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Abstract

The role of bottom-up and top-down connections during visual perception and the forming of 

mental images was examined by analyzing high-density EEG recordings of brain activity using 

two state-of-the-art methods for assessing the directionality of cortical signal flow: state-space 

Granger causality and dynamic causal modeling. We quantified the directionality of signal flow in 

an occipito-parieto-frontal cortical network during perception of movie clips versus mental replay 

of the movies and free visual imagery. Both Granger causality and dynamic causal modeling 

analyses revealed increased top-down signal flow in parieto-occipital cortices during mental 

imagery as compared to visual perception. These results are the first direct demonstration of a 

reversal of the predominant direction of cortical signal flow during mental imagery as compared to 

perception.
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Introduction

Visual mental imagery and perception share similar cortical representations (Cichy et al., 

2012; Kosslyn, 2005; Pylyshyn, 2003). It has been proposed that, while brain forward 

connections convey information from the outside world, backward connections might have a 
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dominant role during the forming of mental images in the absence of external bottom-up 

inputs (Ganis and Schendan, 2008; Ishai et al., 2000; Kalkstein et al., 2011; Kosslyn, 2005). 

Despite the relevance of top-down and bottom-up dynamics for the understanding of the 

generative mechanisms of visual mental representations (Corbetta and Shulman, 2002; 

Friston, 2002; Kosslyn, 2005), a direct quantitative comparison of the directionality of 

neural signal flow during visual perception and imagery is still missing.

In the present study, we exploited the temporal resolution of high-density 

electroencephalography (hdEEG) and two state-of-the-art causal modeling methods to 

measure cortical directed connectivity during visual perception and visual mental imagery. 

We hypothesized that during visual perception bottom-up connectivity from early visual 

areas to higher order cortices would be predominant; whereas during visual mental imagery, 

higher order areas would lead the recruitment of early visual cortices in a top-down manner. 

This idea is consistent with current notions of visual imagery and perception and with 

indirect experimental evidence (Ganis and Schendan, 2008; Ishai et al., 2000; Kalkstein et 

al., 2011; Kosslyn, 2005; Mechelli et al., 2004).

We quantified directed connectivity from hdEEG recordings by means of two 

complementary approaches: Granger causality (GC) and dynamic causal modeling (DCM) 

(Friston et al., 2013). GC measures how the past signal of one region improves the 

prediction of the present signal of another region. We inferred cortical GC in the context of a 

state-space multivariable autoregressive (MVAR) model developed by our team (Cheung et 

al., 2010). DCM for cross-spectral densities (CSD) uses a nonlinear generative neural model 

(Friston et al., 2012) to estimate phase-delays and power spectrum contents and infer 

directionality of connectivity between modeled cortical areas. Both methods have been used 

in the neuroimaging literature to estimate cortical activity directionality. In the absence of a 

gold standard (Friston et al., 2013), and because of the different assumptions of GC and 

DCM, we opted to use both methods to increase confidence in the results.

We recorded brain activity while subjects engaged in both visual perception and imagery 

under two complementary paradigms: a short movie paradigm, designed to have the highest 

similarity between the content of visual imagery and that of perception, and a daydreaming 

paradigm, intended to optimize the spontaneous flow of visual processing during mental 

imagery. Our experimental design includes two ways of generating visual perception or 

imagery: 1) the replay of an extrinsically generated percept, and 2) an intrinsically generated 

series of mental images followed by an independently generated percept. We deliberately 

chose this strategy to confirm the generality of our results, irrespective of how the perceptual 

content was generated.

We directly compared long-range directed connectivity during imagery and perception in a 

cortical network comprised of an early visual area, the inferior occipital gyrus (IOG), and 

two higher order cortices, the superior parietal lobule (SPL), and the dorsolateral prefrontal 

cortex (PFC, Brodmann area 46) (Figure 1). Each of these cortical regions, or nodes of the 

network, is known to be activated during both perception and imagery tasks (Ganis and 

Schendan, 2008; Gardini et al., 2009; Harrington et al., 2007; Ishai et al., 2000).
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Methods

1. Participants

Twenty healthy right-handed volunteers (10 females and 10 males, mean age of 27.3 years, 

range from 22 to 38 years) took part in this study. Written informed consent was obtained 

from each subject following medical screening. Imagery skills were screened using the 32 

items of the Vividness of Visual Imagery Questionnaire 2 (VVIQ2, (Cui et al., 2007; Marks, 

1995)), for both eyes closed and eyes open imagery. Only subjects with a minimum 

averaged score of 3 on a 5 points scale (average 3.8, range from 2.9 to 4.9) participated to 

the study. The subjects were requested to have a good night of sleep and not to consume 

caffeine the morning before the experiment. All procedures were approved by the University 

of Wisconsin Institutional Review Board.

