordinate, z(xi) is the statistical value at this coordinate, A(xi) is the area associated 

with this vertex (calculated from a share of the area of each mesh triangle connected to it in 

the mid-thickness surface), and S is the set of vertices where |z(xi)| > 10. This set of vertices 

above threshold is determined separately for each statistical image. The cluster mass 

measure reflects both the size of the super-threshold clusters and the magnitude of the 

statistical values within them.

For these results, in order to produce the same number of interpolations as the MSM 

registrations, the FreeSurfer results were “dedrifted” relative to MSM-sulc. This means that 

the difference in registration between FreeSurfer and MSM-sulc was calculated for each 

subject, and these differences (represented as deformed spherical surfaces) were averaged on 

a common mesh to find the average difference between FreeSurfer and MSM-sulc across the 

196 subjects. The FreeSurfer aligned task fMRI data were resampled to remove this group 

average difference in registration (drift). This resulted in the same number of resamplings 

for FreeSurfer as for MSM-sulc, MSM-myelin, and MSM-RSN.

5.4. Alignment using curvature and myelin

Alignment of multimodal MRI data (i.e., simultaneous alignment of combinations of values 

from different MRI modalities) offers significant advantages: firstly in terms of increased 

speed for registration, since features are aligned in a single run as opposed to a series of 

sequential alignments; and secondly in terms of increased flexibility with regards to the 

relative weightings of features, as this allows downweighting of features in regions where 

they are known to be unreliable or inconsistent across subjects.
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The procedure for alignment of multimodal MRI data was explored through simultaneous 

alignment of sulc, curv and myelin features, combined within a three-dimension feature 

vector. Registration was driven to a group average using α-mutual information as the 

similarity measure, with α set to 0.5, as this has been shown to be an optimal value for 

calculating the divergence of two probability distributions that are known to be very similar 

(Hero et al., 2002). Results were compared to registrations obtained from univariate 

registrations of curvature and myelin (A in Figure 6), where in each case the registrations 

were initialised by affine alignment of the sulc data, and registrations were driven using 

cross correlation as a similarity measure. Multimodal MRI registration was run using a 

variety of cost function weightings, labelled as for Figure 6 as: B) none; C) upweighting of 

cortical folds though scaling of sulc and curv features; D) upweighting of myelin features; 

E) use of a regionally varying costfunction weighting which scaled the contribution of the 

myelin relative to the folds only in areas where the myelin was known to have strong 

features. This was obtained by thresholding the group average myelin map, and is shown as 

a binary mask in the top row of result E in Figure 6 and overlaid on the group template in 

the second row. In each instance upweighting refers to applying a factor of 10 to the 

contribution from the upweighted feature, as this was found to generate a good contrast 

between results. All features were variance normalised prior to the application of 

costfunction weightings. Further details of the parameter settings can be found in the 

supplementary material.

6. Results

Our overall objective was to demonstrate the robustness and flexibility of the MSM 

algorithm using a number of modalities individually and in various combinations. In 

addition, we wish to highlight the potential advantages of driving registrations using other 

information, such as resting-state fMRI. Complete optimization of the MSM parameters for 

any given modality, or combination of modalities, was not our primary objective, and we 

anticipate there is room for further improvement (see Discussion).

6.1. Univariate alignment

The performance of the different methods: FreeSurfer, Spherical Demons and MSM, were 

compared in terms of inter-subject averages and variances, areal distortion and run time of 

the algorithm. The average run time of the MSM algorithm was 4 minutes, which is 

comparable to Spherical Demons, and significantly faster than FreeSurfer, which takes 

several hours per subject on the platforms we used. In addition, MSM was run with both low 

and high regularization settings with the sulc-data, and this was used to initialise the 

curvature-driven and myelin-driven registrations. See the supplementary material for full 

details about the regularization settings.

Figure 3 and Table 1 show the results of univariate alignment, compared in terms of inter-

subject averages (Figure 3 rows 1,3,5) and variances (rows 2,4,6) for the left hemisphere. 