2. Experimental design

Participants arrived at the laboratory between 9 a.m. and 12 p.m. for set-up, then started the 

experiment. The experimental paradigm combined resting state, perception of movies and 

visual imagery conditions (Figure 2). The order of the eyes closed and eyes open baseline 

and imagery conditions throughout both experimental paradigms were counterbalanced 

among subjects.

2.1. Resting state baseline—At the beginning of the experiment, 5 to 6 minutes of 

resting state EEG were recorded during both eyes closed and eyes open conditions. 

Additional baseline sessions were performed after each paradigm in a subset of 6 subjects. 

These additional data were not further analyzed in the context of this study. During the 

resting state, participants were given the instruction to avoid producing vivid visual imagery.

2.2.1. Visual Perception - Sims3 paradigm: Participants were shown 6 short movies of 

about 1 min length. This duration was chosen based on preliminary observations of a good 

match between the time spent in replaying the movie plot and its actual duration. The 

movies were obtained from The Sims3, a life-simulation computer game (average duration 

of 56 s, range from 50 to 63 s, total duration of 5 min and 36 s).

2.2.2. Visual Imagery - Sims3 paradigm: Following each presentation of the Sims3 

movies, the participants were instructed to mentally replay the movie both with eyes closed 

and with eyes open, as vividly and in as much detail as they could, focusing on the shapes, 

colors, texture, and movements previously perceived. The subject signaled the start and the 

end of the imagery performance orally. The imagery performance fell within the 5 min 

window of persistence of iconic memory of sensory traces (Ishai and Sagi, 1995). The 

vividness of the imagery for each segment was rated on a 5 points scale (drawn from the 

VVIQ2 used for screening the imaginative skills of the participants).

2.3.1. Visual Imagery - Daydreaming paradigm: Participants were requested to imagine 

traveling with a magic bike they rode to a destination of their choice, including the depth of 

the ocean or the sky, without the need to pedal. They were instructed to focus vividly on the 

details (shapes, colors, textures, and movements) of the scenarios they were imagining. The 
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daydreaming imagery was performed both with eyes closed and with eyes open, for 5-6 min 

each.

2.3.2. Visual Perception - Daydreaming paradigm: A silent movie with naturalistic 

scenes was shown (duration of 5 min and 23 sec). This visual perception was performed 

after the mental imagery daydreaming session described above.

2.4. Visual Imagery ratings—In both paradigms, the vividness of the imagery was rated 

on a 5 points scale (VVIQ2). The average subjective rating for the mental replay of short 

movies (The Sims 3 paradigm) and for the free-guided imagery (daydreaming paradigm) 

was 3.7 (range from 3 to 4.5) and 4.2 (range from 3 to 5), respectively.

3. Data acquisition and analysis

The participants were seated in a dim and quiet room at 70 cm from the screen, with a 

headrest. The movies were shown in a 10.4 wide x 8.4 high cm frame at the center of the 

screen. Participants were instructed to limit eye movements during both eyes closed and 

eyes open recordings. A central fixation cross was displayed throughout the perception and 

imagery runs a well as during the resting baselines. The start and end of each short movie 

were synchronized with the EEG recordings.

3.1. Data acquisition—High-density electroencephalography (256 electrodes, Electrical 

Geodesics Inc., Eugene, OR) was recorded with vertex referencing, at a 500 Hz sampling 

frequency, using the NetStation software (Electrical Geodesics Inc., Eugene, OR).

3.2. Preprocessing—EEG data were analyzed using the NetStation software and 

MATLAB (The MathWorks Inc., Natick, MA). The data were average referenced. Three 

distinct stages of preprocessing were applied to the data. The first stage was for the purpose 

of artifact rejection using ICA. The data were bandpass filtered (cut off frequencies 0.5 Hz 

and 58 Hz) to eliminate baseline shifts and electrical line noise. The first and last 4 seconds 

of each data segment was then removed to avoid filter start-up transients. Bad channels and 

artefactual EEG segments were identified visually and removed. Next, eye movements, eye 

blinks, muscular activity and heartbeat artifacts were removed using temporal ICA 

(EEGLab, UCSD) (Onton and Makeig, 2006). The ICA-cleaned data were then further 

preprocessed specifically for either the MVAR/GC or DCM analyses.

The GC analysis was based on downsampling the ICA-cleaned data by a factor of six to an 

83 Hz sampling rate. The downsampling process involved low pass filtering the data (40 Hz 

stopband edge) to prevent aliasing followed by discarding samples. Our interest is in 

behavior below 30 Hz, and higher than Nyquist sampling rates lead to large MVAR filter 

orders, which complicates model estimation. The downsampled data were then high pass 

filtered (2.5 Hz stopband) to remove low-frequency artifacts. The data at the start of each 

record contaminated by filter start-up transients was removed. The data was then segmented 

into 4-second epochs. GC analyses assume that the data is covariance stationary. Thus, 

stationarity and Gaussianity tests were performed on each 4-second epoch using two-sample 

and single-sample Kolmogorov-Smirnov goodness-of-fit hypothesis tests respectively. Only 

the epochs that met both criteria were used in the GC analysis.
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The DCM analysis downsampled the ICA-cleaned data by a factor of 2 to a 250 Hz 

sampling rate and also operated on 4-second epochs. The SPM software projected the sensor 

data at each time point onto eight spatial modes obtained as the principal components of the 

downsampled data. The DCM analysis was performed on the 4-25 Hz band to correspond to 

the same frequency range studied using broadband GC.

3.3. Directed connectivity measurements

3.3.1. Source regions and model fitting: The choice of regions in our model was based on 

a priori knowledge of their involvement in various aspects of visual processing. We chose to 

include the bilateral inferior occipital gyri (IOG), superior parietal lobules (SPL), and 

dorsolateral prefrontal cortices (PFC, cortical patch limited to Brodmann area 46) (Figure 

1a) (Ishai et al., 2000; Mechelli et al., 2004). The fronto(F)-parieto(P)-occipital(O) networks 

employed are shown in Figure 1 on a cortical surface in Montreal Neurological Institute 

(MNI) normalized space. The regions used in the DCM analysis closely corresponded to the 

center of mass of regions used for the GC results. Each DCM region corresponds to a 

cortical patch of 16 mm radius (Daunizeau et al., 2009). The MNI coordinates of the center 

of mass for right IOG (27,−97,-10), left IOG (−27,−97,−10), right SPL (26,−64,56), left SPL 

(−26,−64,56), right PFC (48,40,20), and left PFC (−48,40,20) were based on previous 

reports of fMRI activation of these regions during imagery and perception (Ganis et al., 

2004; Gardini et al., 2009; Harrington et al., 2007)

Both state-space GC and DCM employ an observation model to describe how the neural 

activity from these cortical regions maps to the observed signal measured at the scalp. The 

observation model is based on average-referenced leadfields corresponding to the dipoles in 

the cortical regions of interest. The leadfields were computed using standardized electrode 

positions defined by the sensor net geometry relative to a standard brain that is coregistered 

with the MNI brain. That is, we did not use subject specific lead fields and brain regions. 

The leadfields used in the GC analysis were computed within the Geosource software 

package (Electrical Geodesics Inc., Eugene, OR) using a four-shell (brain, cerebrospinal 

fluid, skull and scalp surfaces) spherical head model. In this model, dipoles are constrained 

to 7-mm cortical voxels of the average MNI brain and consist of three orthogonal source 

orientations (xyz). This results in a parcellation of the cortex by 2447 dipoles. Leadfields in 

the DCM analysis were computed within SPM8 using a boundary element method applied to 

the MNI template after parcellation of the cortical surface using 3004 dipoles (Fuchs et al., 

2001).