Figure 3A represents sulc alignments and is comparable for three methods (FreeSurfer, 

Spherical Demons and MSMlo), insofar as each method achieves a close match to the group 

average target and shows little difference in the variance maps for the algorithm parameters 

selected. However, MSMhi shows a clearly higher residual variance indicating that the 
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sulcal maps are less well aligned when using high regularization. By contrast, Figure 3B 

displays the results of curvature alignment; in this instance FreeSurfer results were driven by 

sulc only (as enforced by the algorithm) and these transformations were applied to the 

curvature data. Spherical Demons and both MSM results were initialised by their respective 

sulc-driven alignments (from rows A), followed by a stage that was driven by curvature 

data. The regularization for the curvature-driven stage was the same for both MSM methods, 

with different regularizations only used in the initialisation. All three algorithms (SD, 

MSMlo and MSMhi) demonstrate reduced variance relative to the FreeSurfer result, with 

Spherical Demons having the least variance by a small margin. In both cases MSM 

generates a sharper and more detailed cross-subject average, possibly indicative of the high 

cross-subject variability in the more detailed and finer folds. Interestingly, the average and 

variance maps for MSMlo and MSMhi are very similar, indicating that the quality of the 

alignment in this case is not heavily dependent on the initialisation (difference images for 

these results, showing the small changes, can be found in the supplementary material). 

Results for myelin (Figure 3C) for the FreeSurfer method simply use the sulc-driven 

alignments and apply these transformations to the myelin data. The myelin-driven 

alignments for the other methods are only initialised by their respective sulc-driven 

alignments, and are completely independent of the curvature-driven alignments described 

previously. Regularization of the two MSM methods was the same for the myelin-driven 

stage. These results again show that both MSM methods are very similar, and therefore are 

not very dependent on the initialisation, while showing sharper delineation of features in the 

average maps, such as the frontal eye fields (FEF, yellow arrows) and in the area of the 

intra-parietal sulcus (IPS, white arrow).

MSM and Spherical Demons tend to generate smoother distortion fields than FreeSurfer, as 

shown from sulc-based alignment of subjects to the Conte69 population average convexity 

template (Figure 4A). For each subject an areal distortion value for each vertex is calculated 

by averaging the distortion for all triangles adjacent to the vertex p as: , 

where AOi is the area of triangle i in the original mesh and ADi is the area of the 

corresponding triangle in the distorted mesh and Ntp is the number of triangles adjacent to 

vertex p. Each areal distortion map is transformed to an average template and the absolute 

values of distortion are averaged across subjects. Much of the difference is related to the 

multiresolution approach used by MSM and Spherical Demons. By contrast, FreeSurfer 

estimates a dense displacement field for all vertices only in the high resolution mesh where 

regularization is only imposed from neighbouring vertices. This analysis does not reveal 

which of these deformations is biologically more correct, since it did not include an 

independent estimate of ground truth, and the mean and variance maps are quite similar. We 

suspect that smoother deformations are likely to be closer to the biological truth, but this 

remains to be tested rigorously. Both MSM and Spherical Demons are more tuneable than 

FreeSurfer, providing control of the regularization weighting, and so the level of smoothness 

can be controlled by the user.

It can also be seen in these results that even though the sulc-driven results from the two 

MSM settings are very different in the amount of areal distortion, the effect of this as an 

initialisation on subsequent stages (curvature or myelin) is minimal.
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6.2. Resting State fMRI driven alignment

Figure 5 shows the results of using resting-state-driven registrations to bring task fMRI data 

into alignment. The MSM-RSN results are compared to FreeSurfer (with drift relative to 

MSM-sulc removed), MSM-sulc (low regularization), MSM-sulc (high regularization), and 

MSM-myelin (initialised by MSM-sulc with the high regularization). In this instance, cluster 

mass values were calculated for data with |z| > 10, across 86 contrasts (drawn from the set of 

7 independent task fMRI experiments).