The GC analysis is based on an MVAR generative model for the activity in each cortical 

region (Cheung et al., 2010), while the generative model used in the DCM analysis 

represents neuronal interactions with a neural mass model (Pinotsis et al., 2012). The 

measured scalp data is described by the combined observation equation and cortical 

generative model in both cases. The unknown parameters of the observation equation and 

cortical generative models were estimated simultaneously using either a maximum 

likelihood (MVAR) or Bayesian (DCM) approach (Cheung et al., 2010; Friston et al., 2003).
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3.3.2. Granger causality: Connectivity estimates were inferred using a state-space MVAR 

model (Cheung et al., 2010). In this approach, a state equation representing the cortical 

MVAR model is combined with an observation equation describing the EEG measurement 

of cortical signals. In contrast to conventional approaches that estimate source reconstructed 

signals and then estimate MVAR model parameters in two different steps (Barrett et al., 

2012), we optimized the MVAR and other state-space model parameters simultaneously 

from the measured data. Specifically, we directly estimated the MVAR model parameters in 

the state equation, the unknown spatial activity distribution components in the observation 

equation, and the spatial covariance matrix of the observation noise from the measured EEG 

signal. The resulting MVAR parameters describe the cortical network, that is, network 

interactions in source space, but are estimated directly from scalp recordings via an 

expectation-maximization algorithm. This integrated approach is more robust to 

experimental noise, as compared to classical two-stage approaches (Cheung et al., 2010).

Each region of interest is represented as a cortical patch. The scalp signal generated by the 

patch activity is modeled as a weighted combination of dipoles leadfields within the patch. 

Here the weights describe the unknown spatial distribution of activity in the patch. Since 

concatenated leadfields from adjacent dipoles are inherently low rank (Limpiti, et al., 2006), 

we used a singular value decomposition of the patch leadfields to approximate this 

representation for the activity in each patch with three known spatial components and three 

unknown coefficients approximating the spatial activity distribution. The unknown 

coefficients representing the spatial activity in each patch are estimated from the data. Thus, 

each patch is represented by a single time series (Cheung, et al. 2010) and a six-region 

MVAR model relates the activity of the six cortical time series in the network. Brain activity 

that is not described by the six regions is thus considered observation noise.

A MVAR model order of 20 was selected using the Bayesian information criterion (BIC), 

based on the maximum observed data log-likelihood (Akaike, 1978). An expectation-

maximization algorithm developed in (Cheung et al., 2010) was employed to obtain 

maximum-likelihood estimates of the MVAR model parameters, the observation noise 

covariance matrix, and the spatial activity patterns within each region.

The estimated six-region MVAR models were used to evaluate cortical conditional GC 

(Geweke, 1982) between occipital, parietal, and frontal regions of interest, after pooling the 

source activity implied by the MVAR model across hemispheres. This corresponds to 

evaluation of conditional GC between three “super” nodes, each of which involves activity 

in two hemispheres. The conditional GC from region A to B given C is defined as the ratio 

of the error variance when predicting the time series of B using its own past and the past of 

region C time series to that using its own past and the past of regions C and A time series. 

The conditional GC metric was computed bidirectionally in the 4-25 Hz frequency range, 

using the frequency decomposition approach described in (Chen et al., 2006), between 

frontal and parietal, frontal and occipital, parietal and occipital regions.

Data-driven frequency ranges of interest for computing broadband GC were selected post-

hoc, based on the distribution of the cortical power spectral density (PSD) as derived from 

the MVAR model parameters. The PSD vectors for each subject, condition, and cortical 
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region, were normalized to their maximum value and then averaged. The troughs of the 

averaged PSD were used to delimit the windows of the frequency ranges of interest. 

Specifically the integral of GC estimates was computed across the 8.8-12.7 Hz range for the 

alpha band and across the 16.3-23.9 Hz range for the beta band. The 8.8-12.7 Hz band 

contained one peak at 10.1 Hz, the 16.3-23.9 Hz band contained two peaks at 18.1 and 21.6 

Hz respectively. The conditional GC estimates in the bottom-up direction were subtracted 

from the top-down estimates to obtain differential top-down – bottom-up estimates of the 

connectivity measures.

3.3.3. Dynamic causal modeling: DCM for CSD models EEG time-series as the response 

of a network of sources, where each source corresponds to a neural mass model of several 

subpopulations responding to endogenous fluctuations. The model encompassed the cortical 

areas described above (bilateral IOG, SPL, PFC), connected by forward, backward and 

lateral connections as described in Figure 1b (right). Specifically, we used a canonical 

microcircuit (CMC) neural mass model containing four populations of neurons in the 

cortical column: excitatory interneurons, inhibitory interneurons and two populations of 

pyramidal cells (Pinotsis et al., 2012). The spiny stellate cells receive external inputs, and 

the pyramidal cells are long-range projection neurons, with the supragranular layers 

originating forward driving connections and the infragranular layers projecting backward 

modulatory connections. This model structure is biologically plausible (Buffalo et al., 2011; 

Roopun et al., 2006; Salin and Bullier, 1995) and allows parameterization of both interlayer 

and inter-areal interactions (Pinotsis et al., 2012). In DCM for cross-spectral density 

responses, neuronal dynamics are assumed driven by endogenous neuronal fluctuations with 

unknown but parameterized spectral density. This assumption is particularly suitable to 

conditions in which we don't model exogenous stimuli, as when studying brain states under 

steady-state conditions. (Moran et al., 2009). The endogenous neuronal fluctuations are 

represented as a mixture of pink and white noise. Hence, we used complex spectra to 

estimate phase-delays at the source level from observed EEG time-series. Model estimation 

involves fitting the predicted cross-spectral density between any two channels given the 

parameters of the observation model and the neuronal state equations, to the observed data 

features (Moran et al., 2009).We derived the estimates of connectivity strength from the 

DCM parameters. The condition-specific changes in connectivity - as estimated by DCM - 

were then used to summarize asymmetries in coupling for each subject. This procedure is 

theorized to enable an accurate estimation of bidirectional coupling strength (Friston et al., 

2012). We allowed the parameters represented in Figure 1b to be modulated between 

baseline and cognitive states at the level of forward and backward connections (Friston et 

al., 2003).

The SPM8 version of the Statistical Parametric Mapping software was used to identify the 

DCM. Within SPM8 we explicitly set the data features as CSD, the neural model as CMC, 

the latent connectivity matrix A and the induced connectivity matrix B, as well as the 

frequency range of interest and the segment length. All other parameters, including the prior 

expectations for the coupling parameters between sources and within the cortical column 

representing each source, were estimated within SPM from the data.
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3.3.4. Relationship between GC and DCM connectivity measures: Both GC and DCM 

provide estimates of directed coupling; however they are practically and conceptually 

distinct: GC can be regarded as a measure of statistical dependence between signals that is 

causal in the sense of temporal precedence. Put simply, GC represents the proportion of 

variance explained in a target node by conditioning on the history of a source node. In our 

implementation (Cheung et al., 2010; Geweke, 1982), we have expressed GC as a function 

of frequency and have evaluated directed coupling on a regular grid of frequencies and 

summed over frequency bins to quantify broadband coupling strength in a particular band. 

In contrast, DCM represents the effective connectivity using a single number - a coupling or 

rate constant between neural populations in the equations representing the DCM. In what 

follows, we use the GC and DCM connectivity measures as summary statistics and test for 

asymmetries in these measures using classical inference.

4. Statistical analyses

Statistical analyses on conditional GC and DCM estimates of effective connectivity were 

performed with STATISTICA 6.1 (StatSoft. Inc., Tulsa, OK, USA) and MATLAB software. 

For GC, statistical analyses were carried on the difference between top-down and bottom-up 

estimates after baseline subtraction. For DCM, the eyes-open baseline was used as a 

reference, and the eyes-closed baseline was then subtracted from the eyes-closed imagery. 

This approach was taken to account for baseline eyes open and closed connectivity with 

both methods. Statistical analyses were then performed on these baseline-subtracted 

differential top-down – bottom-up DCM estimates of coupling strength. Statistical analysis 

was organized according to a factorial (a × b × c × d) design for both GC and DCM. Factor 

a, the paradigm factor, had 2 levels (extrinsic and intrinsic, corresponding to Sims3 and 

daydreaming paradigms, respectively). Factor b, the experimental condition factor, had 3 

levels (eyes closed imagery, eyes open imagery, and perception). Factor c, the edge factor 

('edge' corresponds to a connection in our network model), had 3 levels (FP, FO, and PO). 

Factor d, the frequency factor, had 2 levels (alpha and beta) for conditional GC and was not 

represented for d DCM.

Results were evaluated by means of repeated measures univariate analysis of variance 

(rmANOVA). Significance levels were pre-set at p < 0.05. Greenhouse-Geisser corrections 

for violation of sphericity were applied to significance levels and degrees of freedom. 