The results show strong increases in the cluster mass index for almost all task contrasts, 

except when using the MSMlo-sulc method. Relative to FreeSurfer, the results from 

MSMlo-sulc are extremely similar on average (median change of 0.8%), as to be expected 

given their similar performance at aligning sulc data. The MSMhi-sulc and MSM-myelin 

methods show modest improvements in cluster mass (median changes of 4.0% and 6.9% 

respectively). Interestingly, MSMhi-sulc performs better than MSMlo-sulc, suggesting that 

minimizing variance of sulcal features does not yield better functional alignment, and that 

the lower distortions of MSMhi-sulc may be better for initialisation purposes. The biggest 

improvement is shown by MSM-RSN (median increase of 21.5% – see caption of Figure 5), 

which can clearly be attributed to the use of the resting-state data, especially since MSM-

myelin is used to initialise MSM-RSN and therefore all the differences must be due to the 

final RSN stage.

In addition to the quantitative evaluations on the thresholded task activations, the results 

produced by MSM-RSN visually appear to have sharper features, suggesting that improved 

alignment reduces the blurring normally inherent in group averages. This can be seen in the 

thresholded results shown in Figure 5 as well as in the unthresholded results, shown in the 

supplementary material. Because the resting state features provide comprehensive coverage 

of the brain, they provide a robust and general functional alignment for the task data.

6.3. Multi-modal alignment of curvature and myelin

The quality of the multimodal alignments for different cost function weightings is compared 

by observing the sharpness of the inter-subject averages of curv and myelin features, as 

compared to the result obtained by univariate alignment of each feature individually. The 

strongest contrasts are seen for curvature features highlighted in the frontal (light blue 

arrow) and temporal lobes (white circles/arrows) and for myelin in the frontal eye fields 

(yellow arrow) and IPS (pink circle), as shown in Figure 6.

As mentioned previously, registration driven by cortical folds can lead to suboptimal 

alignment of brain function in many regions of the brain (Fischl et al., 2008). Since changes 

in myelination are often related to the position of functional boundaries (Glasser and Van 

Essen, 2011) this also means that it is not straightforward to combine myelin and folding 

features within a single registration. For example, when registration is run using curvature 

and myelin data but with no costfunction weighting, the alignment of myelin (Figure 6B) is 

poor and resembles the results obtained using FreeSurfer in Figure 3. Nevertheless, applying 

no costfunction weighting also leads to reduced overall alignment of the curvature within the 

frontal lobe where the myelin features are most unreliable (light blue arrow). By contrast, 
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upweighting the contribution of the cortical folds to the alignment (Figure 6C) improves the 

alignment of the cortical folds (light blue arrow), but further degrades the alignment of the 

myelin. Upweighting myelin at all points in the image improves the alignment of the myelin 

particularly within the IPS (pink circle) and frontal eye fields but degrades inter-subject 

alignments of the curvature data, particularly within the temporal lobe (white arrow). 

Finally, applying a regional upweighting of the myelin, in areas with higher myelin map 

intensities (as shown by mask in top row Figure 6E) simultaneously generates strong 

contrast for the IPS within the group myelin (pink circle), whilst recovering some of the 

curvature structure in the temporal lobe (white arrow) relative to the result shown in D. 

Unfortunately, it is unable to recover the curvature structure within the frontal cortex (green 

arrow). This highlights the complexity of the problem and suggests that optimal results are 

unlikely to be achieved by choosing arbitrary costfunction weightings. Areal distortions, as 

shown in the supplementary material, should also be considered and in this case show 

additional benefits (i.e., less distortion) for the regional weighting. Improved results are 

likely to be achieved by learning the appropriate weightings from the data. This is 

considered further in the discussion.