Owing to the presence of a significant two-way interaction (condition*edge), the preplanned 

comparisons, imagery vs perception, and eyes-closed vs eyes-open imagery conditions were 

carried out independently for each edge by means of paired t-tests. All results were corrected 

for multiple comparisons using False Discovery Rate (Nichols and Hayasaka, 2003).

Results

GC

For GC, a repeated-measures ANOVA (rmANOVA) compared differential [top-down – 

bottom-up] GC estimates along the edges of the graph defined by the cortical nodes during 

imagery as compared to perception. The GC values for the following three edges were 

evaluated in both directions: occipito-parietal, parieto-occipital, occipito-frontal, fronto-
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occipital, parieto-frontal, fronto-parietal. The memory of the MVAR model for our data, 

selected using a Bayesian information criterion, used signal latencies of up to 250 ms. The 

results of this analysis revealed a significant interaction between the condition (imagery 

versus perception) versus the edge (occipito-parietal, occipito-frontal and parieto-frontal) 

factors (F23,433 = 6.76, p = 0.004), with no difference between experimental paradigms. 

Preplanned comparisons (imagery vs perception, and eyes-closed vs eyes-open imagery) 

confirmed significantly more top-down flow from SPL to IOG during imagery as compared 

to perception (t19 = 3.32, p = 0.0036; false discovery rate corrected, Figure 3). There was no 

difference between the two imagery conditions.

DCM

A repeated-measures ANOVA was also performed on the differential [top-down – bottom-

up] DCM estimates of directed connectivity during imagery versus perception. The DCM 

results were also baseline-subtracted and estimates were pooled over hemispheres. 

Consistent with the GC result, we confirmed the presence of a significant interaction 

between condition and edge factors (F14,264 = 3.48, p = 0.0249; respectively), with no 

difference between experimental paradigms. Preplanned comparisons, computed following 

the same design as for the conditional GC estimates, identified a reversal of flow during 

imagery versus perception in the parieto-occipital connection (t19 = 4.00, p = 0.0008; false 

discovery rate corrected, Figure 4). This connection showed a prevalent top-down flow in 

imagery and a prevalent bottom-up flow in perception. Once again, there was no difference 

between the imagery conditions.

Discussion

Our main finding is a reversal of neural signal flow in parieto-occipital cortices during 

visual imagery as compared to perception. This study provides the first quantitative 

demonstration of this change in the predominant direction of cortical interactions, a finding 

that is consistent with current notions about visual imagery and perception (Kosslyn, 2005). 

These results were obtained thanks to the excellent temporal resolution of hdEEG and two 

newly developed state-of-the-art directional connectivity estimation methods, state-space 

based GC and DCM. The fact that we obtained consistent results using these two very 

different methods strongly increases the confidence in the present findings.

Two experimental paradigms, mental replay of short movies and free guided imagery 

followed by perception of naturalistic scenes, were explicitly chosen to capture underlying 

mechanisms involved in perception and imagery. The mental replay paradigm was designed 

to closely match the content of imagery and that of perception, while the free imagery-

natural scene perception paradigm was intended to optimize the spontaneous flow of visual 

mental imagery. While these two paradigms differ in several respects, including attentional 

effort and memory load, with respect to directed connectivity they were similar to each 

other. Thus, the observed differences in directed connectivity are likely due to common 

differences between imagery and perception, rather than to specific features of the two 

imagery tasks.
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These results are in line with previous studies suggesting a differential recruitment of visual 

pathways during imagery versus perception. A study applying DCM to fMRI time-series 

(Mechelli et al., 2004) showed bottom-up influences from occipital to temporo-occipital 

category selective regions during perception of simple objects, as opposed to top-down 

influences from prefrontal cortex to the same regions during imagery. However, the 

temporal resolution of fMRI precluded the use of temporal delays to estimate directional 

connectivity in the model (Friston et al., 2013). Moreover, this study did not directly 

compare imagery and perception conditions. Another study showed that changes in 

amplitude of the N170 visual event related potential during imagery versus perception could 

be interpreted as evidence for increased top-down processes during imagery (Ganis and 

Schendan, 2008). Facilitatory effects of mental imagery on subsequent perception, likely 

mediated by top-down influences of higher-order areas on visual cortices, have also been 

described (Pearson et al., 2008). Finally, our findings are in line with a recent 

magnetoencephalography DCM study (van Wijk et al., 2013), suggesting increased beta top-

down motor cortex modulation of gamma stimulus-induced activity in occipital areas during 

mental imagery trials that have slow reaction times, and thus presumably require more 

cognitive effort. However, the study in (van Wijk et al., 2013) did not directly compare 

perception and imagery.

The directed connectivity methods employed here, state-space based GC and DCM exploit 

the high temporal resolution of EEG and allowed us to demonstrate consistent changes in 

the predominant direction of neuronal interactions between visual imagery and visual 

perception. While the overall results concerning directionality were similar with both 

methods, there are inherent differences in these models. The MVAR models used for GC 

analyses were based on a temporal memory of 20 time bins, that is, latencies of up to 240 

ms, which is the time scale of conscious cognition (Lehmann et al., 1998; Tononi, 2012). In 

contrast, in DCM there is an explicit conduction delay that parameterizes the interactions 

between areas. DCM priors for inter-area latencies are around 20 milliseconds - though they 

are then modified during model estimation. Another difference between the MVAR GC 

(Cheung et al., 2010) and DCM for CSD (Moran et al., 2009; Pinotsis et al., 2012) 

approaches is that the MVAR GC model does not explicitly represent nonlinear interactions 

between brain regions (Friston, 2000). Furthermore, the MVAR model assumes that the 

innovations are independent in time and therefore have a uniform spectrum. This contrasts 

with the colored neuronal innovations estimated by DCM (Friston et al., 2013). The MVAR 

model assumes linear interactions, while the DCM model is based on neurobiologically 

inspired nonlinear interactions. The comparison of imagery and perception conditions rests 

upon separate estimations of model parameters for GC, while for DCM, a subset of 

parameters or connections were allowed to change with condition and all the other 

parameters are held constant. Also, the DCM analysis was performed after projecting the 

ICA-cleaned data onto eight spatial modes; the GC analysis was performed using all of the 

spatial modes that remained after ICA. Despite these dissimilarities, an increase in top-down 

connectivity during imagery was found in parieto-occipital regions using both techniques.

Neither GC nor DCM were able to identify statistically significant differences in frontal 

connectivity. Since the results for the frontal connections were not statistically significant in 

any of the cases in this study, it is inappropriate to attempt to draw conclusions from them. 
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We suspect that the lack of significance may be due to the insufficiency of the unimodal 

visual paradigm to distinctly recruit a significant level of activity in a known multimodal 

region such as the dorsolateral prefrontal cortex. Frontal cortices have been posited to 

backwardly activate mental representation in topographically organized visual cortices on 

the basis of information stored in memory (Kosslyn, 2005). Specifically, the dorsolateral 

prefrontal cortex has been shown to be involved in visual processing during both visual 

imagery and perception (Ganis and Schendan, 2008; Harrington et al., 2007). It is also likely 

that inadequate signal to noise ratio associated with frontal activity would make it difficult 

to draw consistent conclusions based on scalp data. Further investigations will be required to 

clarify the directionality of the involvement of the frontal lobes during visual imagery and 

perception.

Likewise, we cannot exclude that differences between the two experimental paradigms 

tested in this study, such as possible imbalances in cognitive load, could represent potential 

confounds in the interpretation of the results. Further experiments that exploit active 

paradigms to test the effect of cognitive load on directed connectivity during imagery and 

perception might resolve this ambiguity.

Note that we are reporting differential [top-down – bottom-up] directed connectivity 

estimates. Both forward and backward connections are present, but the effect of imagery is 

to increase the strength of backward connections relative to forward connections. This is in 

line with the notion that reciprocal or recursive connections are believed to subserve 

conscious cognition (Friston, 2000; Tononi et al., 1992). In short, the results suggest a set-

dependent change in the asymmetry of forward and backward connections as opposed to a 

categorical reversal of unidirectional information flow.

The analysis presented here does not model all the possible brain areas involved in 

perception and imagery, but studies a subset of primary areas. Accounting for all possible 

cortical regions is not currently practical using any analysis method. Hence, our results 

should be interpreted in the sense of equivalency. The equivalent direction of the neural flow 

in the dorsal visual pathway, after accounting for the baseline connectivity, is more top-

down during imagery and more bottom-up during perception, regardless of whether there is 

only direct interaction between the parietal and occipital regions as modeled, or whether 

intermediate unmodeled nodes are involved, for example, relaying information.