7. Discussion

This paper has presented a new approach to surface registration that offers significant 

flexibility with regards to the set of features that are used to drive the registration. The 

framework is implemented using a fast, mul-tiresolution, discrete optimisation scheme, 

which offers significant speed-ups relative to the widely-used FreeSurfer surface registration 

method, while not restricting choice of similarity metric. We have shown that the algorithm 

not only compares well to the current state-of-the-art methods, for the alignment of 

geometric features, but also is capable of generating significant improvements when 

utilising multivariate data from different MRI modalities and shows initially promising 

results when using multimodal features. These preliminary results strongly suggest that 

simultaneous alignment of a wide range of features mapped to the cortical surface will be 

possible using this method.

The flexibility of the proposed MSM framework derives from the use of a discrete 

optimisation framework. One advantage offered by this approach is reduced sensitivity to 

local minima. Provided the scope of the label space is large enough to sample beyond the 

local minima, discrete approaches are able to overstep these locations, whereas continuous 

approaches can more easily become trapped. This has been shown previously to improve the 

robustness of the framework to artefacts and large deformations (Glocker et al., 2008).

Another advantage of the discrete framework is significant freedom with regards to choice 

of similarity measure. This is important because much remains unclear about how 

multimodal feature sets spatially co-vary across individuals. In fact, image intensities as well 

as functional and structural connectivity patterns would be expected to differ from healthy 

subjects in the region of a lesion. Furthermore, there is also evidence that functional 

correspondences may not, in all instances, be topographically consistent (Conroy et al., 

2013; Haxby et al., 2011) even in healthy individuals. With this in mind, our MSM 
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framework incorporates a multivariate mutual-information measure, which may offer some 

robustness to variations in functional connectivity patterns across subjects.

We have demonstrated the utility of the α-mutual information measure through multimodal 

alignment of myelin and curvature features. In this a fixed alpha of 0.5 was chosen based on 

evidence that this value can be considered optimal when the probability distributions being 

compared are similar. Further improvements may be attainable by optimising over the 

choice of alpha, or even modifying alpha regionally.

There are also some limitations to the discrete optimisation approach. Despite being one of 

the fastest schemes, Fast-PD is known to scale unfavourably with increases in the size of the 

label space. This enforces the use of a multi-resolution setting that, together with the 

constraint on the maximum displacement (of 0.4 MV D), requires an iterative solution and 

thus cannot guarantee a globally optimal solution. Alternative methods that do ensure global 

solutions, based on belief propagation (Heinrich et al., 2012), are obtained at the cost of 

significantly simplifying the MRF model.

Another limitation imposed by the use of the MRF approach is the restriction placed on the 

regularization term. Many popular optimisation schemes assume first-order MRF models 

with pairwise edge potentials. Consequently, MRF-based volumetric registration approaches 

typically penalise the Euclidean distances between deformations proposed for neighbouring 

control points. However, these are not invariant to linear transformations, such as rotations. 

Thus, alternative approaches have been proposed which include pairwise approximations of 

curvature penalties (Glocker et al., 2009; Kwon et al., 2011). By contrast, our MSM 

framework invokes a rotational penalty term which is relatively insensitive to rotations by 

design. Nevertheless, the framework does not directly penalise areal distortion. To date, 

efforts to design an areal penalty term based on pairwise interactions have not yielded a 

method that preserves the desired rotational invariance. One alternative may be to locally 

weight the regularization potential based on the current estimates of areal distortion at each 

vertex.

Overall, considering that the surface registration is only a two-dimensional problem, we 

believe that the current labelling framework more than adequately samples the space, and 

that the Fast-PD method provides an excellent compromise between speed, flexibility and 

accuracy. Although there is no guarantee of finding the global optimum (a limitation also 

common to continuous registration methods), we have found the method to perform well in 

practice, as demonstrated by the results presented here. In particular, we find the 

improvements in group fMRI statistics to be very encouraging.