Finally, the consistency between the results obtained with state-space based GC and DCM 

methods provides strong evidence for reversal of the net direction of the neural signal flow 

along the visual dorsal stream between visual imagery and perception, even though both 

feedforward and feedback pathways are most likely involved in generating both perceived 

and imagined visual representations. This result opens the way to applying similar 

approaches to other conditions such as dreaming, where it is still unclear whether visual or 

other sensory representations are generated based primarily on bottom-up or top-down 

processing (Nir and Tononi, 2010).
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Highlights

○ We studied bottom-up and top-down connections during visual perception and 

imagery.

○ A cortical occipito-parieto-frontal network was modeled from high-density EEG 

data.

○ Our approach used both state-space Granger causality and dynamic causal 

modeling.

○ Parieto-occipital directed connectivity reversed during imagery versus perception.

○ This is the first quantitative demonstration of theorized connectivity reversal.
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Figure 1. 
Panel a. Regions of interest displayed on a cortical surface reconstruction of the average 

brain from the Montreal Neurological Institute (MNI). Orange, inferior occipital gyrus; red, 

superior parietal lobule; blue, Brodmann area 46, part of the dorsolateral prefrontal cortex. 

Left. Lateral views of the brain: right (top) and left (bottom). Right. Brain view from above. 

Panel b. Network representation of backward (violet), forward (green), and lateral (blue) 

latent connections included in the MVAR model used to compute GC (left) and the DCM 

(right). The MVAR models for the GC analyses were based upon the six nodes depicted. 

However, GC values were computed by pooling over right and left hemispheres. 

Consequently, we estimated GC on backward and forward connections grouping the 

homologous regions in both hemispheres to characterize three functional interactions 

between frontal, parietal, and occipital regions. In the DCM we only allowed condition-

specific changes in the backward and forward connections, and then averaged estimates 

across hemispheres. IOG: inferior occipital gyrus; SPL: superior parietal lobule; PFC: BA46 

in the dorsolateral prefrontal cortex.
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Figure 2. 
Experimental design. In The Sims3 or extrinsic paradigm, the participants were shown short 

clips from The Sims3 videogame and asked to replay them with their imagination as vividly 

and in as much detail as possible. In the daydreaming or intrinsic session, the participants 

were instructed to imagine traveling with a magic bike and to vividly focus on the details 

(shapes, colors, textures, movements) of the imagined scenarios. A movie with naturalistic 

scenes was then shown to match the daydreaming imagery. The order of eyes closed and 

open imagery and resting baseline was counterbalanced among participants. 256-Channel 

Geodesic Sensor Net image reproduced with permission from (Tucker et al., 2009).
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Figure 3. 
Left. Bar graph of differential [top-down – bottom-up] estimates of directed connectivity in 

imagery (green) and perception (pink) after baseline-subtraction, as measured by GC. The 

daydreaming and Sims-3 paradigms are averaged together, as well as the eyes-closed and 

eyes-open imagery conditions. The alpha (8-13 Hz) and beta (16-24 Hz) bands are also 

averaged. The asterisk denotes the statistically significant difference Imagery vs Perception 

over subjects after false discovery rate correction. Right. Network representation of 

statistically significant differences in imagery minus perception. The arrow represents the 

direction of the net neural flow. IOG: inferior occipital gyrus; SPL: superior parietal lobule; 

PFC: BA46 in the dorsolateral prefrontal cortex.
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Figure 4. 
Left. Bar graph of differential [top-down – bottom-up] estimates of directed connectivity in 

imagery (green) and perception (pink) after baseline-subtraction, as measured by DCM. The 

daydreaming and Sims-3 paradigms are averaged together, as well as the eyes-closed and 

eyes-open imagery conditions. The estimates are based upon the 4-25 hertz (broad band) 

data features used for the Granger causality analyses. The asterisk denotes the statistically 

significant difference Imagery vs Perception over subjects after false discovery rate 

correction.Right. Network representation of statistically significant differences in imagery 

minus perception. The arrow represents the direction of the net neural flow. IOG: inferior 

occipital gyrus; SPL: superior parietal lobule; PFC: BA46 in the dorsolateral prefrontal 

cortex.
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