Future work will focus on optimising the framework for comprehensive and simultaneous 

alignment of multimodal MRI data sets that could include any combination of geometric 

(shape-based), myelin, task activation, retinotopy (Abdollahi et al., in preparation, 2014), 

and functional and structural connectivity features. These represent a very high dimensional 

feature set, where each feature is likely to vary in information content and intersubject 

consistency, sensitivity and bias across the cortical sheet. For example, sulcal features are 

often inconsistent, and myelin measures have limited contrast to noise in many regions. How 
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best to align neurobiological features of greatest functional relevance (e.g. resting-state 

functional connectivity) while making appropriately limited use of more indirect measures 

(e.g. folding-related measures) is a complex problem that warrants careful evaluation. 

Therefore, learning the appropriate set of features will represent a complicated machine 

learning challenge informed by accumulated neuroscientific knowledge.

Another aspect of the challenge is the lack of a well-defined ‘ground truth’ for evaluating 

the quality of alignment. However, we have demonstrated the utility of the HCP datasets, 

which provide exceptionally high quality data from multiple modalities, consistently 

acquired from a large and growing number of subjects. Such a large number of subjects 

allows different alignments to be compared objectively based on their ability to predict 

different phenotypic markers such as sex (Smith et al. (2013b)) or to yield improved group 

statistics in alternative datasets (e.g. tfMRI aligned using rfMRI, section 6.2 above).

In conclusion, this paper has demonstrated that the proposed multimodal matching 

framework is capable of aligning cortical surfaces using a wide variety of features. These 

registrations have been shown to be stable under different combinations of driving features 

versus test data, and generate results that are meaningful in terms of improved alignment of 

functional sub-regions of the cortex. Many of these features provide complementary 

information, and improved alignment based on learned multimodal feature sets may 

generate even stronger results. This goal will be the focus of the future development of the 

framework.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A

A caveat to the proposed label representation, and one that is extremely relevant to the 

choice of optimisation method, is that there will not be complete equivalence in the relative 

positioning of labels between control points. As the label points are generated by placement 

of a sampling grid, the rotations defined for the same label at neighbouring control points 

will differ. In most cases this modification will be slight however there will be an 

orientational flip at the poles. Note this is not a problem for the chosen optimisation 

framework (Fast-PD, section 3.3) as this does not enforce metric regularization penalties and 

therefore does not require one-to-one equivalence of the labels, i.e., there is no requirement 

that the penalty for assigning the same label (i.e., a=17) be zero (V (a, a) ≠ 0) nor that two 

labels (i.e., a=17, b=5) are symmetric (V (a, b) ≠ V (b, a)).
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Highlights

• Proposes new method for cortical alignment that utilizes discrete optimization.

• Allows alignment of a wide variety of multivariate and multimodal.

• Improves upon state-of-the-art methods: FreeSurfer and Spherical Demons

• We align task and resting-state functional imaging data.

• Results show significant improvements in functional alignment.
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Figure 1. 
Discrete optimisation for volumetric registration: A) a lower resolution control point grid 

(red) is shown over the moving image. B) a set of label points (blue/purple) defines the 

restricted deformations possible for each control point. The spacing of the candidate label 

points (blue/purple) is intermediate between the lower-resolution control point grid (red) and 

the voxel grid of the fixed image, F (grey). C) The Euclidean deformation of a single control 

point to the location of its optimal label point (only one control point is moved for 

illustrative purposes).
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Figure 2. 
Discrete optimisation for spherical registration: A) The control point grid (red) is formed 

from a regular subdivision of an icosahedron. B) Regularly spaced label points are placed 

around the control point using a higher resolution icosahedron to define a sampling grid for 

the candidate label points (purple/blue points); this grid has lower resolution than the fixed 

(and moving) mesh (grey); C) Deformation of a control point to its optimal label point (only 

one control point is moved for illustrative purposes), using rotations about the centre of the 

sphere (not Euclidean vectors).
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Figure 3. 
Results of univariate feature alignment using 25 subjects. The algorithms used are: 

FreeSurfer, Spherical Demons, MSM with low regularization (MSMlo) and MSM with high 

regularization (MSMhi). Panel A) show results of sulc-driven alignments: cross subject 

averages (first row) and variances (second row) across subjects. Panel B) shows curvature 

alignments. Panel C) shows myelin alignments. See text (section 5.2) for details of how the 

methods are run and initialised. Note that the cross-subject myelin average shows more 

structure at the positions of the frontal eye fields (yellow arrow) and intra-parietal sulcus 

(white arrow) for the MSM results.
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Figure 4. 
Areal distortions from univariate alignment, across the four methods shown in figure 3: 

FreeSurfer, Spherical Demons, MSMlo, and MSMhi. Rows A to C correspond to panels A 

to C in the previous figure: registrations driven by Sulc, Curvature or Myelin. Areal 

distortion maps are averages across subjects, after being transformed to the population 

average target, and the absolute values of log2 of the area ratio is used (see text). FreeSurfer 

generates maps with localised distortion, particularly along gyral crowns, whereas MSMhi 

and Spherical Demons generate a much smoother pattern of mean distortions for Sulc- and 

Myelin-driven alignments. Note that MSMlo and MSMhi have substantially different 

distortions when driven by Sulc data, but very similar distortions for Curvature-driven or 

Myelin-driven cases, indicating that the differences in initialisation have little effect in these 

cases. Histograms (rightmost column) show all methods in each row, colour-coded as: black 

(FreeSurfer), blue (Spherical Demons), red (MSMlo), and green (MSMhi).
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Figure 5. 
Task fMRI alignment driven by RSN features. The maps show group activation results from 

196 subjects, thresholded at |z| > 10 for the Gambling task: reward contrast. Results are 

shown using a range of registration methods: FS (FreeSurfer), SulcLo (MSM-sulc with low 

regularization), SulcHi (MSM-sulc with high regularization), Myelin (MSM-myelin) and 

RSN (MSM-RSN). In the bottom left the boxplots show percentage improvement in cluster 

mass, across 86 task contrasts, using a threshold of |z| > 10. Median values are: 0.8%, 4.0%, 

6.9% and 21.5% for SulcLo, SulcHi, Myelin and RSN respectively (and for comparison, the 

values for the gambling reward contrast are −0.3%, 3.0%, 5.7% and 20.5% respectively). 

The equivalent unthresholded maps can be found in the supplementary material.
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Figure 6. 
Multimodal alignment of sulc, curv and myelin features for a variety of costfunction 

weightings. Results are compared through contrasting the sharpness of the intersubject 

averages of the curvature and myelin features, specifically referencing the alignment of 

curvature in the frontal and temporal lobes (light blue arrow and white loop/arrow 

respectively), and myelin in the IPS (pink circle) and frontal eye fields (yellow arrow). A) 

presents the results obtained following univariate alignment of the curvature and myelin 

features individually, and is shown as a reference. Four different combinations of 

costfunction weightings were examined: B) no weighting; C) upweighting of the geometric 

features (i.e., sulc and curv) relative to myelin throughout the whole brain; D) upweighting 

of myelin features relative to the geometric features throughout the brain; E) upweighting of 

myelin features regionally according to a binary mask generated by thresholding the group 

myelin map (top row).
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Table 1

Numeric summary of the inter-subject variance results shown in Figure 3. Mean variance for each for the three 

features: sulc, curv, myelin; registered using: FreeSurfer, Spherical Demons and MSM (with high and low 

regularization), are summarised for the left hemisphere only. In this ± stands for standard deviation (across 

space).

FREESURFER SPHERICAL DEMONS MSMlo MSMhi

SULC 0.207±0.108 0.236 ±0.097 0.232±0.103 0.278 ± 0.131

CURV 0.106±0.051 0.078±0.042 0.086±0.045 0.086±0.045

MYELIN 0.062±0.036 0.055±0.030 0.056±0.031 0.056±0.031
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